Features

- 1024 x 1024 Pixels with Memory Zone
- Up to 30 Images/Second
- Built-in Antiblooming Device Providing an Electric Shutter Function
- Pixel: 14 µm x 14 µm
- Image Zone: 14.34 x 14.34 mm²
- Two Outputs at 20 MHz Each
- Readout Through 1 or 2 Outputs
- Possible Binning 2 x 2
- Optical Shield Against Parasitic Reflexions and Stray Light
- A/R Window in 400 700 nm Bandwidth

Description

The TH7888A is particularly designed for high data rate applications (up to 30 pictures/second in 1024 x 1024 progressive scan format) in the medical and industrial fields. This area array image sensor consists of a 1024 x 1024 pixels (14 μ m x 14 μ m) image zone associated with a memory zone (masked with an optical shield). To increase the data rate, two separate outputs are provided, which can be used for parallel readout (the readout frequency is up to 20 MHz/output, leading to a total readout frequency of 40 MHz). These two outputs allow three readout modes (single or dual port). The TH7888A is designed with an antiblooming structure which provides an electronic shutter capability. Moreover, the 2 x 2 binning mode is available on this sensor, providing an image size of 512 x 512 pixels with 28 μ m x 28 μ m pixels. The TH7888A package is sealed with a specific anti-reflective window optimized in the 400 - 700 nm spectrum bandwidth on the sealed version.

Area Array CCD Image Sensor (1024 x 1024 Pixels with Antiblooming)

TH7888A

Rev. 1999A-IMAGE-09/03

Functional Overview

Extra dark lines are provided for use as dark references or for smearing digital correction.

Extra dark pixels are provided for dark line reference clamping. Each frame consists of 1056 video lines:

- 1 dummy line
- 12 useful dark reference lines (with optical shield)
- 3 isolation lines
- 1024 useful lines
- 3 isolation lines
- 12 dark reference lines (with optical shield)
- 1 dummy line

Each video line is made up of 546 or 1058 elements, depending on the readout mode (single or dual port mode):

- 12 inactive prescan elements
- 1 isolation prescan element
- 16 useful dark references (with optical shield)
- 5 isolation elements
- 512 or 1024 useful video pixels

Pin Description

Table 1. Pin Description

Pin Number	Symbol	Designation
Y9	ΦP1	
AA9	ΦΡ2	
Y10	ΦΡ3	Image zone clocks
AA10	ΦΡ4	
Y5	ΦM1	
AA5	ФМ2	
Y6	ФМ3	Memory zone clocks
AA6	ФМ4	
Y4	ФМ	Memory to register clock
B2	ΦL1	
A2	ΦL2	
A3	ΦL3	
B3	ΦL4	Readout register clocks
B1	ΦL5	
A1	ΦL6	
A9	VDD1	
A8	VDD2	Output ampliner drain supply
B10	VS1	
B8	VS2	Output ampliner source supply
B7	VDP	Protection drain bias
A6	VGS	Register output gate bias
A10	VOS1	
B9	VOS2	
B4	ΦR	Reset clock

Table 1. Pin Description (Continued)

Pin Number	Symbol	Designation
Y7	ФА	Antiblooming gate clock
A7	VDR	Reset bias
AA7	VA	Antiblooming diode bias
A4, A5, B5, B6	VSS	Cubatrata bias
Y8, AA4, AA8	VSS	Substrate blas

Geometrical Characteristics

Absolute Maximum Ratings*

Storage Temperature
Operating Temperature40°C to +85°C
Thermal Cycling15°C/mn
Maximum Applied Voltages:
• Pins: Y9, AA9, Y10, AA10, Y5, AA5, Y6, AA6, Y4, B2, A2, A3, B3, B1, A1, B4, A60.3 V to 15 V
• Pins: A9, A8, B10, B8, B7, A7, AA70.3 V to 15.5 V
• Pin: Y70.3 V to 12 V
• Pins: A4, A5, B5, B6, Y8, AA4, AA80 V (ground)

*NOTICE: *Stresses above those listed under absolute maximum ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating range defines the limits within which functionality is guaranteed. Electrical limits of applied signals are given in the operating conditions section.

Operating Precautions

Shorting the video outputs to any pin, even temporarily, can permanently damage the on-chip output amplifier.

Operating Conditions

Table 2. DC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Output amplifier drain supply	VDD1, VDD2	14.5	15	15.5	V
Protection drain bias	VDP	14.5	15	15.5	V
Reset bias	VDR	14.5	15	15.5	V
Antiblooming diode bias	VA	14.5	15	15.5	V
Register output gate bias	VGS	2.2	2.5	2.8	V
Output amplifier source supply	VS1 ⁽²⁾ , VS2		0		V
Ground ⁽¹⁾	VSS ⁽²⁾		0		V

Notes: 1. Ground: note that the package metal back is grounded.

 In dynamic mode, to avoid possible damage to the device, the addition of a Schottky diode is recommended (for example; diode reference BAR 43S) between VS1 and VSS ground in order to increase the potential on VS1, thus avoiding any direct mode diode current during clock transitions.

Readout Mode

The serial readout register is operated in a two-phase transfer mode. However, there are 6 separate command electrodes that should be connected differently, depending on the required readout mode. The following table gives the connections to be made for each mode.

Table 3. Readout Modes

Readout Modes		1 Output, VOS2			
Drive Clocks (Signals)	1 Output, VOS 1	(Mirror Effect)	2 Outputs (Parallel)		
ΦL1	Pins B2, B3, B1	Pins B2, A3, A1	Pins B2, B3, A1		
ΦL2	Pins A2, A3, A1	Pins A2, B3, B1	Pins A2, A3, B1		

Table 4. Timing Parameters

Definition	Symbol	Comments
Vertical transfer period	T _v	Nominal value = 800 nm
Vertical transfer subdivision	Тo	Tv = 8 x To
Rise time	tr	For vertical transfer clocks (between
Fall time	tf	10% and 90% of the transition time)
Readout register clock transition time	t1	
Reset clock transition time	t2	
Delay between output reset signal and reset clock	td	

6

Timing Diagrams

The following diagrams describe the 20 MHz readout frequency and 1.25 MHz vertical transfer frequency.

Figure 5. Frame Timing Diagram

- Notes: 1. 12 pre-scan elements
 - 2. 1 isolation element, 16 dark reference pixels, 5 isolation elements
 - 3. 1024 useful video pixels (single output readout mode), 512 useful video pixels (dual output readout mode)

Figure 8. Transfer Period from Image Zone to Memory Zone (ΦP and ΦM for 1.25 Vertical Transfer Frequency FV = 1: Tv)

Figure 9. Output Diagram for Readout Register and Reset Clock 20 MHz Applications Crossover of Complementary Clocks (Φ L1, Φ L2). Between 30% and 70% of Maximum Amplitude.

Note: t1 = 7 ns typical

t2 = 5 ns typical

td = 8 ns typical delay time

Binning Mode Operation

In binning mode operation, the image is composed of 512 x 512 pixels (28 μm x 28 μm each).

Figure 10. Summation in the Readout Register of Two Adjacent Lines

Note: To view fall and rise times see Figure 8 on page 8

Exposure Time Reduction

The TH7888A provides an exposure time control (electronic shutter) function.

The exposure time reduction is achieved by pulsing all the Φ Pi gates to 0 V to continuously remove all the photogenerated electrons through antiblooming drain VA.

Note: To view fall and rise times see Figure 6 on page 7

Table 5. Drive Clock Characteristics

		Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Image zone clocks	ΦΡ1, 1, 3, 4					Typical input capacitance
High level		7.5	8	8.5	V	15 nF
Low level		0	0.5	0.8	V	See Figure 12
Memory zone clocks	ФМ1, 2, 3, 4					Typical input capacitance
High level		7.5	8	8.5	V	15.5 nF
Low level		0	0.5	0.8	V	See Figure 12
Memory register clocks	ФМ					Typical input conscitones
High level		8.5	9	9.5	V	
Low level		0	0.5	0.8	V	10 pF
Antiblooming gate	ФА					Typical input capacitance
High level (integration)		3	4	7	V	14 nF
Low level (transfer)		0	0.5	0.8	V	See Figure 12 and Figure 14
Reset gate	ΦR					
High level		10	12	13	V	
Low level		0	2	3	V	10 pF
Readout register clocks	ΦL1, 2					
High level		8.5	9	9.5	V	Φ1L 8 pF Φ2L
Low level		0	0.5	0.8	V	$ \qquad \qquad$
						40 pF 40 pF
Maximum readout register frequency	F _H	20	-	-	MHz	See Figure 9
Maximum image zone to memory zone Transfer frequency	F _v	1.7	_	_	MHz	See Figure 14

TH7888A

Table 6.	Static and D	ynamic Electrical	Characteristics
----------	--------------	-------------------	-----------------

		Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output amplifier supply current	I _{DD}		10	15	mA	per amplifier
Output impedance	Z _S	200	225	250	Ω	
DC output level	V _{REF}		11		V	
Output conversion factor	CVF	5.5	6	6.5	μV/e-	

Electro-optical Performance

General conditions:

Temp = 25° C (package temperature)

Light source: 2854 K with 2 mm BG38 filter (unless specified) + F/3.5 optical aperture.

30 images per second mode (Ti = 33 ms) under typical operating conditions

- Readout mode: 2 outputs
- Values exclude dummy elements and blemishes

Table 7. Performance Description and Values

		Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output register saturation level	V _{SAT} reg	-	2.6	-	V	
Pixel saturation level	V _{SAT}	1.6	1.9	3	V	(1)
Pixel saturation charge (electron per pixel)	Q _{SAT}	_	320	_	ke-	
Responsivity at 640 nm Responsivity with BG38 filter	R	- 3	6.5 4	-	V/(µJ/cm²) V/(µJ/cm²)	
Quantum efficiency at 640 nm	QE	_	15	_	%	See Figure 17
Photo response non uniformity (1σ)	PRNU	-	0.4	1.7	%Vos	
Dark signal non uniformity (1σ)	DSNU	_	0.28	0.4	mV	(2)
Average dark signal	V _{DS}	_	2	3	mV	(3)
		_	4	5.6	mV	(4)
Temporal RMS noise in darkness (last line)	V _N	_	200	_	μV	(5)
Dynamic range	D	_	80	_	dB	(6)
Horizontal modulation transfer function at 500 nm	MTF	-	70	-	%	(7)
Vertical charge transfer inefficiency (per stage)	VCTI	_	_	2.5.10 ⁻⁵	-	(8)
Horizontal charge transfer inefficiency (per stage)	HCTI	-	-	5.10 ⁻⁵	-	(9)

Notes: 1. Pixel saturation (full well) as a function of vertical transfer frequency (see Figure 14 on page 15) and antiblooming adjustment (see Figure 15 on page 15).

- 2. After substraction of dark signal slope due to memory readout time.
- 3. First line level referenced from inactive prescan elements (12 samples).
- 4. Last line level referenced from inactive prescan elements (12 samples).
- Measured with Correlated Double Sampling (CDS) including 160 µV readout noise and dark current noise in general test conditions.
- 6. Saturation to RMS noise in darkness ratio.
- 7. At Nyquist frequency.
- 8. VSAT/2 measurement and 417 kHz vertical transfer frequency.
- 9. VSAT/2 measurement and 10 MHz horizontal transfer frequency.

Figure 14. Saturation Level by Full Well with Antiblooming Off (ΦA High = 0 V) Versus the Vertical Transfer Frequency

Figure 15. Saturation Level Limitation by the Antiblooming Effect on the Pixel (Typical Operating Conditions)

Figure 16. Smearing Effect

 N_{ESAT} = number of times E_{SAT}

$$\frac{V_{SMEARING}}{V_{SAT}} = N_{ESAT} \times \frac{T_V}{T_I} \times H$$

with E_{SAT} = V_{SAT}/responsivity (typical illumination conditions)

- Ti = integration time
- Tv = image to memory transfer time

Figure 17. Spectral Response with A/R Window (Typical Case)

Image Quality Grade

Blemish	Maximum area of 2 x 2 defective pixels.					
Clusters	Less than 7	Less than 7 contiguous defects in a column.				
Columns	More than 7	contiguous defects in a column.				
General Conditions	Room Temper	rature25°C				
	Frequency	30 images/s(under typical operating conditions)				
	Considered image zone1024 x 1024					
	Light Source	2854K with BG38 filter + F/3.5 optical aperture				

At Vos = 0.7 Vsat

Туре	White	Black
Blemishes/clusters	α > 20% Vos	α > 30% Vos
Columns	α > 10%	α > 10% Vos

In Darkness

Blemishes/clusters	α > 10 mV (*)	
Columns	α > 5 mV (*)	
(*) reference is Vo: average darkness signal		

Number of Defects	Total pixel numbers affected by blemishes and clusters100		
	Maximum number of clusters10		
	Maximum number of columns5		
	α : amplitude of video signal of defect with respect to mean output voltage $\overline{V}os$		
Ordering Codes	TH7888AVRHRB: sealed version		
	TH7888AVRHN: unsealed version		

Figure 18. Ordering Information Key

Package Outline

Figure 19. Package Drawing for 40-lead PGA

Notes: 1. All values are in mm.

- All values are in finit.
 Black alumina 40-lead PGA package
 - Black optical mask (only on sealed version)
 - 4. 400 nm 700 nm AR coated window (R < 1% per side). Only on sealed version
 - 5. Metal back, (CuW copper tungsten) gold plated. Electrically grounded (VSS)
 - 6. Optical center
 - 7. First useful pixel (readout through Vos1)
 - 8. Mechanical reference
 - 9. Photosensitive area dimensions 14,392(X) x 14,358(Y)

Parameter	Mechanical Distance	Optical Distance	Unit
Z _{top}	2.82 ± 0.31	2.31 ± 0.30	mm
Z _{bottom}	1.68 ± 0.15	2.19 ± 0.25	mm

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131, USA TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] is the registered trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

