

MILITARY DATA SHEET

Original Creation Date: 04/19/96 Last Update Date: 07/30/96 Last Major Revision Date: 04/19/96

9-Bit Parity Generator /Checker

General Description

MN54F280-X REV 1A0

The F280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or odd number of these inputs is HIGH. If an even number of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is the complement of the Sum Even output.

Industry Part Number

54F280

NS Part Numbers

54F280DMQB 54F280FMQB 54F280LMQB

Prime Die

M280

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1 2 3	Static tests at Static tests at Static tests at	+25 +125 -55
Quality Conformance Inspection MIL-STD-883, Method 5005	4 5 6 7 8A 8B 9 10 11	Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Switching tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 -55 +25 +125 -55

Features

- Guaranteed 4000V minimum ESD protection

(Absolute Maximum Ratings)

Storage Temperature	
Ambient Temperature under Bias	-65 C to +150 C
Indicate remperature ander brab	-55 C to +125 C
Junction Temperature under Bias	-55 C to +175 C
Vcc Pin Potential to Ground Pin	0 5 5 0
Input Voltage	-0.5V to +7.0V
(Note 2)	-0.5V to +7.0V
Input Current	-0.50 10 +7.00
(Note 2)	-30mA to +5.0mA
Voltage Applied to Output in HIGH State (with Vcc=OV)	Sour co Stour
Standard Output TRI-STATE Output	-0.5V to Vcc -0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated Iol(mA)
ESD Last Passing Voltage (Min)	
	4000V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Commercial	0 C to +70 C
Military	-55 C to +125 C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: -55C to 125C

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
IIH	Input High Current	VCC=5.5V, VM=2.7V, VINH=5.5V	1, 3	INPUTS		20	uA	1, 2, 3
IBVI	Input High Current	VCC=5.5V, VM=7.0V, VINH=5.5V	1, 3	INPUTS		100	uA	1, 2, 3
IIL	Input LOW Current	VCC=5.5V, VM=0.5V, VINH=5.5V	1, 3	INPUTS		-0.6	mA	1, 2, 3
VOL	Output LOW Voltage	VCC=4.5V, VIL=0.8V, IOL=20mA, VINH=5.5V	1, 3	OUTPUTS		0.5	V	1, 2, 3
VOH	Output HIGH Voltage	VCC=4.5V, VIH=2.0V, IOH=-1.0mA, VIL=0.8V	1, 3	OUTPUTS	2.5		V	1, 2, 3
IOS	Short Circuit Current	VCC=5.5V, VINH=5.5V, VINL=0.0V, VM=0.0V	1, 3	OUTPUTS	-60	-150	mA	1, 2, 3
VCD	Input Clamp Diode Voltage	VCC=4.5V, IM=-18mA, VINH=5.5V	1, 3	INPUTS		-1.2	V	1, 2, 3
ICC	Supply Current	VCC=5.5V, VINL=0.0V	1, 3	VCC		38	mA	1, 2, 3
ICEX	Output HIGH Leakage Current	VCC=5.5V, VINL=0.0V, VINH=5.5V, VM=5.5V	1, 3	OUTPUTS		250	uA	1, 2, 3

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS

tpLH(1) Prop	Propagation Delay	VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2,4	In to Eo	5.0	15.0	ns	9
			2,4	In to Eo	5.0	20.0	ns	10, 11
tpHL(1)	tpHL(1) Propagation Delay VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C		2, 4	In to Eo	6.5	16.0	ns	9
			2,4	In to Eo	6.5	21.0	ns	10, 11
tpLH(2)	Propagation Delay	VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2,4	In to Ee	6.5	15.0	ns	9
			2,4	In to Ee	6.5	20.0	ns	10, 11
tpHL(2) Propagat	Propagation Delay	opagation Delay VCC=5.0V @25C, VCC=4.5V & 5.5V @-55/125C	2,4	In to Ee	6.5	16.0	ns	9
			2,4	In to Ee	6.5	21.0	ns	10, 11

Note 1: Screen tested 100% on each device at +25C, +125C & -55C temperature, subgroups A1, 2, 3, 7 & 8.

Note 2: Screen tested 100% on each device at +25C temperature only, subgroup A9.

(Continued)

- Sample tested (Method 5005, Table 1) on each MFG. lot at +25C, +125C & -55C temperature, subgroups A1, 2, 3, 7 & 8. Sample tested (Method 5005, Table 1) on each MFG. lot at +25C subgroup A9, and periodically at +125C & -55C temperature, subgroups 10 & 11. Note 3:
- Note 4: