The documentation and process conversion measures necessary to comply with this revision shall be completed by 22 May 2002.

INCH-POUND

MIL-PRF-19500/614B 22 February 2002 SUPERSEDING MIL-PRF-19500/614A 3 May 1996

#### PERFORMANCE SPECIFICATION

SEMICONDUCTOR DEVICE, FIELD EFFECT RADIATION HARDENED TRANSISTOR, N-CHANNEL, SILICON, TYPES 2N7380 AND 2N7381

JANTXV M, D, R, F, G, AND H, JANS M, D, R, F, G, AND H

This specification is approved for use by all Departments and Agencies of the Department of Defense.

#### 1. SCOPE

- 1.1 <u>Scope</u>. This specification covers the detail requirements for an N-channel, radiation hardened, enhancement mode, MOSFET, power transistor intended for use in high density power switching applications. Two levels of product assurance are provided for each device type as specified in MIL-PRF-19500, with avalanche energy ratings (E<sub>AS</sub>) and maximum avalanche current (I<sub>AS</sub>).
  - 1.2 Physical dimensions. See figure 1 (T0-257AA).
  - 1.3 Maximum ratings. Unless otherwise specified,  $T_C = +25$ °C.

| Туре             | $\begin{aligned} & \text{Min V}_{(BR)DSS} \\ & \text{V}_{GS} = 0 \text{ V} \\ & \text{I}_{D} = 1.0 \text{ mA dc} \end{aligned}$ | P <sub>T</sub> (1)<br>T <sub>C</sub> =<br>+25°C | $P_T$ $T_A = +25^{\circ}C$ (free air) | $V_{GS}$   | $I_{D1}$ (2)<br>$T_{C} = +25^{\circ}C$ | $I_{D2}$ (2)<br>$T_{C} = +100^{\circ}C$ | $T_J$ and $T_{STG}$        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------|----------------------------------------|-----------------------------------------|----------------------------|
|                  | <u>V dc</u>                                                                                                                     | <u>W</u>                                        | W                                     | V dc       | A dc                                   | A dc                                    | <u>°C</u>                  |
| 2N7380<br>2N7381 | 100<br>200                                                                                                                      | 75<br>75                                        | 2<br>2                                | ±20<br>±20 | 14.4<br>9.4                            | 9.1<br>6.0                              | -55 to +150<br>-55 to +150 |

|        | Is   | I <sub>DM</sub> | V <sub>GS</sub> =    | DS(on) (1)<br>12 V dc<br>= I <sub>D2</sub> | R <sub>θJC</sub><br>max | E <sub>AS</sub> max | I <sub>AS</sub> |
|--------|------|-----------------|----------------------|--------------------------------------------|-------------------------|---------------------|-----------------|
| Type   |      | (3)             | $T_J = +25^{\circ}C$ | $T_J = +150^{\circ}C$                      |                         |                     |                 |
|        | A dc | A(pk)           | Ω                    | $\Omega$                                   | °C/W                    | <u>mJ</u>           | A dc            |
| 2N7380 | 14.4 | 57              | 0.18                 | 0.33                                       | 1.67                    | 150                 | 14.4            |
| 2N7381 | 9.4  | 37              | 0.40                 | 0.84                                       | 1.67                    | 150                 | 9.4             |

(1) Derate linearly by 0.6 W/°C for  $T_C > +25$ °C;  $P_T = \frac{T_{JMAX} - T_C}{P_{JMAX}}$ 

(2) 
$$I_D = \sqrt{\frac{T_J \max - T_C}{(R_{\Theta JC})x(R_{DS_{on}} at T_{Jmax})}}$$

(3)  $I_{DM} = 4 \times I_{D1}$ ;  $I_{D1}$  as calculated by footnote (2).

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Defense Supply Center Columbus, ATTN: DSCC-VAC, P.O. Box 3990 Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1.4 Primary electrical characteristics. Unless otherwise specified, T<sub>C</sub> = +25°C.

| Туре             | $\begin{aligned} & \text{Min V}_{(BR)DSS} \\ & \text{V}_{GS} = 0 \text{ V} \\ & \text{I}_{D} = 1.0 \text{ mA dc} \end{aligned}$ | V <sub>DS</sub> 2 | S(th)1<br>≥ V <sub>GS</sub><br>) mA dc | $I_{DSS} \text{ max}$ $V_{GS} = 0 \text{ V}$ $V_{DS} = 80 \text{ percent}$ of rated $V_{DS}$ | Max $r_{DS(on)1}$ (1)<br>$V_{GS} = 12 \text{ V}; I_D = I_{D2}$<br>$T_J = +25^{\circ}\text{C}$ |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                  | V dc                                                                                                                            | <u>V</u><br>Min   | dc<br>Max                              | μA dc                                                                                        | Ω                                                                                             |
| 2N7380<br>2N7381 | 100<br>200                                                                                                                      | 2.0               | 4.0<br>4.0                             | 25<br>25                                                                                     | 0.18<br>0.40                                                                                  |

- (1) Pulsed (see 4.5.1).
  - 2. APPLICABLE DOCUMENTS
- 2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in sections 3 and 4 of this specification, whether or not they are listed.
  - 2.2 Government documents.
- 2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation (see 6.2).

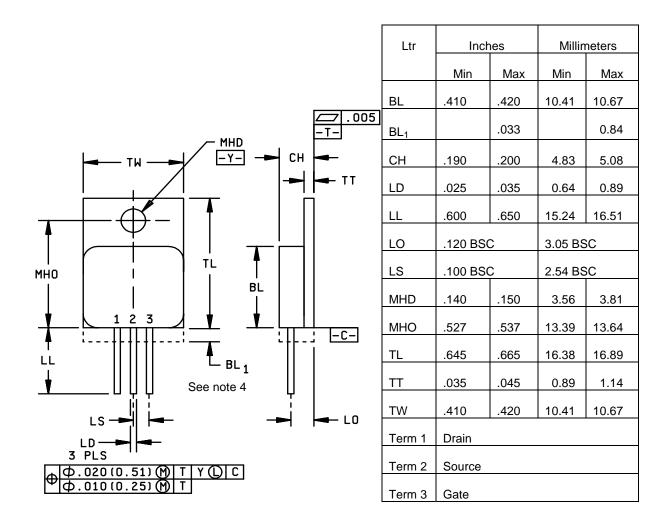
### **SPECIFICATION**

#### \ DEPARTMENT OF DEFENSE

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

### **STANDARD**

### **DEPARTMENT OF DEFENSE**


MIL-STD-750 - Test Methods for Semiconductor Devices.

(Unless otherwise indicated, copies of the above specifications, standards, and handbooks are available from the Document Automation and Production Services (DAPS), Building 4D (DPM-DODSSP), 700 Robbins Avenue, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

### 3. REQUIREMENTS

\* 3.1 <u>General</u>. The requirements for acquiring the product described herein shall consist of this document and MIL-PRF-19500.



# NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. All terminals are isolated from case.
- 4. This area is for the lead feed-thru eyelets (configuration is optional, but will not extend beyond this zone).

FIGURE 1. Dimensions and configuration (T0-257AA).

- \* 3.2 Qualification. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturer's list (QML) before contract award (see 4.2 and 6.3).
- \* 3.3 Abbreviations, symbols, and definitions. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500
- \* 3.4 Interface and physical dimensions. Interface and physical dimensions shall be as specified in MIL-PRF-19500, and on figure 1. Methods used for electrical isolation of the terminal feedthroughs shall employ materials that contain a minimum of 90 percent AL<sub>2</sub>O<sub>3</sub> (ceramic). Examples of such construction techniques are metallized ceramic eyelets or ceramic walled packages.
- \* 3.4.1 <u>Lead finish</u>. Lead finish shall be solderable in accordance with MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).
  - 3.4.2 Internal construction. Multiple chip construction shall not be permitted.
  - 3.5 Marking. Marking shall be in accordance with MIL-PRF-19500.
  - 3.6 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic protection.
- 3.6.1 <u>Handling</u>. MOS devices must be handled with certain precautions to avoid damage due to the accumulation of static charge. The following handling procedures shall be followed:
  - a. Devices shall be handled on benches with conductive handling devices.
  - b. Ground test equipment, tools, and personnel handling devices.
  - c. Do not handle devices by the leads.
  - d. Store devices in conductive foam or carriers.
  - e. Avoid use of plastic, rubber, or silk in MOS areas.
  - f. Maintain relative humidity above 50 percent, if practical.
  - g. Care shall be exercised, during test and troubleshooting, to apply not more than maximum rated voltage to any lead.
  - h. Gate must be terminated to source.  $R \le 100 \text{ k}$ , whenever bias voltage is to be applied drain to source.
- \* 3.7 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3.
- \* 3.8 Electrical test requirements. The electrical test requirements shall be group A as specified herein.
- \* 3.9 Workmanship. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.

### 4. VERIFICATION

- \* 4.1 <u>Classification of inspections</u>. The inspection requirements specified herein are classified as follows:
  - a. Qualification inspection (see 4.2).
  - b. Screening (see 4.3).
  - c. Conformance inspection (see 4.4 and tables I and II).
  - 4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500.
- \* 4.2.1 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with MIL-PRF-19500, and table III herein.
- \* 4.3 <u>Screening (JANS and JANTXV levels only)</u>. Screening shall be in accordance with table IV of MIL-PRF-19500, and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

| Screen (see                   | Measurement                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| table IV of<br>MIL-PRF-19500) | Measu                                                                                                                                                                                                                                                                                                                                               | rement                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| WIL-PRF-19500)                | JANS level                                                                                                                                                                                                                                                                                                                                          | JANTXV level                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| (1)                           | Thermal response (see 4.5.3)                                                                                                                                                                                                                                                                                                                        | Thermal response (see 4.5.3)                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| (1) (2)                       | Method 3470 of MIL-STD-750. (see 4.5.5)                                                                                                                                                                                                                                                                                                             | Method 3470 of MIL-STD-750. (see 4.5.5)                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| (1) (2)                       | Gate stress test (see 4.5.4)                                                                                                                                                                                                                                                                                                                        | Gate stress test (see 4.5.4)                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| (1) 9                         | I <sub>GSS1</sub> , I <sub>DSS1</sub> , subgroup 2 of table I herein;                                                                                                                                                                                                                                                                               | Not applicable                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| 10                            | Method 1042 of MIL-STD-750, test condition B                                                                                                                                                                                                                                                                                                        | Method 1042 of MIL-STD-750, test condition B                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 11                            | $\begin{split} &I_{GSS1},I_{DSS1},r_{DS(on)1},V_{GS(th)1}\\ &Subgroup\ 2\ of\ table\ I\ herein.\\ &\Delta I_{GSS1}=\pm20\ nA\ dc\ or\ \pm\ 100\ percent\ of\ initial\ value,\\ &whichever\ is\ greater.\\ &\Delta I_{DSS1}=\pm25\ \mu A\ dc\ or\ \pm\ 100\ percent\ of\ initial\ value,\\ &whichever\ is\ greater. \end{split}$                     | I <sub>GSS1</sub> , I <sub>DSS1</sub> , r <sub>DS(on)1</sub> , V <sub>GS(th)1</sub><br>Subgroup 2 of table I herein.                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 12                            | Method 1042 of MIL-STD-750, test condition A t = 240 hours                                                                                                                                                                                                                                                                                          | Method 1042 of MIL-STD-750, test condition A                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 13                            | Subgroup 2 and 3 of table I herein. $\Delta l_{GSS1} = \pm 20 \text{ nA dc or} \pm 100 \text{ percent of initial value,} \\ \text{whichever is greater.} \\ \Delta l_{DSS1} = \pm 25  \mu\text{A dc or} \pm 100 \text{ percent of initial value,} \\ \text{whichever is greater.} \\ \Delta r_{DS(on)1} = \pm 20 \text{ percent of initial value.}$ | Subgroup 2 of table I herein. $\Delta I_{\text{GSS1}} = \pm 20 \text{ nA dc or} \pm 100 \text{ percent of initial value,} \\ \text{whichever is greater.} \\ \Delta I_{\text{DSS1}} = \pm 25  \mu\text{A dc or} \pm 100 \text{ percent of initial value,} \\ \text{whichever is greater.} \\ \Delta I_{\text{DS(on)1}} = \pm 20 \text{ percent of initial value.}$ |  |  |  |  |  |  |  |
|                               | $\Delta V_{GS(th)1} = \pm 20$ percent of initial value.                                                                                                                                                                                                                                                                                             | $\Delta V_{GS(th)1} = \pm 20$ percent of initial value.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

- (1) Shall be performed anytime before screen 10.
- (2) This is a stress test designed to ensure a rugged product.

- 4.4 <u>Conformance inspection</u>. Conformance inspection shall be in accordance with MIL-PRF-19500 and as specified herein.
- 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with MIL-PRF-19500 and table I herein. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table I, subgroup 2 herein.
- 4.4.2 <u>Group B inspection (JANTX and JANTXV)</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table VIa (JANS) and table VIb (JANTX and JANTXV) of MIL-PRF-19500, and as follows. Electrical measurements (end-points) shall be in accordance with the applicable inspections of table I, group A, subgroup 2 herein.
- \* 4.4.2.1 Group B inspection, table VIa (JANS) of MIL-PRF-19500.

| Subgroup | Method | <u>Condition</u>                                                                                                                                                                                                                                                               |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В3       | 1051   | Condition G                                                                                                                                                                                                                                                                    |
| B4       | 1042   | The heating cycle shall be 1 minute minimum, 2,000 cycles. No heat sink nor forced air cooling on the device shall be permitted.                                                                                                                                               |
| B5       | 1042   | Condition A; $V_{DS}=100$ percent of rated; $T_A=+175^{\circ}C$ , $t=120$ hours or $T_A=+150^{\circ}C$ , $t=240$ hours; read and record $V_{BR(DSS)}$ (pre and post) at $I_D=1$ mA; read and record $I_{DSS}$ (pre and post), in accordance with table I, group A, subgroup 2. |
| B5       | 1042   | Condition B; $V_{GS}$ = 100 percent of rated $T_A$ = +175°C, $t$ = 24 or $T_A$ = +150°C, $t$ = 48 hours;.                                                                                                                                                                      |
| B6       | 3161   | See 4.5.3.                                                                                                                                                                                                                                                                     |

# 4.4.2.2 Group B inspection, table VIb (JANTX and JANTXV) of MIL-PRF-19500.

| <u>Subgroup</u> | <u>Method</u> | <u>Condition</u>                             |
|-----------------|---------------|----------------------------------------------|
| B2              | 1051          | Condition G                                  |
| В3              | 1042          | The heating cycle shall be 1 minute minimum. |

- 4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table VII of MIL-PRF-19500, and as follows. Electrical measurements (end-points) shall be in accordance with the applicable inspections of table I, group A, subgroup 2 herein.
  - 4.4.3.1 Group C inspection, table VII of MIL-PRF-19500.

| Subgroup | <u>Method</u> | <u>Condition</u>                                   |
|----------|---------------|----------------------------------------------------|
| C2       | 2036          | Test condition A, weight = 10 lbs, t = 10 seconds. |
| C6       | 1042          | The heating cycle shall be 1 minute minimum.       |

- 4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified in appropriate tables and as follows.
- 4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurements shall be as specified in section 4 of MIL-STD-750.

- \* 4.5.2 <u>Thermal resistance</u>. Thermal resistance measurements shall be performed in accordance with method 3161 of MIL-STD-750. The maximum limit of  $R_{\theta JC(max)}$  shall be 1.67°C/W. The following parameter measurements shall apply:
  - a. Measuring current (I<sub>M</sub>): ...... 10 mA.

  - d. Drain-source heating voltage (V<sub>H</sub>): ........... 15 V minimum.
  - e. Measurement time delay (t<sub>MD</sub>): ...... 30 μs to 60μs maximum.
  - f. Sample window time (t<sub>SW</sub>): ...... 10 μs maximum.
- \* 4.5.3 Thermal impedance ( $Z_{\theta JC}$  measurements). The  $Z_{\theta JC}$  measurements shall be performed in accordance with MIL-STD-750, method 3161. The maximum limit (not to exceed figure 2, thermal impedance curves and the group A, subgroup 2 limits) for  $Z_{\theta JC}$  in screening (table IV of MIL-PRF-19500) shall be derived by each vendor by means of statistical process control. When the process has exhibited control and capability, the capability data shall be used to establish the fixed screening limit. In addition to screening, once a fixed limit has been established, monitor all future sealing lots using a random five piece sample from each lot to be plotted on the applicable X, R chart. If a lot exhibits an out of control condition, the entire lot shall be removed from the line and held for engineering evaluation and disposition. This procedure may be used in lieu of an in line process monitor.
  - a. Measuring current (I<sub>M</sub>): ......10 mA.
  - b. Drain heating current (I<sub>H</sub>):.....2 A minimum.
  - c. Heating time (t<sub>H</sub>):.....50 ms.
  - d. Drain-source heating voltage (V<sub>H</sub>):.....15 V minimum.
  - e. Measurement time delay (t<sub>MD</sub>):......30 μs to 60 μs maximum.
  - f. Sample window time (t<sub>SW</sub>): ......10 μs maximum.
  - 4.5.4 Gate stress test.
    - a.  $V_{GS} = \pm 24 \text{ V minimum}$ .
    - b.  $t = 250 \mu s minimum$ .
- \* 4.5.5 Single pulse avalanche energy (E<sub>AS</sub>).
  - a. Peak current (IAS): ID1.
  - b. Peak gate voltage (VGS): 12 V.
  - c. Gate to source resistor (R<sub>GS</sub>):  $25 \le R_{GS} \le 200 \Omega$ .
  - d. Initial case temperature: +25°C +10°C, -5°C.
  - e. Inductance:  $(2 E_{AS}/(I_{D1})^2)((V_{BR} V_{DD})/V_{BR})$  mH minimum.
  - f. Number of pulses to be applied: 1 pulse minimum.
  - g. Supply voltage  $V_{DD} = 50 \text{ V}$ , or 25 V for 100 V devices.

### \* TABLE I. Group A inspection.

| Inspection <u>1</u> /                      | MIL-STD-750 |                                                                                                      | Symbol               | Lir        | Unit         |              |
|--------------------------------------------|-------------|------------------------------------------------------------------------------------------------------|----------------------|------------|--------------|--------------|
|                                            | Method      | Condition                                                                                            |                      | Min        | Max          |              |
| Subgroup 1                                 |             |                                                                                                      |                      |            |              |              |
| Visual and mechanical inspection           | 2071        |                                                                                                      |                      |            |              |              |
| Subgroup 2                                 |             |                                                                                                      |                      |            |              |              |
| Thermal impedance 2/                       | 3161        | See 4.5.3                                                                                            | Z <sub>θ</sub> JC    |            | 1.30         | °C/W         |
| Breakdown voltage drain to source          | 3407        | V <sub>GS</sub> = 0V, I <sub>D</sub> = 1 mA dc,<br>bias condition C                                  | V <sub>(BR)DSS</sub> |            |              |              |
| 2N7380<br>2N7381                           |             | side condition o                                                                                     |                      | 100<br>200 |              | V dc<br>V dc |
| Gate to source voltage (threshold)         | 3403        | $V_{DS} \ge V_{GS}$ , $I_D = 1.0 \text{ mA}$                                                         | V <sub>GS(th)1</sub> | 2.0        | 4.0          | V dc         |
| Gate current                               | 3411        | $V_{GS} = \pm 20$ V dc, $V_{DS} = 0$ V dc, bias condition C                                          | I <sub>GSS1</sub>    |            | ±100         | μA dc        |
| Drain current                              | 3413        | $V_{GS} = 0 \text{ V dc}, V_{DS} = 80 \text{ percent of rated } V_{DS}, \text{ bias condition } C$   | I <sub>DSS1</sub>    |            | 25           | μA dc        |
| Static drain to source on-state resistance | 3421        | $V_{GS} = 12 \text{ V dc}$ , condition A, pulsed (see 4.5.1), $I_D = \text{rated } I_{D2}$ (see 1.3) | r <sub>DS(on)1</sub> |            |              |              |
| 2N7380<br>2N7381                           |             | (See 4.3.1), ID = Tated ID2 (See 1.3)                                                                |                      |            | 0.18<br>0.40 | $\Omega$     |
| Static drain to source                     | 3421        | $V_{GS} = 12 \text{ V dc}$ , condition A, pulsed                                                     | r <sub>DS(on)2</sub> |            |              |              |
| on-state resistance<br>2N7380<br>2N7381    |             | (see 4.5.1), $I_D$ = rated $I_{D1}$ (see 1.3)                                                        |                      |            | 0.20<br>0.49 | $\Omega$     |
| Forward voltage (source                    | 4011        | $V_{GS} = 0 \text{ V dc}, I_D = \text{rated } I_{D1} \text{ pulsed}$                                 | $V_{SD}$             |            |              |              |
| drain diode)<br>2N7380<br>2N7381           |             | (see 4.5.1)                                                                                          |                      |            | 1.8<br>1.4   | V dc<br>V dc |

See footnotes at end of table.

# \* TABLE I. <u>Group A inspection</u> - Continued.

| Inspection 1/                                          |        | MIL-STD-750                                                                                                               | Symbol                    | Lir | nits         | Unit     |
|--------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|--------------|----------|
|                                                        | Method | Condition                                                                                                                 |                           | Min | Max          |          |
| Subgroup 3                                             |        |                                                                                                                           |                           |     |              |          |
| High temperature operation:                            |        | T <sub>A</sub> = +125°C                                                                                                   |                           |     |              |          |
| Gate current                                           | 3411   | Bias condition C, $V_{GS} = \pm 20 \text{ V dc}$ , $V_{DS} = 0 \text{ V dc}$                                              | I <sub>GSS2</sub>         |     | ±200         | nA dc    |
| Drain current                                          | 3413   | Bias condition C, $V_{GS} = 0 \text{ V dc}$ , $V_{DS} = 80 \text{ percent of rated } V_{DS}$                              | I <sub>DSS3</sub>         |     | 0.25         | nA dc    |
| Static drain to source<br>on-state<br>2N7380<br>2N7381 | 3421   | $V_{GS}$ = 12 V dc, pulsed (see 4.5.1), $I_D$ = rated $I_{D2}$                                                            | r <sub>DS(on)3</sub>      |     | 0.35<br>0.75 | Ω<br>Ω   |
| Gate to source voltage (threshold)                     | 3403   | $V_{DS} \ge V_{GS}$ , $I_D = 1.0$ mA dc                                                                                   | V <sub>GS(th)2</sub>      | 1.0 |              | V dc     |
| Low temperature operation:                             |        | T <sub>A</sub> = -55°C                                                                                                    |                           |     |              |          |
| Gate to source voltage (threshold)                     | 3403   | $V_{DS} \ge V_{GS}$ , $I_D = 1.0$ mA dc                                                                                   | V <sub>GS(th)3</sub>      |     | 5.0          | V dc     |
| Subgroup 4                                             |        |                                                                                                                           |                           |     |              |          |
| Switching time test                                    | 3472   | $I_D$ = rated $I_{D1}$ , $V_{GS}$ = 12 V dc, gate drive impedance = 7.5 $\Omega$ , $V_{DD}$ = 50 percent of $V_{BR(DSS)}$ |                           |     |              |          |
| Turn-on delay time<br>Rise time                        |        |                                                                                                                           | $t_{ m d(on)} \ t_{ m r}$ |     | 25           | ns       |
| 2N7380<br>2N7381                                       |        |                                                                                                                           | r r                       |     | 60<br>50     | ns<br>ns |
| Turn-off delay time<br>2N7380<br>2N7381                |        |                                                                                                                           | t <sub>d(off)</sub>       |     | 40<br>70     | ns<br>ns |
| Fall time<br>2N7380<br>2N7381                          |        |                                                                                                                           | t <sub>f</sub>            |     | 30<br>60     | ns<br>ns |

See footnotes at end of table.

# \* TABLE I. <u>Group A inspection</u> - Continued.

| Inspection 1/                            |        | MIL-STD-750                                                                                                 | Symbol             | Lir | nits       | Unit     |
|------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------|--------------------|-----|------------|----------|
|                                          | Method | Condition                                                                                                   |                    | Min | Max        |          |
| Subgroup 4 - continued                   |        |                                                                                                             |                    |     |            |          |
| Forward transconductance                 | 3475   | $I_D = I_{D2}$ , $V_{DD} = 15 \text{ V dc see } 4.5.1$                                                      | <b>G</b> fs        |     | 2.5        | s        |
| Subgroup 5                               |        |                                                                                                             |                    |     |            |          |
| Safe operating area test (high voltage)  | 3474   | See figures 3 and 4; $t_p$ = 10 ms, $V_{DS}$ = 80 percent of rated $V_{BR(DSS)}$ , $V_{DS}$ = 200 V maximum |                    |     |            |          |
| Electrical measurements                  |        | See table I, group A, subgroup 2                                                                            |                    |     |            |          |
| Subgroup 6                               |        |                                                                                                             |                    |     |            |          |
| Not applicable                           |        |                                                                                                             |                    |     |            |          |
| Subgroup 7                               |        |                                                                                                             |                    |     |            |          |
| Gate charge                              | 3471   | Condition B                                                                                                 |                    |     |            |          |
| On-state gate charge<br>2N7380<br>2N7381 |        |                                                                                                             | Q <sub>g(on)</sub> |     | 40<br>50   | nC<br>nC |
| Gate to source charge                    |        |                                                                                                             | Q <sub>gs</sub>    |     | 10         | nC       |
| Gate to drain charge<br>2N7380<br>2N7381 |        |                                                                                                             | $Q_gd$             |     | 20<br>25   | nC<br>nC |
| Reverse recovery time                    | 3473   | $d_i/d_t \le 100 \text{ A/}\mu\text{s}, V_{DD} \le 50 \text{ V},$<br>$d_D = d_{D1}$                         | t <sub>rr</sub>    |     |            |          |
| 2N7380<br>2N7381                         |        | וטו = טו                                                                                                    |                    |     | 275<br>460 | ns<br>ns |

For sampling plan, see MIL-PRF-19500.
This test is required for the following endpoint measurements only:

JANS - group B, subgroup 3 and 4; JANTX and JANTXV - group B, subgroup 2 and 3; group C, subgroup 6; group E, subgroup 1.

TABLE II. Group D inspection.

| Inspection                                                            | M      | MIL-STD-750 Pre-irradiation Symbol limits                                                 |                    |       |       | า       |                  |       | radiation<br>nits | ı        | Unit            |       |
|-----------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------|--------------------|-------|-------|---------|------------------|-------|-------------------|----------|-----------------|-------|
| 1/ 2/ 3/                                                              | Method | Conditions                                                                                |                    | M, D, | and R | F, G, a | and H <u>4</u> / | M, D, | and R             | F, G, ar | nd H <u>4</u> / |       |
|                                                                       |        |                                                                                           |                    | Min   | Max   | Min     | Max              | Min   | Max               | Min      | Max             |       |
| Subgroup 2                                                            |        | T <sub>C</sub> = +25°C                                                                    |                    |       |       |         |                  |       |                   |          |                 |       |
| Steady-state total dose irradiation (V <sub>GS</sub> bias) <u>5</u> / | 1019   | V <sub>GS</sub> = 12 V<br>V <sub>DS</sub> = 0 V                                           |                    |       |       |         |                  |       |                   |          |                 |       |
| Steady-state total dose irradiation (V <sub>DS</sub> bias) <u>5</u> / |        | $V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ percent of } $ rated $V_{DS}$ (pre-irradiation) |                    |       |       |         |                  |       |                   |          |                 |       |
| End-point electrical:                                                 |        |                                                                                           |                    |       |       |         |                  |       |                   |          |                 |       |
| Breakdown<br>voltage,<br>drain to<br>source<br>2N7380                 | 3407   | $V_{GS} = 0 \text{ V}, I_D = 1$ mA bias condition C                                       | $V_{(BR)DSS}$      | 100   |       | 100     |                  | 100   |                   | 100      |                 | V dc  |
| 2N7381                                                                |        |                                                                                           |                    | 200   |       | 200     |                  | 200   |                   | 200      |                 | V dc  |
| Gate to<br>source<br>voltage <u>4</u> /<br>(threshold)                | 3403   | $V_{DS} \ge V_{GS}$ $I_D = 1 \text{ mA}$                                                  | V <sub>GSth</sub>  | 2.0   | 4.0   | 2.0     | 4.0              | 2.0   | 4.0               | 1.25     | 4.5             | V dc  |
| Gate current                                                          | 3411   | $V_{GS} = 20 \text{ V}$<br>$V_{DS} = 0 \text{ V}$ , bias<br>condition C                   | I <sub>GSSF1</sub> |       | 100   |         | 100              |       | 100               |          | 100             | nA dc |
| Gate current                                                          | 3411   | $V_{GS} = 20 \text{ V}$<br>$V_{DS} = 0 \text{ V}$ , bias<br>condition C                   | I <sub>GSSR1</sub> |       | -100  |         | -100             |       | -100              |          | -100            | nA dc |

See footnotes at end of table.

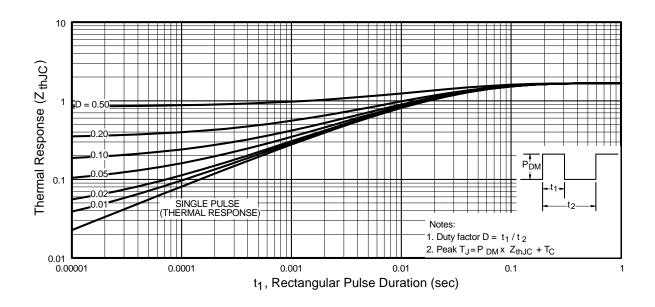
\*TABLE II. Group D inspection - Continued.

| Inspection                                                           | MIL-STD-750<br>Sym |                                                                                                                        | Symbol              |         | Pre-irradiation<br>limits |         |                    | Post-irradiation limits |              |          |                  | Unit           |
|----------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|---------|---------------------------|---------|--------------------|-------------------------|--------------|----------|------------------|----------------|
| <u>1/ 2/ 3/</u>                                                      |                    |                                                                                                                        |                     |         |                           |         |                    |                         |              |          |                  |                |
|                                                                      | Method             | Conditions                                                                                                             |                     | МЪ      | and P                     | E C a   | and H <u>4</u> /   | МЪ                      | and P        | E G ar   | od ∐ 4/          |                |
|                                                                      |                    |                                                                                                                        |                     | IVI, D, | anu K                     | r, G, a | 1110 11 <u>4</u> / | IVI, D,                 | anu K        | r, G, ai | 10 11 <u>4</u> / |                |
|                                                                      |                    |                                                                                                                        |                     | Min     | Max                       | Min     | Max                | Min                     | Max          | Min      | Max              |                |
| Subgroup 2 - Continued                                               |                    | T <sub>C</sub> = +25°C                                                                                                 |                     |         |                           |         |                    |                         |              |          |                  |                |
| Drain current                                                        | 3413               | $V_{GS} = 0 \text{ V}$<br>Bias condition C<br>$V_{DS} = 80 \text{ percent}$<br>of rated $V_{DS}$ (pre-<br>irradiation) | I <sub>DSS</sub>    |         | 25                        |         | 25                 |                         | 25           |          | 50               | 0              |
| 2N7381                                                               |                    |                                                                                                                        |                     |         | 25<br>25                  |         | 25<br>25           |                         | 25<br>25     |          | 50<br>50         | μΑ dc<br>μΑ dc |
| Static drain<br>to source<br>on-state<br>voltage<br>2N7380<br>2N7381 | 3405               | $V_{GS} = 12 \text{ V},$<br>Condition A<br>pulsed, see 4.5.1.<br>$I_D = I_{D2}$                                        | V <sub>DS(ON)</sub> |         | 1.638<br>2.4              |         | 1.638<br>2.4       |                         | 1.638<br>2.4 |          | 2.184<br>3.18    | V dc<br>V dc   |
| Forward<br>voltage<br>source<br>drain diode                          | 4011               | $V_{GS} = 0 \text{ V}, I_{D} = I_{D1},$ bias condition C                                                               | V <sub>SD</sub>     |         |                           |         |                    |                         |              |          |                  |                |
| 2N7380<br>2N7381                                                     |                    |                                                                                                                        |                     |         | 1.8<br>1.4                |         | 1.8<br>1.4         |                         | 1.8<br>1.4   |          | 1.8<br>1.4       | V<br>V         |

For sampling plan, see MIL-PRF-19500.

Separate samples shall be pulled for each bias.

Group D qualification may be performed anytime prior to lot formation. Wafers qualified to these group D QCI


requirements may be used for any other specification sheet utilizing the same die design. The F designation represents devices which pass end-points at both 100K and 300K rads (Si). The G designation represents devices which pass 100K, 300K and 600K rad (Si) end-points.

H must meet end points for 300K and 1,000K rad (Si).

TABLE III. Group E inspection (all quality levels) - for qualification only.

| Inspection                               |        | Qualification and large lot      |                                      |
|------------------------------------------|--------|----------------------------------|--------------------------------------|
|                                          | Method | Conditions                       | quality<br>conformance<br>inspection |
| Subgroup 1                               |        |                                  | 12 devices,                          |
| Temperature cycling                      | 1051   | Test condition G, 500 cycles     | c = 0                                |
| Hermetic seal<br>Fine leak<br>Gross leak | 1071   |                                  |                                      |
| Electrical measurements                  |        | See table I, group A, subgroup 2 |                                      |
| Subgroup 2 1/                            |        |                                  | 12 devices,                          |
| Steady-state reverse bias                | 1042   | Condition A, 1,000 hours         | c = 0                                |
| Electrical measurements                  |        | See table I, group A, subgroup 2 |                                      |
| Steady-state reverse bias                | 1042   | Condition B, 1,000 hours         |                                      |
| Subgroup 3                               |        |                                  |                                      |
| Not applicable                           |        |                                  |                                      |
| Subgroup 4                               |        |                                  | 12 devices,<br>c = 0                 |
| Thermal resistance                       | 3161   | See 4.5.2                        | 0 = 0                                |
| Subgroup 5                               |        |                                  |                                      |
| Not applicable                           |        |                                  |                                      |

 $<sup>\</sup>underline{1}$ / A separate sample for each test may be pulled.



\* FIGURE 2. Thermal response curves.

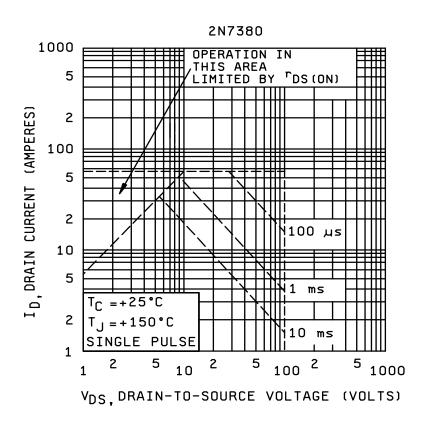



FIGURE 3. Safe operating area graphs.

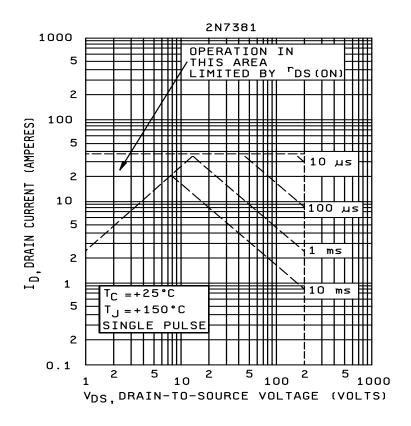



FIGURE 4. Safe operating area graphs.

#### 5. PACKAGING

\* 5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department or Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

#### 6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

- 6.1 Intended use. The notes specified in MIL-PRF-19500 are applicable to this specification.
- \* 6.2 Acquisition requirements. Acquisition documents must specify the following:
  - a. Title, number, and date of this specification.
  - b. Issue of DoDISS to be cited in the solicitation, and if required, the specific issue of individual documents referenced (see 2.2).
  - c. Packaging requirements (see 5.1).
  - d. Lead finish (see 3.3.1).
- 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers' List (QML) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from Defense Supply Center, Columbus, ATTN: DSCC/VQE, P.O. Box 3990, Columbus, OH 43216-5000.
  - 6.4 Supersession data. This specification supersedes DESC drawing 89009, dated 19 December 1989.
- \* 6.5 <u>Changes from previous issue</u>. The margins of this specification are marked with asterisks to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians:

Army - CR

Navy - EC

Air Force - 11

NASA - NA

Preparing activity: DLA - CC

(Project 5961-2578)

Review activities:

Army - AR, SM

Navy - AS, MC, OS

Air Force - 19

# STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

### **INSTRUCTIONS**

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- submitter of this form must complete blocks 4.5.6. and 7.

| 2. The submitter of this form must con                                                         | iplete blocks 4, 5, 6, and 7.                                                                                                                                                       |                                         |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3. The preparing activity must provide                                                         | a reply within 30 days from receipt of the form.                                                                                                                                    |                                         |
|                                                                                                | request copies of documents, nor to request waivers<br>ad on this form do not constitute or imply authorization<br>equirements.                                                     |                                         |
| I RECOMMEND A CHANGE:                                                                          | 1. DOCUMENT NUMBER<br>MIL-PRF-19500/614B                                                                                                                                            | 2. DOCUMENT DATE<br>22 February 2002    |
|                                                                                                | EFFECT RADIATION HARDENED TRANSISTOR, R, F, G, AND H, JANS M, D, R, F, G, AND H                                                                                                     | N-CHANNEL, SILICON, TYPES               |
| 4. NATURE OF CHANGE (Identify pa                                                               | ragraph number and include proposed rewrite, if po                                                                                                                                  | ssible. Attach extra sheets as needed.) |
|                                                                                                |                                                                                                                                                                                     |                                         |
|                                                                                                |                                                                                                                                                                                     |                                         |
|                                                                                                |                                                                                                                                                                                     |                                         |
| 5. REASON FOR RECOMMENDATIO                                                                    | INI                                                                                                                                                                                 |                                         |
| 3. REASON FOR RECOMMENDATIO                                                                    |                                                                                                                                                                                     |                                         |
|                                                                                                |                                                                                                                                                                                     |                                         |
| 6. SUBMITTER                                                                                   |                                                                                                                                                                                     |                                         |
| a. NAME (Last, First, Middle initial)                                                          | b. ORGANIZATION                                                                                                                                                                     |                                         |
| c. ADDRESS (Include Zip Code)                                                                  | d. TELEPHONE (Include Area Code) COMMERCIAL DSN FAX EMAIL                                                                                                                           | 7. DATE SUBMITTED                       |
| 8. PREPARING ACTIVITY                                                                          | T                                                                                                                                                                                   |                                         |
| a. Point of Contact<br>Alan Barone                                                             | b. TELEPHONE Commercial DSN FAX 614-692-0510 850-0510 614-692-6939                                                                                                                  | EMAIL<br>alan.barone@dscc.dla.mil       |
| c. ADDRESS Defense Supply Center Columbus ATTN: DSCC-VAC P.O. Box 3990 Columbus, OH 43216-5000 | IF YOU DO NOT RECEIVE A REPLY WITHIN Defense Standardization Program Office (DLS 8725 John J. Kingman, Suite 2533 Fort Belvoir, VA 22060-6221 Telephone (703) 767-6888 DSN 427-6888 |                                         |
| DD Form 1426, Feb 1999 (EG)                                                                    | Previous editions are obsolete                                                                                                                                                      | WHS/DIOR, Feb 99                        |