TetraFET

D2018UK

METAL GATE RF SILICON FET

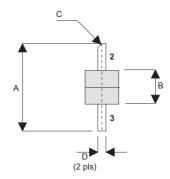
GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 10W – 28V – 1GHz SINGLE ENDED

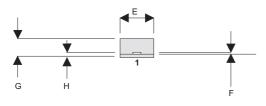
FEATURES

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND
 APPLICATIONS
- LOW C_{rss}
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

APPLICATIONS

• VHF/UHF COMMUNICATIONS from 50 MHz to 1 GHz


ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)


P _D	Power Dissipation	42W
BV _{DSS}	Drain – Source Breakdown Voltage	65V
BV _{GSS}	Gate – Source Breakdown Voltage	±20V
I _{D(sat)}	Drain Current	4A
T _{stg}	Storage Temperature	–65 to 150°C
Тj	Maximum Operating Junction Temperature	200°C

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

MECHANICAL DATA

DP

PIN 2

DRAIN

PIN 1 SOURCE

PIN 3 GATE

DIM	mm	Tol.	Inches	Tol.	
Α	16.51	0.25	0.650	0.010	
В	6.35	0.13	0.250	0.005	
С	45°	5°	45°	5°	
D	1.52	0.13	0.060	0.005	
Е	6.35	0.13	0.250	0.005	
F	0.13	0.03	0.005	0.001	
G	3.56	0.51	0.140	0.020	
Н	0.64	0.13	0.024	0.005	

Parameter		Test Conditions			Min.	Тур.	Max.	Unit
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1	I0mA	65			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 28V	V _{GS} :	= 0			0.8	mA
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	V _{DS} =	$V_{DS} = 0$			1	μΑ
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	V _{DS} =	= V _{GS}	1		7	V
9 _{fs}	Forward Transconductance*	$V_{DS} = 10V$	l _D = 0).8A	0.72			S
G _{PS}	Common Source Power Gain	P _O = 10W			10			dB
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} =	0.4A	40			%
VSWR	Load Mismatch Tolerance	f = 1GHz			20:1			—
C _{iss}	Input Capacitance	$V_{DS} = 0$	$V_{GS} = -5V$	f = 1MHz			48	pF
C _{oss}	Output Capacitance	V _{DS} = 28V	$V_{GS} = 0$	f = 1MHz			24	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 28V	$V_{GS} = 0$	f = 1MHz			2	pF

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

* Pulse Test: Pulse Duration = $300 \ \mu s$, Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R_{THj-case}

Thermal Resistance Junction - Case

Max. 4.2°C / W

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.