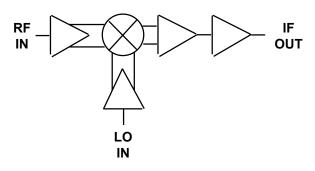


January 3, 2001

0.2 - 18 GHz Downconverter


TGC1452-EPU

The TriQuint TGC1452-EPU is a double balanced MMIC mixer design using TriQuint's proven 0.25 um Power pHEMT process to support a variety of communication system applications including satellite.

The double balanced design consists of an integrated Gilbert cell mixer core, RF/LO baluns, differential combiner, and output driver amplifier. The TGC1452 may be operated from a single +3 V to +5 V power supply with typical current draw of 24 mA. The LO power requirement is -5 dBm to 0 dBm. The TGC1452 may also be operated as an up-converter.

The TGC1452 requires a minimum of off-chip components employing only a 0.01 uF off-chip bypass capacitor for the power supply line. No additional offchip RF matching components are required. Each device is 100% RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance

- 0.25um pHEMT Technology
- 0.2-18 GHz RF/LO Frequency Range
- DC-4 GHz IF Frequency Range
- Nominal Conversion Gain of 12 dB
- Bias 3-5V @ 17-24 mA
- Chip Dimensions 1.0 mm x 1.0 mm

Primary Applications

- Satellite Systems
- Point-to-Point Radio

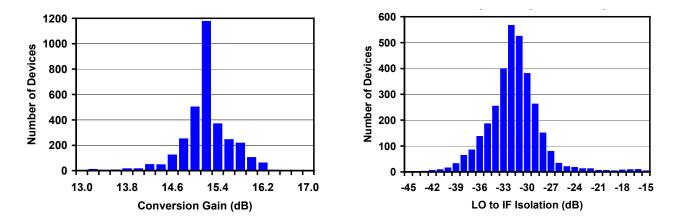
Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

1

TGC1452-EPU

Electrical Characteristics

RECOMMENDED MAXIMUM RATINGS


Symbol	Parameter	Value	Notes
V^+	Positive Supply Voltage	8 V	
I^+	Positive Supply Current	80 mA	<u>3</u> /
PD	Power Dissipation	0.64 W	
P _{IN}	Input Continuous Wave Power	14 dBm	
T _{CH}	Operating Channel Temperature	150 °C	<u>1/, 2</u> /
T _M	Mounting Temperature (30 seconds)	320 °C	
T _{STG}	Storage Temperature	-65 °C to 150 °C	

- <u>1/</u> These ratings apply to each individual FET
- $\underline{2}$ / Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- $\underline{3}$ / Total current for the entire MMIC

ON-WAFER RF PROBE CHARACTERISTICS $(T_A = 25 \text{ °C} \pm 5 \text{ °C})$

Symbol	Parameter	Test Condition	Limit			Units
		Vd=5V, LO=-5dBm	Min	Nom	Max	
G	Conversion	$F_{RF} = 2.0 \text{ GHz}$	10	15	-	dB
	Gain	$F_{LO} = 2.501 \text{ GHz}$				dB
ILO	LO Isolation	$F_{LO} = 2.501 \text{ GHz}$	-	-30	-25	dB
IDC	DC Current		20	25	35	mA

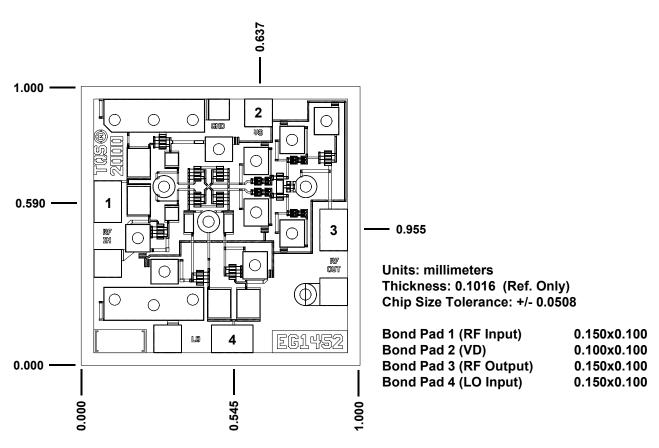
RF-Probe Performance Summary

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

(2

TGC1452-EPU

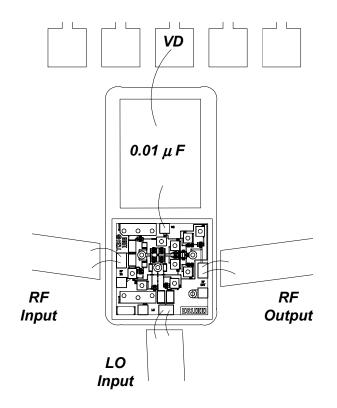
3


Typical	Performance
rypicai	1 chronnance

Measured		+5V Measured			+3V Measured		
Parameter	Units	2GHz	10GHz	18GHz	2GHz	10GHz	18GHz
Conversion Gain ¹	dB	14.8	9.5	5.5	12.0	7.5	2.5
Output P _{1dB} ¹	dBm	-2.0	-2.3	-3.7	-7.5	-8.5	-10.0
SSB Noise Figure ²	dB	9.8	12.5	18.5	10.2	13.0	19.0
Gain Temp. Coeff. ¹	dB/°	0.017	0.020	0.030	0.015	0.023	0.032
LO Isolation	dB	-30	-35	-28	-35	-35	-28
RF Return Loss	dB	-18	-9	-8	-18	-9	-8
IF Return Loss	dB	-12	-16	-18	-16	-21	-24
LO Return Loss	dB	-20	-10	-7	-19	-10	-7
Supply Current	mA	24			17		

1. IF = 501 MHz

2. IF = 201 MHz



Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

TGC1452-EPU

Chip Assembly and Bonding Diagram

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above $300 \,^{\circ}\text{C}$
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200°C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.