

GENERAL DESCRIPTION

The CM2832 family is a positive voltage linear regulator developed utilizing CMOS technology featured low quiescent current (30 μ A typ.), low dropout voltage, and high output voltage accuracy, making them ideal for battery applications. EN input connected to CMOS has low bias current. The space-saving SOT-23-5 package is attractive for "Pocket" and "Hand Held" applications.

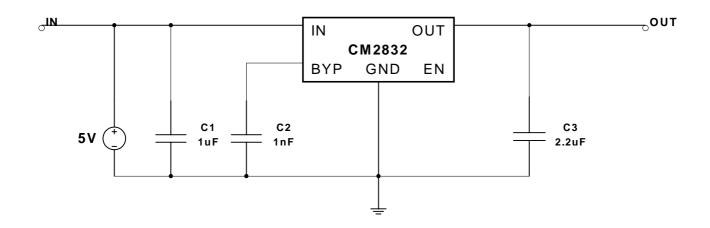
These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

In application requiring a low noise, regulated supply, place a 1000pF capacitor between Bypass and Ground.

The CM2832 is stable with an output capacitance of $2.2\mu F$ or greater.

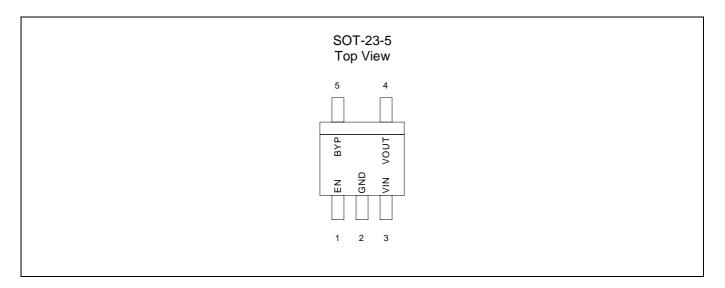
FEATURES

- Very Low Dropout Voltage
- Low Current Consumption: Typ. 30μA, Max. 35μA
- Output Voltage: 1.5V, 1.8V, 1.9V, 2.2V, 2.5V, 2.7V, 2.8V, 3.0V, 3.3V, 3.5V, 3.6V, and 3.8V
- ♦ High Accuracy Output Voltage: +/- 1.5%
- ◆ Guaranteed 300mA Output
- ◆ Input Range of 2.6V to 7.0V
- ◆ Thermal Shutdown
- Current Limiting
- Compact Package: SOT-23-5
- ◆ Factory Pre-set Output Voltages
- ♦ Short Circuit Current Fold-Back
- Low Temperature Coefficient

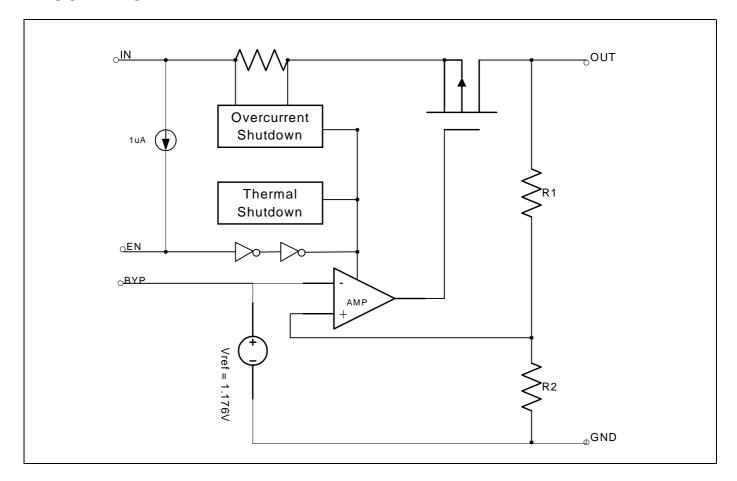

APPLICATIONS

- Battery-powered devices
- Personal communication devices
- ♦ Home electric/electronic appliances
- PC peripherals

24 Hours Technical Support--WebSIM


Champion provides customers an online circuit simulation tool called WebSIM. You could simply logon our website at www.champion-micro.com for details.

TYPICAL APPLICATIONS



PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Output Voltage	Temperature Range	Package
CM2832AIM25	1.5V	-40°C ~ +85°C	SOT-23-5
CM2832DIM25	1.8V	-40°C ~ +85°C	SOT-23-5
CM2832EIM25	1.9V	-40°C ~ +85°C	SOT-23-5
CM2832HIM25	2.2V	-40°C ~ +85°C	SOT-23-5
CM2832KIM25	2.5V	-40°C ~ +85°C	SOT-23-5
CM2832MIM25	2.7V	-40°C ~ +85°C	SOT-23-5
CM2832NIM25	2.8V	-40°C ~ +85°C	SOT-23-5
CM2832PIM25	3.0V	-40°C ~ +85°C	SOT-23-5
CM2832SIM25	3.3V	-40°C ~ +85°C	SOT-23-5
CM2832UIM25	3.5V	-40°C ~ +85°C	SOT-23-5
CM2832VIM25	3.6V	-40°C ~ +85°C	SOT-23-5
CM2832XIM25	3.8V	-40°C ~ +85°C	SOT-23-5

Note: For other pre-set output voltage requirements, please contact Champion Sales office.

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage	+7V	Ambient Temperature Range	(T _A)40°C to +85°C
Output Current	P_D / (V_{IN} - $Vo)$ mA	Junction Temperature Range	40°C to +125°C
Output Voltage GND-	0.3V to V _{IN} +0.3V		
ESD Classification	B		

THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (Θ_{jc})	SOT-23-5	260	°C /W
Internal Power Dissipation (P _D) $(\Delta T = 100^{\circ}C)$ SOT-23-5		380	°C /W
Maximum Junction Temperature		150	$^{\circ}\!\mathbb{C}$
Maximum Lead Temperature (10 Sec)		300	$^{\circ}\!\mathbb{C}$

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

 $T_A = +25^{\circ}C$; unless otherwise noted

Davamatar	Currele al	Test Conditions		Tost Conditions		CM2832		
Parameter	Symbol			Min.	Тур.	Max.	Unit	
Input Voltage	V_{IN}			Note 1		7	V	
Output Voltage Accuracy	V _{OUT}	$I_O = 1$ mA to 30	00mA	-1.5		1.5	%	
Drangust Valtage		$I_{O} = 300 \text{mA}, V_{OUT} = V_{O(NOM)} - 2\%, V_{OUT} > = 2.5 \text{V}$			300		>/	
Dropout Voltage	V _{DROPOUT}	$I_0 = 300 \text{mA}, V_{\text{OUT}} = V_{\text{O(NOM)}} - 2\%, V_{\text{OUT}} < 2.5 \text{V}$			800		mV	
Output Current	lo	V _{OUT} > 1.2	V	300			mA	
Current Limit	I _{LIM}	V _{OUT} > 1.2	V	300	450		mA	
Short Circuit Current	I _{SC}	V _{OUT} < 0.95	5V		150	300	mA	
Quiescent Current	IQ	I _O = 0mA			30	35	μ A	
Ground Pin Current	I _{GND}	$I_O = 1$ mA to 30	00mA		30	50	μ A	
Line Deculation	DEC	I _{OUT} =5mA, V _{IN} =V _{OUT} +1 to	$V_{OUT} \ll 3.0V$	-0.15	0.03	0.15	%	
Line Regulation	REG _{LINE}	V _{OUT} +2	$V_{OUT} > 3.0V$	-0.3	0.06	0.3	%	
Load Regulation	REG _{LOAD}	I _O =1mA to 300mA			0.2	1	%	
Over Temperature Shutdown	OTS				150		$^{\circ}\mathbb{C}$	
Over Temperature Hysteresis	OTH				30		$^{\circ}\mathbb{C}$	
V _{OUT} Temperature Coefficient	TC				25		ppm/°C	
	PSRR	f=1kHz			60			
Power Supply Rejection		C ₀ =2.2µF ceramic ———	f=10kHz		50		dB	
			f=100kHz		40			
		I _O = 100mA	f=1kHz		75			
Power Supply Rejection	PSRR	C _O =2.2µF ceramic	f=10kHz		55		dB	
		C _{BYP} =0.01µF	f=100kHz		30			
Output Valtage Naise	eN	f=10Hz to 100kHz	C _O =2.2µF		30		μVrms	
Output Voltage Noise		$I_O = 10$ mA, $C_{BYP} = 0$ μ F	C _O =100µF		20			
Outrast Valtage Nais	eN	f=10Hz to 100kHz	C _O =2.2µF		30		μ Vrms	
Output Voltage Noise		$I_0 = 10 \text{mA}, C_{BYP} = 0.01 \mu F$	C _O =100μF		20		μ viiis	
Shutdown Supply Current	I _{SD}	V_{IN} =5.0V, V_{OUT} =0V, V_{EN} < V_{EL}			2.0	3.0	μ A	
EN Input Bias Current	I _{EH}	$V_{EN}=V_{IN}$, $V_{IN}=2.6V$ to 7V $V_{EN}=V_{IN}$, $V_{IN}=2.6V$ to 7V				0.1	μ A	
EN IIIPUL DIAS CUITEIIL	I _{EL}				1.0	3.0	μ A	
EN Input Throshold	V_{EH}	V _{IN} =2.6V to 7V			V _{IN} /2+0.8V	V_{IN}	V	
EN Input Threshold V _{EL}		V _{IN} =2.6V to 7V		0	V _{IN} /2-0.8V		V	

Note 1. $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$

CM2832 300mA CMOS LDO WITH ENABLE

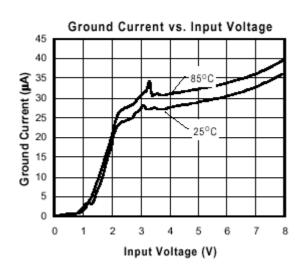
DETAILED DESCRIPTION

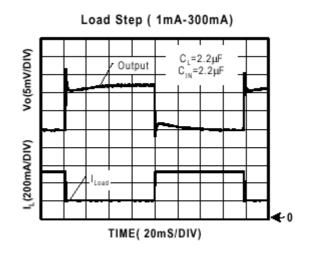
The CM2832 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown, and short circuit protection.

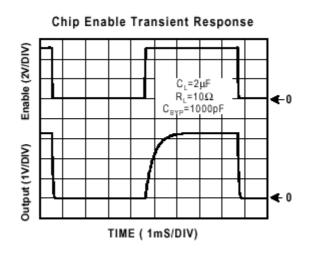
The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

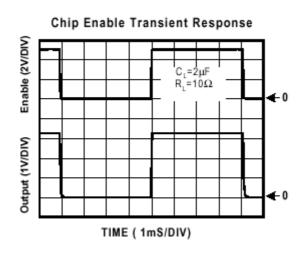
The CM2832 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The CM2832 also incorporates current fold-back to reduce power dissipation when the output is short-circuited. This feature becomes active when the output drops below 1.05V, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.95V.

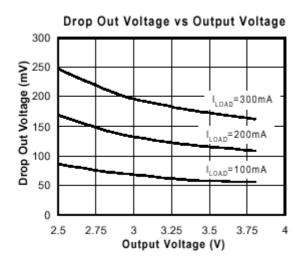
ENABLE

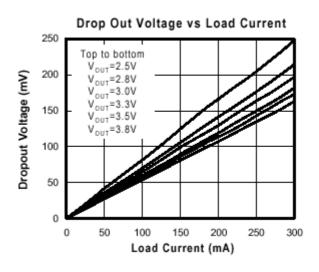

The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 2µA. This pin behaves much like an electronic switch.

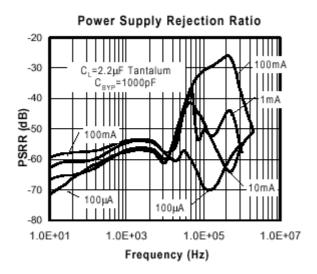

EXTERNAL CAPACITOR

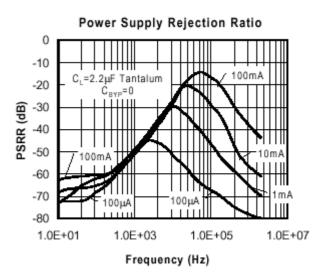

The CM2832 is stable with an output capacitor to ground of 2.2µF or greater. It can keep stable even with higher or poor ESR capacitors. A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than 0.1µF to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

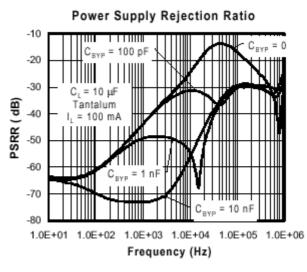


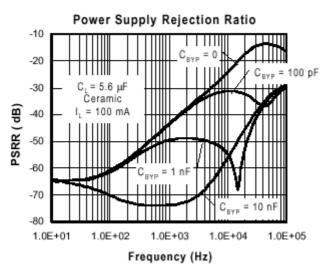

TYPICAL ELECTRICAL CHARACTERISTICS

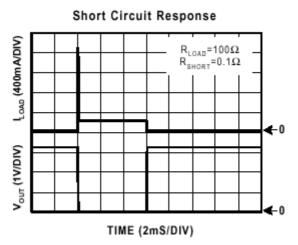


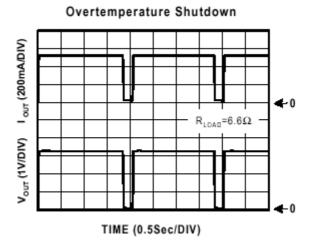


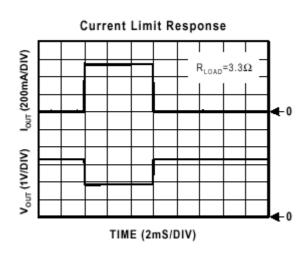


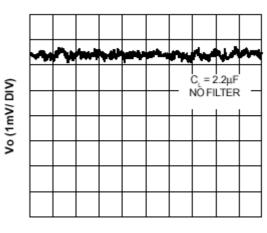


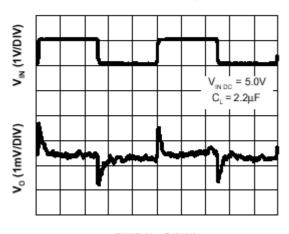


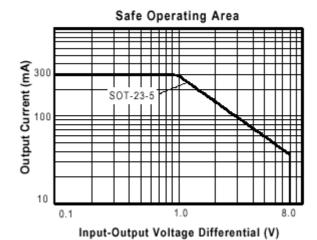


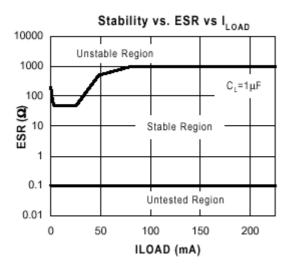


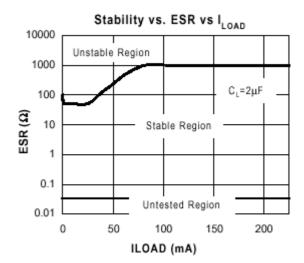


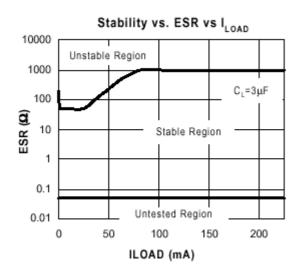


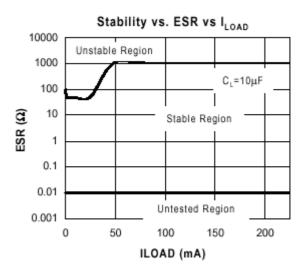


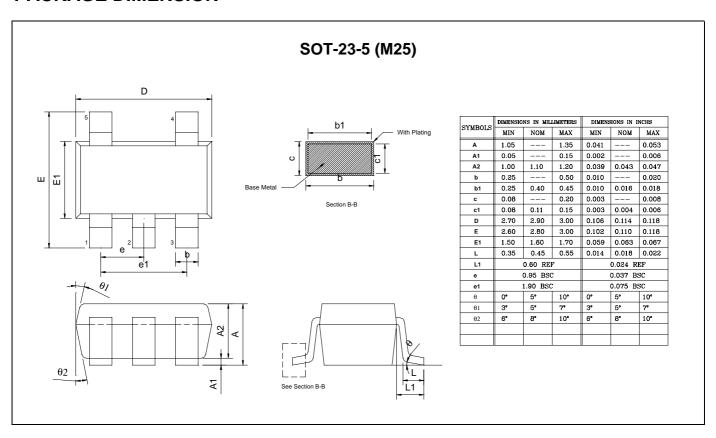

Noise Measurement


TIME (20mS/DIV)






TIME (2mS/DIV)



PACKAGE DIMENSION

NUMBERING SCHEME

Ordering Number: CM2832XYZ (note1)

note1:

CM2832 : 300mA CMOS LDO with enable \underline{X} : Suffix for voltage output (note 2) \underline{Y} : Suffix for Temperature Range (note 3) \underline{Z} : Suffix for Package Type (note 4)

note 2: see CMOS LDO Voltage Suffix Table CM2832 will provide options of A(1.5V), D (1.8V), E(1.9V),, H(2.2V), K(2.5V), M(2.7V), N(2.8V), P(3.0V), S(3.3V), U(3.5V), V(3.6V), X(3.8V)

note 3:

Y= I: -40° C ~+85 $^{\circ}$ C (only I grade support for all CMOS LDOs)

note 4:

Z is single alphabet with or without digits

M25 : SOT-25 (TR only)

CMOS LDO Voltage Suffix Table

Output Voltage	Suffix	Output Voltage	Suffix
1.5V	Α	3.0V	Р
1.6V	В	3.1V	Q
1.7V	С	3.2V	R
1.8V	D	3.3V	S
1.9V	E	3.4V	Т
2.0V	F	3.5V	U
2.1V	G	3.6V	V
2.2V	Н	3.7V	W
2.3V	I	3.8V	X
2.4V	J	3.9V	Y
2.5V	K	4.0V	Z
2.6V	L		
2.7V	M		
2.8V	N		
2.9V	0		

CM2832 300mA CMOS LDO WITH ENABLE

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596