
July 1998 1/134

Rev. 1.2

ST7ASMLK
ASSEMBLER, LINKER, FORMATTER, AND LIBRARIAN

FOR THE ST7 FAMILY

PREFACE

Purpose of the Manual

This manual describes how to use the ST7 software tools, allowing you to develop applica-
tions for the ST7 family of microcontrollers:

These tools are part of a generic tool-chain development system that includes:

• a meta-assembler: ASM

• a generic linker: LYN

• a generic formatter: OBSEND

• a generic librarian: LIB

Audience

This book is intended for persons who need to know how to write, assemble and run programs
designed for ST7 microcontrollers. No preliminary knowledge in the field of microcontrollers is
required, however.

Related Publications

The reading of the following publications will be profitable:

• ST7-Family Data Sheets ,

• ST7-Family Starter Kit, Getting Started , Ref. Doc-ST7MDTx-KIT

• ST7-Family Development Kit, Getting Started , Ref. Doc-ST7MDTx-DVP

• ST7-Family Programming Manual ,

• Windows Debugger for the ST7 Family , Ref. Doc-ST7-WGDB7. This manual will help
you debug and finalize your programs.

15

2/134

Table of Contents

134

16

ST7 SOFTWARE TOOLS . 1
1 INTRODUCTION . 5

1.1 TOOL-CHAIN 5

1.2 ASM (ASSEMBLER) . 5

1.3 LYN (LINKER) . 5

1.4 OBSEND (FORMATTER) . 5

2 INSTALLATION . 6
3 ST7 ADDRESSING MODEL . 7

3.1 OVERVIEW . 7

3.2 INHERENT ADDRESSING MODE . 7

3.3 IMMEDIATE OPERAND . 7

3.4 SHORT AND LONG ADDRESSING MODES . 8

3.5 X AND Y INDEXED MODES . 9

3.6 RELATIVE MODE . 9

3.7 MEMORY INDIRECT ADDRESSING MODES . 10

3.8 HIGH, LOW ADDRESSING MODES . 10

4 ASSEMBLER . 12
4.1 OVERVIEW . 12

4.2 SOURCE CODE FORMAT . 12

4.2.1 Source Files . 12
4.2.2 Assembly Source Code Format . 12
4.2.3 Labels . 14
4.2.4 Opcodes . 17
4.2.5 Operands . 18
4.2.6 Comments . 24
4.2.7 A Source Code Example . 24

4.3 SEGMENTATION . 25

4.3.1 Introduction . 25
4.3.2 Parameters . 26
4.3.3 Copying Code . 30

4.4 MACROS . 30

4.4.1 Defining Macros . 31
4.4.2 Parameter Substitution . 33

4.5 CONDITIONAL ASSEMBLY . 33

4.5.1 IF/#ELSE#ENDIF directives . 33
4.6 RUNNING THE ASSEMBLER . 35

4.6.1 Command Line . 35
4.6.2 Options . 36

5 LINKER 40
5.1 WHAT THE LINKER DOES . 40

5.2 INVOKING THE LINKER . 40

5.2.1 Command Line . 40
5.2.2 Response files . 41

5.3 LINKING IN DETAIL . 42

3/134

Table of Contents

5.3.1 PUBLICs and EXTERNs . 42
5.3.2 Segments in the Linker . 42
5.3.3 Symbol Files . 44

5.4 THE LINKER IN MORE DETAIL. 45

5.4.1 The Composition of the .OBJ Files . 45
5.4.2 The Composition of the .COD Files . 45
5.4.3 Reading a Mapfile Listing . 46

6 OBSEND . 48
6.1 WHAT OBSEND DOES FOR YOU . 48

6.2 INVOKING OBSEND . 48

6.2.1 Destination Type . 48
6.2.2 Destination Arguments . 48

6.3 FORMAT DEFINITIONS . 49

6.3.1 Straight Binary Format . 50
6.3.2 Intel Hex Format . 50
6.3.3 Motorola S-record Format . 51
6.3.4 ST 2 and ST 4 S-record Format . 52
6.3.5 GP Binary . 52

7 LIBRARIAN 53
7.1 OVERVIEW . 53

7.2 INVOKING THE LIBRARIAN . 53

7.3 ADDING MODULES TO A LIBRARY . 55

7.4 DELETING MODULES FROM A LIBRARY . 55

7.5 COPYING MODULES FROM A LIBRARY . 56

7.6 GETTING DETAILS IN YOUR LIBRARY . 56

A Assembler Directives 57
B Error Messages . 118

B.1 FORMAT OF ERROR MESSAGES . 118

B.2 FILE CBE.ERR . 119

B.3 ASSEMBLER ERRORS . 119

B.4 LINKER ERRORS . 126

17

4/134

ST7ASMLK

Organization of the Manual

This manual is made up of seven chapters, and two appendixes:

Chapter 2
INSTALLATION,
describes how to
install the software
package on vari-
ous computers.

Chapter 3 ,
ST7 ADDRESS-
ING MODEL,
discusses the ad-
dressing structure
of the ST7 proces-
sor family.

Chapter 4 ,
ASSEMBLER ,
explains how to
use the Assem-
bler.

Appendix A
provides informa-
tion on assembler
directives .

Chapter 7 ,
LIBRARIAN ,
explains the role of
the librarian.

Chapter 6 ,
OBSEND,
explains the role of
the formatter in the
program prepara-
tion process.

Chapter 1
INTRODUCTION,
introduces you to
the components of
the ST7 Software
Tools.

Chapter 5 ,
LINKER ,
describes the link-
ing process.

Appendix B
provides informa-
tion on assembler
and linker error
messages .

18

5/134

ST7ASMLK

1 INTRODUCTION

1.1 TOOL-CHAIN

The tool-chain development system includes:

• a meta-assembler: ASM

• a generic linker: LYN

• a generic formatter: OBSEND

• a generic librarian: LIB

1.2 ASM (ASSEMBLER)

The role of the assembler is to translate the code you have written (the source code) into a
code specific to the target machine, the so-called “object code”. The assembler takes as input
file an assembly file ".ASM" and produces as output an object file ".OBJ ". If desired, a listing
file ".LST " can be obtained.

The meta-assembler can be targeted to various processors, using machine description files.
The machine description file name for the ST7 processor family is ST7.TAB .

1.3 LYN (LINKER)

The linker takes as input one or several object files ".OBJ " files produced by the assembler,
and produces as output an object code file ".COD". LYN resolves all cross-references be-
tween object files, and locates all the modules in memory.

1.4 OBSEND (FORMATTER)

Once your application is linked, you must output it in a suitable format.

The formatter takes as input the object code file ".COD" produced by the linker. The default
suffix for the output file is ".FIN ", but it is possible to specify other suffixes, for example:

OBSEND <file>,f,<file>.s19,s

Note:

The utility file asli.bat automatically runs ASM, LYN, and OBSEND one after each other for
you. Use this batch file only if you have only one assembly source file ".ASM".

19

6/134

ST7ASMLK

2 INSTALLATION

To install the ST7 software tools, run the setup.exe file from the CD-ROM included in the
delivery package, and follow the instructions displayed on screen.

When the installation is completed, the installation directory (typically C:\st7tools\asm)
contains the following files:

Look at file readme.txt for up-to-date release notes. Other files contain examples.

Note:

With Windows 3.1x or Windows 95, the installation process updates the autoexec.bat file
so as to provide suitable path specifications to access the assembler tool-chain. To take into
account the the new autoexec.bat file contents, reboot your computer. You may also di-
rectly access the assembler tool-chain from any MS-DOS window by running
C:\st7tools\asm\st7vars.bat .

Table 1:

ASM.EXE assembler

LYN.EXE linker

OBSEND.EXE formatter

LIB.EXE librarian

ST7.TAB ST7 description file

ASLI.BAT batch file ASM+LYN+OBSEND

README.TXT release notes

20

7/134

ST7ASMLK

3 ST7 ADDRESSING MODEL

3.1 OVERVIEW

The ST7 provides a single source-coding model regardless of which components are oper-
ands, the accumulator (A), an index register (X or Y), the stack pointer (S), the condition code
register (CC), or a memory location. For example, a single instruction, ld , originates register
to register transfers as well as memory to accumulator data movements.

Two-operand instructions are coded with destination operand appearing at first position.

Examples :

3.2 INHERENT ADDRESSING MODE

This concept is hardware-oriented: it means that instruction operand(s) is (are) coded inside
the operation code; at source coding level, operand(s) is (are) explicitly written.

Examples :

3.3 IMMEDIATE OPERAND

This kind of operand is introduced by a sharp sign (#).

Examples :

lab01 ld A,memory ; load accumulator A with memory contents

lab02 ld memory,A ; load memory location with A contents

ld X,A ; load X with accumulator contents

lab06 push A ; put accumulator A onto the stack

lab07 mul X,A ; multiply X by A

lab08 ld A, #1 ; load A with immediate value 1

lab09 bset memory,#3 ; set bit #3 in memory location

btjt memory,#3,label
; test bit #3 of memory and
; jump if true (set)

21

8/134

ST7ASMLK

Unsigned notations are accepted for defining the immediate value (0 to 255 values for an 8-bit
immediate operand).

3.4 SHORT AND LONG ADDRESSING MODES

These two modes differ by the size of the memory address (one or two bytes) and thus by the
target address range of the operand:

0-$FF for short addressing mode

$100-$FFFF for long addressing mode

Some instructions accept both types of addressing modes, and some others only short ad-
dressing:

Examples :

For instructions supporting both formats, short and long, when external symbol are refer-
enced, long mode is chosen by the Assembler:

Example:

lab10 add A,memory ; both types of addressing modes

lab11 inc memory ; only short addressing mode

EXTERN symb3 ;

symb1 equ $10 ;

...

ld A,symb1 ; short mode

ld A,symb3 ; long mode chosen

22

9/134

ST7ASMLK

3.5 X AND Y INDEXED MODES

The ST7 hardware supports three variants of indexed modes:

• indexed without offset,

• indexed with 8-bit unsigned offset [0 ,255 range],

• indexed with 16-bit offset.

Source coding form is:

(X) or (Y) for no-offset indexing

(offset,X) or (offset,Y) for the two others

Some instructions - ld A, add , ... - support the three forms, some others - inc , ... -, only the
first two. The ST7 Assembler performs the same kind of 8-bit / 16-bit offset selection than be-
tween short/long modes described in previous sections.

Examples :

3.6 RELATIVE MODE

This mode is used by JRxx, CALLR, and BTJx instructions. A conditional jump is done to a
program label in the [-128 , 127] range from the value of the PC for the instruction following the
jump.

At source coding level, the target label is specified (and the assembler computes the displace-
ment).

ld A, (X) ; no-offset mode

ld A, (0,X) ; 8-bit offset mode

ld A, (127,X) ; idem

ld A, (259,X) ; 16-bit offset mode

23

10/134

ST7ASMLK

3.7 MEMORY INDIRECT ADDRESSING MODES

This last group consists in memory indirect variants of short indirect, long indirect, short indi-
rect indexed, long indirect indexed. The address specified must always be in page 0 (i.e. its
address must be less than $100).

Examples :

To make the distinction between short and long indirect addressing mode, the suffix .w is
specified to indicate that you want to work in long indirect mode (idem with indexed addressing
mode). Implicitly, if nothing is specified, the short indirect addressing mode is assumed.

You can also use .b to specify short indirect addressing mode.(idem with indexed addressing
mode).

3.8 HIGH, LOW ADDRESSING MODES

In some instances, it may be necessary to access the highest part of an address (8 highest
bits) or the lowest part of an address (8 lowest bits) as well. For this feature, the syntax is the
following one:

<expression>

where expression is:

symbol.H (highest part) , or

symbol.L (lowest part).

ld A, [80] ; short indirect

ld A, [80.b] ; short indirect

ld A, [80.w] ; long indirect

lab12 equ 80

ld A, ([lab12],X) ; short indirect X-indexed

ld A, ([lab12.b],X) ; short indirect X-indexed

ld A, ([lab12.w],Y) ; long indirect Y-indexed

24

11/134

ST7ASMLK

Examples :

For more information about each instruction and the various addressing modes, refer to the
ST7 PROGRAMMING MANUAL .

lab12 equ $0012

nop

ld A, #lab12.h ; load A with $00

ld A, #lab12.l ; load A with $12

25

12/134

ST7ASMLK

4 ASSEMBLER

4.1 OVERVIEW

The assembler is a cross-assembler, i.e., it produces code for a target machine, the SGS-
THOMSON ST7 microprocessor family, different from the host machine.

The assembler will turn your source code files into relocatable objects modules ready for link-
ing.

During the process, it checks for many different types of errors. They are recorded in an ASCII
file: cbe.err . The linker also writes to this file. Error messages are explained in the appendix B
“Error Messages” on page 125.

To produce code ready for execution, you must run the assembler (ASM), the linker (LYN),
and the object code formatter(OBSEND).

• Segmentation

• Macros

• Conditional assembly

• Source file inclusion

• Absolute patch on assembly listing

• Symbol cross reference listing

4.2 SOURCE CODE FORMAT

4.2.1 Source Files

Source program code is organised in an ASCII text file named source file . A source file has
the extension .asm . It is made up of lines, each of which is terminated by a new line character.

4.2.2 Assembly Source Code Format

The first line of an assembly source code file is reserved for specifying the TARGET PROC-
ESSOR. Even comments are prohibited. The '.TAB' suffix may be left out. For example, to use
the ST7 processor:

c:\st7tools\asm\st7/

File ST7.TAB must be located in the directory c:\st7tools\asm .

26

13/134

ST7ASMLK

If it can't be found in the given directory, then an error is produced and assembly is aborted.

There is also an environment variable 'METAI'. This variable specifies the directory where the
file 'ST7.TAB' is located.

Examples:

If the environment variable METAI is defined, the first line of the assembly program is:

st7/

Note

The installation process automatically sets the METAI variable in the autoexec.bat file.

Remaining source code lines have the following general format:

[label[:]]<space>[opcode]<space>[operand]<space>[;comment]

where <space> refers to either a SPACE ($20) or a TAB ($09) characters.

All four fields may be left blank, but the <space> fields are mandatory unless:

– the whole line is blank, or

– the line begins as a comment, or

– the line ends before the remaining fields.

Example:

PC/MS-DOS: SET METAI= c:\st7tools\asm

examp ld A,$ffff ; long addressing mode

comments

operand

opcode

label

separator

27

14/134

ST7ASMLK

4.2.3 Labels

4.2.3.1 Label Structure

Labels must start in column one.

A label may contain up to eight of any of the following characters:

• Upper Case letters (A-Z)

• Lower case letters (a-z)

• Digits (0-9)

• Underscore (_)

The first letter of a label must be a letter or an underscore. Note that upper and lower case are
treated as different because the assembler is case sensitive.

When labels are defined there are several attributes defined along with the value.

These are:

• Size (Byte, Word or Long)

• Relativity (Linker Relative or Absolute)

• Scope (Internally or Externally defined)

The function of each attribute is explained in the following paragraphs.

4.2.3.2 Label Size

The size of a label allows the assembler to make decisions on what kind of addressing
mode to choose even if the label value itself is undefined .

You can force a label to refer to a certain size of memory location by giving the label name a
suffix when it is defined. The suffix isn't used when the label is referred to. If you give no suffix,
then the default size is assumed. BYTES, WORDS and LONGS directives allow to change the
default. Without directives, the default is WORDS.

28

15/134

ST7ASMLK

Examples:

4.2.3.3 Label Relativity

There are two sorts of labels: ABSOLUTE labels and RELATIVE labels.

ABSOLUTE labels are usually assigned to constants, such as IO port addresses, or common
values used within the program.

RELATIVE labels are defined as (or derived from) an EXTERNAL label or a label derived from
the position of some program code. They are exclusively used for labels defined within pieces
of program or data.

Example:

Only the linker can sort out the actual address of the code, as the assembler has no idea how
many segments precede this one in the class. At assembly time, labels such as 'start ' or 'loop '

lab equ 0 ; word (default) label

label1.b equ 5 ; byte label

label2.l equ 123 ; long label

segment byte at: 80 ‘ram’

bytes ; force size of label to bytes

count ds.b ; byte default label

pointer ds.w ; a word space is defined

; at this label

lab equ 0 ; absolute label ‘count’

ioport equ $8000 ; absolute word label ‘ioport’

segment ‘eprom’

start ld X,#count

ld A,#’*’

loop ld ioport,A

dec X

jrne loop

stop jp stop ; then loop for ever

29

16/134

ST7ASMLK

are actually allocated 'blank' values ($0000). These values will be filled later by the linker. La-
bels such as 'count ' or 'ioport ', which were defined absolutely will be filled by the assembler.

Source code lines that have arguments containing relative labels are marked with an 'R' on the
listing, showing that they are 'linker relative'.

Segments are discussed in “Segmentation” on page 25.

4.2.3.4 Label Scope

Often, in multi-module programs, a piece of code will need to refer to a label that is actually de-
fined in another module. To do this, the module that exports the label must declare it PUBLIC,
and the module which imports the label must declare it EXTERN. The two directives EXTERN
and PUBLIC go together as a pair.

Most labels in a program will be of no interest for other pieces of the program: these are known
as 'internal' labels since they are only used in the module where they are defined. Labels are
'internal' by default.

Here are two incomplete example modules that pass labels between them:

module 1

EXTERN _sig1.w ; import _sig1

EXTERN _sig2.w ; import _sig2

PUBLIC _handlers ; export _handlers

segment byte ‘P’

_handlers: ; define _handlers

jp _sig1 ; refer to _sig1

jp _sig2 ; refer to _sig2

end

module 2

EXTERN _handlers.w ; import _handlers (addr. is a word)

PUBLIC _sig2 ; export _sig2

30

17/134

ST7ASMLK

As you can see, module 1 refers to the '_sig2' subroutine which is defined in module 2. Note
that when module 1 refers to the '_sig2 ' label in an EXTERN directive it specifies a WORD
size with the '.w ' suffix. Because the assembler cannot look up the definition of '_sig2 ' it has
to be told its address size explicitly. It doesn't need to be told relativity: all external labels are
assumed to be relative .

Absolute labels declared between modules should be defined in an INCLUDE file that is called
by all modules in the program; this idea of using INCLUDE files is very important since it can
cut down the number of PUBLIC symbols - and therefore the link time - significantly.

Lines in the source code listing which refer to external labels are marked with an X and given
'empty' values for the linker to fill.

As a short cut, labels may be declared as PUBLIC by preceding them with a '. ' at their defini-
tion. If this is done the label name need not be given in a PUBLIC directive. For example, the
following code fragment declares the label 'lab4 ' as PUBLIC automatically:

Example:

4.2.4 Opcodes

The Opcode field may serve three different purposes. It may contain:

• The opcode mnemonic for an assembly instruction,

• The name of a directive,

• The name of a macro to be invoked.

segment byte ‘P’

_sig2: ; define _sig2

...

call _handlers ; refer to _handlers

...

ret

end

lab3 ld A,#0

ret

.lab4 nop

ret

31

18/134

ST7ASMLK

Opcodes must be separated from the preceding field (label, if there is one) by a space or a tab.

A comprehensive Opcode description can be found in the ST7 PROGRAMMING MANUAL .

Macros are discussed in “Macros” on page 30

Directives are discussed in “Assembler Directives” on page 63 .

4.2.5 Operands

4.2.5.1 General

Operands may be:

• Numbers,

• String and character constants,

• Program Counter references,

• Expressions.

4.2.5.2 Number and Address Representation

By default, the representation of numbers and addresses follows the MOTOROLA syntax.
When you want to use hexadecimal number with instructions or labels, they must be preceded
by $. When nothing is specified, the default base is decimal.

Examples:

You can change the Motorola format representation by using directives (.INTEL,.TEXAS) to
indicate the new setting format. For more information, refer to the appendix “Assembler Direc-
tives” on page 63.

lab03 equ 10 ; decimal 10

lab04 equ $10 ; hexadecimal 10

ld A,$ffff ; long addressing mode

ld A,#$cb ; immediate addressing mode

ld A,#100 ; decimal representation

32

19/134

ST7ASMLK

4.2.5.3 Numeric Constants and Radix

Constants may need special characters to define the radix of the given number.

The assembler supports the MOTOROLA format by default. INTEL, TEXAS, ZILOG formats
are also available if the format is forced by .INTEL .TEXAS or.ZILOG directives. (Decimal
constants are always the default, and require no special characters).

Motorola Format

Hex $ABCD or &ABCD

Binary %100

Octal ~665

Current PC * (use MULT for MULTIPLY)

Intel Format

Hex 0ABCDh

Binary 100b

Octal 665o or 665q

Current PC $

Texas Format

Hex >ABCD

Binary ?100

Octal ~665

Current PC $

Zilog Format

Hex %ABCD

CAUTION

Addresses for SEGMENT definition are always given in hexadecimal:

segment byte at: 100-1FF 'test'

The segment 'test ' is defined within the 256-511 address range.

33

20/134

ST7ASMLK

Binary %(2)100

Octal %(8)665

Current PC $

4.2.5.4 String Constants

String constants are strings of ASCII characters surrounded by double quotes .

Example:

4.2.5.5 ASCII Character Constants

The assembler's arithmetic parser also handles ASCII characters in single quotes , returning
the ASCII of the given character(s).

Examples:

Up to 4 characters may be used within a single pair of quotes to give a long constant. The fol-
lowing special sequences are used to denote special characters:

“This is an ASCII string”

‘A’ $41

‘6’ $06

‘AB’ $4142

‘ \b ’ $7F backspace

‘ \f ’ $0C formfeed

‘ \n ’ $0A linefeed

‘ \r ’ $0D carriage return

‘ \t ’ $09 tabulation

‘ \\ ’ $5C slash

‘ \ ’ $27 single-quote

34

21/134

ST7ASMLK

4.2.5.6 Program Counter Reference

The current value of the program counter (PC) can be specified by *

Example:

4.2.5.7 Expressions and Operators

Expressions

Expressions are numeric values that may be made up from labels, constants, brackets and
operators.

Labels and constants have been discussed in previous paragraphs.

Arithmetic brackets are allowed up to 8 nested levels : the curly braces {} are used instead
of the common “(“ and “)” because instructions may use a parenthesis to denote indexed ad-
dressing modes.

Operators

There are 4 levels of precedence. Operators in level #1 take precedence over operators in lev-
el #2, and so on. In each level, operators have same precedence: they are evaluated from left
to right.

.

‘ \0 ’ $00 null

‘ \” ’ $22 double-quote

lab05 jra *

Table 2:

Operation Result, level #1

-a negated a

35

22/134

ST7ASMLK

a and b logical AND of A and B

a or b logical OR of A and B

a xor b logical XOR of A and B

a shr b a shifted right b times

a shl b a shifted left b times

a lt b 1 if a<b, else 0

a gt b 1 if a>b, else 0

a eq b 1 if a=b, else 0

a ge b 1 if a>=b, else 0

a ne b 1 if a unequal b, else 0

high a a/256, force arg to BYTE type

low a a MOD 256, force arg to BYTE type

offset a a MOD 65536, force arg to WORD*16 type

seg a a/65536, force arg to WORD*16 type

bnot a invert low 8 bits of a

wnot a invert low 16 bits of a

lnot a invert all 32 bits of a

sexbw a sign extend byte to 16 bits

sexbl a sign extend byte a to 32 bits

sexwl a sign extend word to 32 bits

Table 2:

Operation Result, level #1

36

23/134

ST7ASMLK

Operator names longer than one character must be followed by a space character. For exam-
ple, '1 AND 2 ' is correct, '1AND2' is not.

Place the curly braces { } around arithmetic expressions.

Also, always use curly braces at the top-level, when defining a numeric expression. Not doing
so may produce unexpected results.

Table 3:

Operation Result, level #2

a/b a divided by b

a div b a divided by b

Table 4:

Operation Result, level #3

a * b a multiplied by b

a mult b as above for motorola (character * is reserved)

Table 5:

Operation Result, level #4

a-b a minus b

a+b a plus b

37

24/134

ST7ASMLK

4.2.6 Comments

Comments are preceded by a semicolon. Characters following a semicolon are ignored by the
assembler.

4.2.7 A Source Code Example

Don't worry if some directives don't make sense yet; they will be covered soon; also, take spe-
cial notice of the SEGMENT directive.

Wrong syntax:

#define SIZE 128

DS.W SIZE+1 ; Wrong, syntax error

#IF SIZE eq 1 ; Wrong, same as #IF SIZE

#ENDIF

Correct syntax:

#define SIZE 128

DS.W {SIZE+1} ; OK

#IF {SIZE eq 1} ; OK

#ENDIF

st7/

; small example module showing source formats

ioport equ $8000 ; 8 bit I0 port A

handshake equ $9000 ; write xx here to strobe

segment 'program'

start ld a,#0 ; zero counter

loop ld ioport,x ; store into ioport

segment word at: FFFC 'code'

WORD start

end

38

25/134

ST7ASMLK

4.3 SEGMENTATION

4.3.1 Introduction

Segments are very, very important. You have to know about segments before you can use the
assembler. Take the time now to understand them and you'll save yourself a lot of puzzling.

Segmentation is a way of 'naming' areas of your code and making sure that the linker collates
areas of the same name together in the same memory area, whatever the order of the seg-
ments in the object files. Up to 128 different segments may be defined in each module.

The segment directive itself has four arguments, separated by spaces:

[<name>] SEGMENT [<align>] [<combine>] '<class>' [cod]

Examples:

File1:

st7/

BYTES

segment byte at: 80-FF ‘RAM0’

counter.b ds.b ; loop counter

address.b ds.w ; address storage

ds.b 15 ; stack allocation

stack ds.b ; stack grows downward

segment byte at: E000-FFFF ‘eprom’

ld A,#stack

ld S,A ; init stack pointer

end

File2:

st7/

segment ‘RAM0’

serialtemp ds.b

39

26/134

ST7ASMLK

FILE1 and FILE2 are two separate modules belonging to the same program. FILE1 introduces
two classes: 'RAM0' and 'eprom' . The class-names may be any names you choose up to
30 characters.

The first time a class is used - introduced - you have to tell the default alignment, the start and
the end addresses of the class, and, of course the name of the class.

Users generally specify a new class for each 'area' of their target system.

In the examples above the user has one class for the 128 bytes of on-chip RAM from 0080 to
00FF ('RAM0') and another for the 'eprom' .

The code is stored from E000 to FFFF ('eprom'). You have to supply all this information the
very first time you use a new class, else only the class-name is necessary, as in FILE2.

4.3.2 Parameters

The following paragraphs describe each argument in detail.

4.3.2.1 Name

The <name> argument is optional; it can contain a name of up to 12 characters. If it does, then
all segments with the same name are grouped together within their class, in the order that new
names are defined.

4.3.2.2 Align

The <align> argument defines the threshold on which each segment must start: the default
is the alignment specified at the introduction of the class (if none is specified in the class intro-
duction then para alignment is assumed), although the following are allowed to be specified
overriding the default:

serialcou ds.b

WORDS

segment ‘eprom’

serial_in ld A,#0

end

40

27/134

ST7ASMLK

Looking back to our examples earlier, you should now be able to see that the 'RAM0' class
will allocate 80 to counter , 81 to address , 92 to stack in FILE1, and when the linker
meets the segment in FILE2 of the same class, serialtemp will be allocated 93 , and seri-

alcou 94 . The same processing happens to the two 'eprom ' class segments: the second,
in FILE2 will be tacked on to the end of the first in FILE1. If the FILE2 'eprom' class segment
had specified, say, the long align type instead of the default byte , then that segment would
have been put on the next long-word boundary after the end of the FILE1 'eprom' class seg-
ment.

4.3.2.3 Combine

The <combine> argument tells the assembler and linker how to treat the segment. There are
three types to handle it:

Table 6:

Type Description Examples

byte Any address

word Next address on boundary 1001->1002

para Next address on 16-byte boundary 1001->1010

64 Next address on 64-byte boundary 1001->1040

128 Next address on 128-byte boundary 1001->1080

page Next address on 256-byte boundary 1001->1100

long Next address on 4-byte boundary 1001->1004

1k Next address on 1k-byte boundary 1001->1400

4k Next address on 4K-byte boundary 1001->2000

41

28/134

ST7ASMLK

The at -type <combine> must be used at the introduction of a class, only once .

The at -type <combine> must have one argument: the start address of the class, and may
optionally be given the end address (or limit) of the class too. If given, the linker checks that no
items in the class have gone over the limit address; if it does, a warning is issued at link time.
The hexadecimal numbers X and Y should not have radix specifiers.

All common-type <combine> segments that have the same class name will start at the same
address. The linker keeps track of the longest segment. common segments can be used for
sharing data across different applications.

Example:

Table 7:

Type Description

at:X[-Y] Starts a new class from address X [to address Y]

common All common segments that have the same class name will start at the
same address. This address is figured out by the linker.

<none> Follows on from end of last segment of this class.

st7/

dat1 segment byte at: 10 'DATA'

ds.w

com1 segment common 'DATA'

.lab1 ds.w 4

com1 segment common 'DATA'

.lab2 ds.w 2

com2 segment common 'DATA'

.lab3 ds.w

com2 segment common 'DATA'

.lab4 ds.w 2

42

29/134

ST7ASMLK

The values for labels lab1 , lab2 , lab3 , lab4, and lab5 are 12 , 12 , 1A, 1A and 1E, re-
spectively.

Note:

Since you can't specify both at and common combines simultaneously, the only way to spec-
ify the exact location of commons is to insert an empty at combine segment before the first
common declaration.

Example:

4.3.2.4 Cod parameter, Output File Control

The last field of a SEGMENT directive controls where the linker places the code for a given
class. When introducing a class, if this field is not specified, the code for this class will be sent
to the normal, default .COD file by the linker. If the [cod] file is given a number between 0 and
9 then all code generated under the class being introduced will be sent to a different '.COD '
file by the linker.

If the linker produces a file called 'prog.cod ', for example, then all code produced under
classes with no [cod] field will go into that file, as normal.

If one class is introduced with a [cod] field of 1, though, then all code produced under that
class is sent instead to a file prog_1.cod . The code produced under the other classes is sent
on as usual to prog.cod .

dat2 segment 'DATA'

.lab5 ds.w 2

end

com1 segment byte at: 10 'DATA'

com1 segment common 'DATA'

...

com1 segment common 'DATA'

...

43

30/134

ST7ASMLK

Using this scheme, you can do bank switching schemes quickly and directly, even when mul-
tiple EPROMs share the same addressing space. Simply allocate each EPROM class of its
own, and introduce each class with a different [cod] field. This will result in the linker collating
EPROM's contents into a different .COD file for you to OBSEND independently.

Example:

4.3.3 Copying Code

It sometimes happens that you need to copy a block of code from EPROM to RAM. This
presents some difficulties because all labels in that piece of code must have the RAM ad-
dresses, otherwise any absolute address references in the code will point back to the EPROM
copy. You can specify a class for execution , and use a different class for storage .

In the following example:

The code starting from 'label1 ' will be stored in the 'code ' class as usual, but all the labels in
that special segment will be given addresses in the 'ram ' class, and memory will also be re-
served in the ram class for the contents of the special segment.

4.4 MACROS

Macros are assembly-time subroutines .

When you call an execution-time subroutine you have to go through several time-consuming
steps: loading registers with the arguments for the subroutine, having saved out the old con-

segment byte at:8000-BFFF 'eprom1' 1

segment byte at:8000-BFFF 'eprom2' 2

segment byte at: 0 'code'

segment byte at: 8000 'ram'

segment 'ram>code'

label1: nop

44

31/134

ST7ASMLK

tents of the registers if necessary, pushing registers used by the subroutine (with its attendant
stack activity) and returning from the subroutine (more stack activity) then popping off pre-
served registers and continuing.

Although macros don't get rid of all these problems, they can go a long way toward making
your program execute faster than using subroutines - at a cost. The cost is program size.

Each time you invoke a macro to do a particular job, the whole macro assembly code
is inserted into your source code .

This means there is no stacking for return addresses: your program just runs straight into the
code; but it's obviously not feasible to do this for subroutines above certain size.

The true use of macros is in small snippets of code that you use repeatedly - perhaps with dif-
ferent arguments - which can be formalized into a 'template' for the macros' definition.

4.4.1 Defining Macros

Macros are defined using three directives: MACRO, MEND and LOCAL .

the format is:

<macro-name> MACRO [parameter-1][, parameter-2 ...]

[LOCAL] <label-name>[, label-name ...]]

<body-of-macro>

MEND

Example:

The piece of code of the example might be called by:

add16 index,offset,index

which would add the following statements to the source code at that point:

add16 MACRO first,second,result

ld A,first

adc A,second

ld result,A

MEND

45

32/134

ST7ASMLK

ld A,index

adc A,offset

ld index.X,A

Note that the formal parameters given in the definition have been replaced by the actual
parameters given on the calling line . These new parameters may be expressions or strings
as well as label names or constants: it's because they may be complex expression that they
are bracketed when there is any extra numeric activity: this is to make sure they come out with
the precedence correctly parsed.

Macros do not need to have any parameters: in which case leave the MACRO argument field
blank, and give none on the calling line.

There is one further problem: because a macro may be called several times in the same mod-
ule, any labels defined in the macro will be duplicated. The LOCAL directive gets around this
problem:

Example:

This macro creates the code for a loop to await IO port at $C000 to go low. Without the LOCAL

directive, the label 'loop ' would be defined as many times as the macro is called, producing
syntax errors at assembly time.

Because it's been declared LOCAL at the start of the MACRO definition, the assembler takes
care of it. Wherever it sees the label 'loop ' inside the macro, it changes the name 'loop ' to
'LOCXXXX' where XXXX is a hex number from 0000 to FFFF.

Each time a local label is used, XXXX is incremented. So, the first time the getio macro is
called, 'loop ' is actually defined as 'LOC0', the second time as 'LOC1' and so on, each of
these being a unique reference name. The reference to 'loop ' in the 'if' statement is also de-
tected and changed to the appropriate new local variable.

getio MACRO

LOCAL loop

loop ld A,$C000

jra loop

MEND

46

33/134

ST7ASMLK

The following directives are very useful, in conjunction with macros:

4.4.2 Parameter Substitution

The assembler looks for macro parameters after every space character. If you want to embed
a parameter, for example, in the middle of a label, you must precede the parameter name with
an ampersand '&' character, to make the parameter visible to the preprocessor. For example,
if we have a parameter called 'param ':

dc.w param

it works as expected but the ampersand is necessary on:

label¶m: nop

label¶m&_¶m: nop

otherwise 'labelparam ' would be left as a valid label name; If the macro parameter 'param '
had the value '5', then 'label5 ' and 'label5_5 ' would be created.

4.5 CONDITIONAL ASSEMBLY

Conditional assembly is used to choose to ignore or to select whole areas of assembler code.
This is useful for generating different versions of a program by setting a particular variable in
an INCLUDE file that forces the use of special pieces of code instead of others.

4.5.1 IF/#ELSE#ENDIF directives

There are three main directives used to perform conditional assembly:

Table 8:

Directive Usage

#IFB To implement macro optional parameters.

#IFDEF To test if a parameter is defined.

#IFLAB To test if a parameter is a label.

#IFIDN To compare a parameter to a given string.

47

34/134

ST7ASMLK

The condition given with the '#IF ' may take the form of any numeric expression; the rule for
deciding whether it resolves to 'true' or 'false' is simple: if it has a zero value then it's false, else
it's true. These directives should NOT start at column 1 of line, reserved for labels.

Example:

This sequence would print 'true ' if the label 'count ' did equal 1, and ‘false ’ if it didn't.

Example:

Table 9:

Directive Usage

#IF marks the start of the conditional and decides whether the following zone
will be assembled or not.

#ELSE optionally reserves the condition of the previous #IF for the following zone.

#ENDIF marks the end of the previous #IF's.

#IF {count eq 1}

%OUT 'true'

#ELSE

%OUT 'false'

#ENDIF

#IF {count gt 1}

%OUT count more than one

#IF {count gt 2}

%OUT ...and more of TWO !

#ELSE

%OUT ...but not more than two!

#ENDIF

48

35/134

ST7ASMLK

As you can see, conditionals may be nested: the #ELSE and #ENDIF directive are assumed
to be assumed to the most recent unterminated #IF .

Other special #IF directives are available:

4.6 RUNNING THE ASSEMBLER

4.6.1 Command Line

The assembler needs the following arguments:

ASM <file to assemble>, <listing file>, <switches> [;]

#ELSE

%OUT count not more than one

#ENDIF

Table 10:

Directive Usage

#IF1 and
#IF2

require no conditional argument. If the appropriate pass is being assem-
bled, the condition is considered 'true '; for instance #IF1 will be consid-
ered true while the assembler is in first pass, #IF2 while in the second
pass.

#IFDEF checks for label definition.

#IFB checks for empty argument (i.e., empty, or containing spaces / tabs), use-
ful for testing macro parameter existence.

#IFF (IF False) is similar to #IF, but checks the negation of the condition argu-
ment.

#IFIDN tests for string equality between two arguments separated by a space.
This is useful for testing macro parameters against fixed strings.

#IFLAB checks if the argument is a predefined label.

49

36/134

ST7ASMLK

If any or all the arguments are left out of the command line, you'll be prompted for the remain-
ing arguments.

Example:

In the example above, no parameters were given on the command line, so all the parameters
were prompted for.

The <file to assemble> parameter assumes a default suffix ".ASM" . For example, if you
type 'game' then 'game.asm ' is the actual filename used.

The listing file is the file to which the assembly report is sent if selected. The default filename
(which is displayed in square brackets), is made from the path and base-name of the file to as-
semble. The default filename suffix for the assembly report file is ".LST ". For instance, if you
type 'game', then 'game.lst ' is the actual filename used.

Note that unless the assembler is told to create either a pass-1 or pass-2 complete listing by
the options argument, the listing file will not be created.

4.6.2 Options

Options are always preceded with a minus sign '-'. Upper and lower cases are accepted to de-
fine options. Supported options are:

ASM

SGS-THOMSON Microelectronics - Assembler - rel. 1.8

File to Assemble: game

Table 11:

Option Function

-LI enable pass-2 listing

-PA enable pass-1 listing

-OBJ=<path> specify .OBJ file

50

37/134

ST7ASMLK

4.6.2.1 SYM Option

Description: This option allows the generation of a symbol table.

Format: ASM <file> -sym

The output file is <file>.sym

Example: ASM prog -sym

4.6.2.2 LI Option

Description: Request to generate a complete listing file.

Format: ASM <file> -li

The output file is <file>.lst

Example: ASM prog -li

4.6.2.3 OBJ Option

Description: You can force the .OBJ file to be generated in a specific directory using the fol-
lowing option (note -obj: must be the last switch):

Format: ASM <file> -obj=<directory>

Example: ASM prog -obj=d:prog

Force the assembler to generate the object file to 'd:prog.obj ' or 'user1/

prog.obj '.

-SYM enable symbol table listing

-NP disable phase errors

-FI=<mapfile> specify 'final' listing mode

-D <1> <2> #define <1> <2>

Table 11:

Option Function

51

38/134

ST7ASMLK

4.6.2.4 FI Option

Description: One side effect of using a linker is that all modules are assembled separately,
leaving inter modules' cross-references to be fixed up by the linker. As a result
the assembler listing file set all unresolved references to 0, and displays a
warning character.

The '-fi ' option enables you to perform an absolute patch on the desired list-
ing. Therefore, you must have produced a listing file (.LST) and linked your
application to compute relocations and produce a .COD file and a map file.

When you want a full listing to be generated, you must not have made any ed-
its since the last link (otherwise the named map-file would be 'out of date' for
the module being assembled). This is not usually a problem since full listings
are only needed after all the code has been completed. -fi automatically se-
lects a complete listing.

Format: ASM <file> -fi=<map-file>

The output <file>.LST contains the absolute patches.

Example: ASM -li ex1 (produces ex1.lst)

ASM -li ex2 (produces ex2.lst)

LYN ex1+ex2,ex (produces ex.map , ex.cod)
See “LINKER” on page 40.

ASM ex1 -fi=ex.map (produces new ex1.lst)

ASM ex2 -fi=ex.map (produces new ex2.lst)

Note that when assembling in '-fi ' mode, the assembler uses the map file
produced by the linker, and no object files are generated.

4.6.2.5 D Option

Description: The -d switch allows you to define the first string to be replaced by the second
string during the assembly. A space is needed between the two strings. This is
extremely useful for changing the assembly of a module using #IF directives,
because you can change the value of the #IF tests from the assembler's com-
mand line. It means that you can run the assembler with different -D switches
on the same source file, to produce different codes.

Note that if you specify multiple -D switches, they should be separated by a
space.

52

39/134

ST7ASMLK

Example: ASM ex1 -D EPROM 1 -D RAM 2

4.6.2.6 PA option

Description: Request to generate a pass-1 listing. It means that in this listing internal for-
ward references are not yet known. They are marked as undefined with a 'U'
in the listing file.

Format: ASM <file> -pa

The output is <file>.lst

Example: ASM file1 -pa

4.6.2.7 NP option

Description: This option disables the error generation.

Format: ASM <file> -np

Example: ASM file1 -np

53

40/134

ST7ASMLK

5 LINKER

5.1 WHAT THE LINKER DOES

After having separately assembled all the component modules in your program, the next step
is to link them together into a .COD file which can then be sent on to its final destination using
OBSEND.

This linking process is not just as a simple concatenation of the object modules. It resolves all
the external references. If a referenced label is not defined as PUBLIC, an error is detected. It
also checks the type of relocation to do, places the segment according to your mapping, and
checks if any of them is overrun.

5.2 INVOKING THE LINKER

5.2.1 Command Line

The linker needs the following arguments:

LYN <.OBJ file>[+<.OBJ file>...], [<.COD file>],[<lib>][+<lib>...]

If all or any arguments are left out of the command line, you'll be prompted.

Example:

The .OBJ files are simply a list of all the object files that form your program. The .OBJ suffix
may be left out, and if more than one is specified they should be separated by '+' characters,
for example game+scores+keys would tell the linker to link 'game.obj ', 'scores.obj ' and
'key.obj '. Object file path names should not include '- ' or '; ' characters. Character '. ' should
be avoided, except for suffixes.

LYN

SGS-THOMSON Microelectronics - Linker - rel 1.6

.OBJ files: begin

.COD file [begin.cod]: begin

Libraries:

54

41/134

ST7ASMLK

The .COD file has a default name formed of the first object file's name with forced suffix of
'.COD'. This will be the name of the file produced at the end of the link session: It contains all
the information from the link session in a special format: however, OBSEND must be used on
the .COD file before it is ready to use. If the default filename is not what you want, the filename
given at the prompt is used instead. The suffix will be forced to .COD if left blank. The default
is selected by leaving this argument blank at the command line, or pressing <ENTER> at the
prompt.

The 'Libraries ' prompt asks for a list of library files generated by the lib utility that should be
searched in case of finding unresolved external references. The format for giving multiple li-
braries is the same as for the .OBJ list, except the suffix .LIB is assumed.

Examples:

Linking together the modules game.obj , scores.obj , key.obj , game1.obj, game2.obj and
game3.obj without using any libraries and generating a .COD file named game.cod , requires
the following command line:

LYN game+scores+keys+game1+game2+game3;

Linking the same modules in the same environment, but generating a .cod file named
prog.cod requires:

LYN game+scores+keys+game1+game2+game3,prog;

5.2.2 Response files

Responses files are text files that replace the command line to generate the arguments re-
quired. Although they can be used on the assembler and linker, it only really makes sense to
use them on the linker.

The command line given with the name of the program to execute (here LYN) can only take up
to 128 characters as its argument. For most programs this is fine, but the linker allows up
to128 modules to be linked in one run; all their names have to be declared to the linker in its
first argument.

This is where response files come in: they allow you to redirect the command line parser
to a file instead of expecting arguments to come from the command line or the keyboard. A re-
sponse file is invoked by giving an ‘@’ sign and a filename in response to the first argument you
want to come from the response file.

55

42/134

ST7ASMLK

The filename is assumed to have a suffix '.RSP ' if none is supplied. Repeating our example
used as earlier, but this time with a response file called game.rsp :

LYN @game.rsp

is all that needs to be typed, and the file game.rsp must contain:

game+scores+keys+

game1+

game2+game3

prog

Which echoes what would have been typed at the keyboard. If the response file ends prema-
turely, the remaining arguments are prompted for at the keyboard. In very large session, the
.OBJ files argument won't fit on one line: it can be continued to the next by ending the last
.OBJ file on the first line with a '+'.

Note that when using response files, there must be at least two carriage returns at the end of
the file.

5.3 LINKING IN DETAIL

5.3.1 PUBLICs and EXTERNs

All labels declared external in the modules being linked together must have a corresponding
PUBLIC definition in another module. If it doesn't, it may be an error. Similarly, there must only
be one PUBLIC definition of a given label.

The bulk of the linker's job is filling those relative or external blanks left by the assembler in the
.OBJ files; to a lesser extent, it also handles special functions such as DATE or SKIP direc-
tives. Equally important, it has to collate together and allocate addresses to segments.

5.3.2 Segments in the Linker

A typical system may look like the diagram alongside: a good candidate for four different seg-
ments, perhaps named 'RAM0', 'RAM1', 'EPROM' and 'ROM'.

If the reset and interrupt vectors live at the end of the map, perhaps from FFEE-FFFF then we
might mark a fifth segment called 'vectors' at those addresses and truncate 'ROM' to end at
FFED; that way the linker will warn us if 'ROM' has so much code in it that it overflows into
where the vectors live.

56

43/134

ST7ASMLK

These classes would be introduced as follows:

segment byte at: 0-FF 'RAM0'

segment byte at: 100-027F 'RAM1'

segment byte at: 8000-BFFF 'EPROM'

segment byte at: C000-FFDF 'ROM'

segment byte at: FFE0-FFFF 'VECTORS'

After their full introduction that needs only be done once in the whole program, the rest of the
program can refer to the classes just by giving the class names in quotes:

Example:

If this example followed immediately after the class instruction the 'xtemp ' label would be giv-
en the value 0, time would be given 2 and hex C000 . If, however, the code was several
modules away from the introduction with segments of the classes 'RAM0' or 'ROM', then the val-
ue allocated to all the labels will depend on how much space was used up by those modules.

The linker takes care of all this allocation. This is the way the linker handles the problems of re-
locatability; keep in mind that this link system is going to have to handle compiled code from
high level languages and you'll perhaps begin to understand why things have to be general-
ized so much.

So far the segments we've looked at, had no <name> field, or, more accurately, they all had a
null name field. You can ensure that related segments of the same class, perhaps scattered all
over your modules with segments of the same class are collated together in a contiguous area
of the class memory by giving them the same name.

Example:

segment 'RAM0'

xtemp ds.w ; temp storage for X register

time ds.b ; timer count index

segment 'ROM'

hex ld A,#1

add A,#10

nop

57

44/134

ST7ASMLK

This complex sequence of segments shows now instances of the class 'RAM1' being used with
a segment name of 'grafix '. Because the first instance of the class 'RAM1' had the name
'grafix ' the two 'grafix ' RAM1 segments are placed in memory first followed by the null-
name RAM1 segment (which defines 'field_buf '). Note this is not the order of the segments
in the code: segments with the same name are collated together (even from separate .OBJ

files), and the lumps of segments of the same name are put into memory in the order that the
names are found in the .OBJ files.

As explained in the assembler sections (“ASSEMBLER” on page 12), if x is your cod file suffix
when introducing a class, all code for that code is sent into a new cod-file named
file_x.cod , where file is the name of the first cod file, and x is the cod-file suffix (1-9).

5.3.3 Symbol Files

At the end of a successful link, one or more .OBJ files will have been combined into a single
.COD file. A .MAP file will have been produced, containing textual information about the seg-
ments, classes and external labels used by the .OBJ module(s). Finally a compact .SYM file
is generated, containing all PUBLIC symbols found in the link with their final values.

The linker supports a special feature - you can link in .SYM files from other link sessions. This
means with huge programs, you cannot only partition your code at assembler level, but divide
the code up into 'lumps' which are linked and loaded separately, but have access to each oth-
er's label as EXTERNs.

You can 'link in' a symbol table simply by giving its name with the suffix .SYM. Always give
symbol tables at the start of the object file list.

grafix segment byte at: 100-027F 'RAM1'

cursor_buf ds.b 64 ; buffer for map under cursor

segment byte at: 8000-BFFF 'ROM'

show_page nop

segment 'RAM1'

field-buf ds.b {{256 mult 256}/8}

segment 'ROM'

dump_buf ld A,field_buffer

grafix segment 'RAM1'

cursor_temp ds.b 64

58

45/134

ST7ASMLK

OBJ File Example:

LYN prog1.sym+prog2,vectors,irq;

Once this is done, all the PUBLIC symbols from prog1.sym are now available as PUBLICs to
prog2.obj , vectors.obj and irq.obj .

Because changes in one link will not automatically update references to the changed link code
in other links, it's necessary when using this technique to 'fix' each link in an area of memory,
and have a 'jump table' at the top of each area. This means that all 'function' addresses are
permanently fixed as jump table offset, and changes to each link will result in automatic redi-
rection of the jump targets to the new start of each routine. Put another way, each link must
have entry fixed points to all its routine, otherwise re-linking one 'lump' of a program could
make references to its addresses in other modules out of date.

5.4 THE LINKER IN MORE DETAIL.

5.4.1 The Composition of the .OBJ Files

The .OBJ files produced by the assembler contain an enormous amount of overhead, mostly
as coded expressions describing exactly what needs to go into the 'blank spaces' the assem-
bler has been so liberal with. The linker contains a full arithmetic parser for 'working out' com-
plex expressions that include external labels: This means (unlike most other assemblers)
there are few restrictions on where external labels may appear.

The assembler also includes line-number information with the .OBJ file, connecting each
piece of generated object code with a line number from a given source file.

OBJ files also contain 'special' markers for handling SKIP and DATE type directive.

5.4.2 The Composition of the .COD Files

.COD files, on the other hand, contain very little overhead: there are six bytes per segment that
describe the start address and length of that segment; Besides that, the rest of the code is in
its final form. A segment of zero length marks the end of the file. It only remains for OBSEND to
take the code segment by segment and send it on to its destination.

59

46/134

ST7ASMLK

5.4.3 Reading a Mapfile Listing

The linker also generates files with the suffix .SYM and .MAP in addition to the .COD file we
have already discussed. The .SYM file contains a compact symbol table list suitable with the
debuggers and simulators.

The .MAP file listing shows three important things: a table of segments with their absolute ad-
dress, a table of all classes in the program, and a list of all external labels with their true val-
ues, modules they were defined in and size.

Here is an example MAPFILE , where one of the class, ROM, has gone past its limit, overwriting
(or more correctly, having part of itself overwritten by) VECTORS.

The [void] on some segments in the segment list says that these segments were not used
to create object code, but were used for non-coding-creating tasks such as allocating label
values with ds.b etc. The number in straight brackets on the segment as true address list

shows how many segments 'into' the module this segment is, i.e., the 1st, 2nd etc. of the given
module. The first x-y shows the range of addresses. The def (line) field on the external la-
bels list shows the source code file and line number that his label was defined in. The number
at the start of each class list line is the cod-file that the class contents were sent to (default is
0).

Segment Address List:

prog [1] 10- 86 0- 6 ‘RAM0' [void]

prog [2] 88- 278 100- 138 'RAM1' [void]

main [1] 8- 563 8000- 875B 'eprom'

prog [4] 282- 889 C000- C508 'rom'

main [2] 568- 1456 C509- F578 'rom'

monitor [1] 8- 446 F579- FFF9 'rom'

monitor [2] 448- 467 FFEE- FFFF 'vectors’

60

47/134

ST7ASMLK

Class List:

External Label List:

The external label list only includes labels that were declared PUBLIC : labels used internally
to the module are not included. This table is most useful for debugging purposes, since the
values of labels are likely to be relocated between assemblies. The labels are given in first-
character-alphabetic order.

0 ‘RAM0' byte from 0 to 78 (lim FF) 45% D

0 ‘RAM1' byte from 100 to 138 (lim 27F) 50% D

0 ‘eprom' byte from 8000 to 875B (lim BFFF) 21% C

0 ‘rom' byte from C000 to FFF9 (lim FFDF) C*Overrun*

0 ‘vectors' byte from FFEE to FFFF (lim FFFF) 100% D

Symbol Name Value Size Def(line)

char 64 BYTE game.obj(10)

char1 66 BYTE game.obj(11)

label ABCD WORD game.obj(25)

3 labels

61

48/134

ST7ASMLK

6 OBSEND

6.1 WHAT OBSEND DOES FOR YOU

After your program has been assembled and linked to form a '.COD' file it needs to be sent on
to the place where it'll be executed; now your code is just sitting in a disc file where the target
system can't get at it.

OBSEND is a general purpose utility for .COD files in various ways using various formats.

6.2 INVOKING OBSEND

OBSEND follows the same standard formats as the rest of the assembler / linker; arguments
can be given from the command line, keyboard or response file. The general syntax is:

OBSEND <file>,<destination>[,<args>],<format>

where <file> is the name of the .COD file to be formatted (default extension .COD). If not giv-
en on the command line, you're prompted at the keyboard with:

6.2.1 Destination Type

<destination> can be "f " (file) or "v " (video). Only a single character is required.

6.2.2 Destination Arguments

When the destination type is "f " (file) the argument <filename> tells OBSEND where to
send the code. The default suffix '.FIN ' is assumed if none is given.

OBSEND

SGS-THOMSON Microelectronics - Obsend - rel. 1.2

File to Send: test

Destination Type (<f>ile,<v>ideo): f

Final Object code Filename [test.fin]: test.s19

Object Format <ENTER>=Straight Binary, ...,

ST REC <2>, ST REC <4>: s

62

49/134

ST7ASMLK

Example:

The command generates the file 'image.s19 ' containing the code from 'test.cod ', in ST S-
record s format.

When the destination code is "v " (video), this field is void.

6.3 FORMAT DEFINITIONS

<format> specifies the output format:

OBSEND test,f,image.s19,s

Table 12:

<format> Output Format

<none> straight binary, i.e., a bit for bit image

i Intel Hex

i32 Intel Hex with 32-byte data per line

ix Intel Hex extended

s Motorola S-record (1 byte per address, e.g. ST7)

x Motorola S-record extended with symbol file

2 ST S-record 2 (2 bytes per address, e.g. D950)

4 ST S-record 4 (4 bytes per address, e.g. ST18932 program space)

f 'Filled' straight binary format

g GP Industrial binary format

63

50/134

ST7ASMLK

6.3.1 Straight Binary Format

<format>= <none>

This is the simplest of the formats. It 's nothing but a bit-for-bit copy of the original file. This the
usual mode for sending to the EPROM Emulators, etc., and is the default if no format argu-
ment is given.

Note:

When the destination is the screen (the destination code is "v "), don't use this format; other-
wise you will only get weird control codes.

<format>= <f>

This is the ‘filled’ straight binary format where gaps between adjacent segments are filled with
$FF.

6.3.2 Intel Hex Format

<format>= i

This format is very much more complex. Intel Hex, bears similarities to S-record that we'll be
looking at later. Let's look at a line of the Intel Hex format in detail:

: 101900 00FFFFFFFFFFC00064FFC0006462856285 E0

10 number of data bytes (16 in decimal)

1900 address

00 record type

... data bytes

E0 checksum

The first thing to note is that every thing is in printable ASCII. Eight bit numbers are converted
into two-characters hexadecimal representation.

Each line begins with an ASCII ': ' ($3A) character.

The next two characters form a byte that declares how many data bytes follow in the data byte
section little further along. The next four characters form a 16-bit high-byte first number that
specifies the address for the first byte of this data; the rest follows on sequentially.

64

51/134

ST7ASMLK

The next two characters are the record type for this line: 00 is a data line, and 01 signals EOF.
The following characters until the last two are up the 16 data bytes for this line and, the last
two are a checksum for the line, calculated by starting with $00 subtracting the real value of all
characters sent after the ': ' until the checksum itself. 'Real value' means that for example, the
two characters 3 and 0 should subtract $30 from the checksum, not 51 and 48 . Every line
ends with a CR-LF combination, $0A and $0D.

The last line sent must be an END-OF-FILE line, which is denoted by a line with no data bytes
and a record type of 01 instead of 00.

Giving I32 or i32 instead of intel as the argument uses the same format, but sends 32 bytes of
data per line.

6.3.3 Motorola S-record Format

<format>= s

This is another complex method for sending data. Again it cuts the data into 16-byte 'records'
with overhead either sides. S-record come in four types: S0, known as a header record, S1
and S2 data records with 16 and 24 bit address fields, and S9, the EOF record.

S10D0010 E0006285E00062856285 6D

S1 record type

0D number of bytes left, address, data and checksum (13 in decimal)

0010 address

.... data bytes

6D checksum

The first two characters define the record type: S0, S1, S2 or S9.

The next two characters form a hexadecimal representation of the numbers of bytes left in the
record (i.e., numbers of characters /2) This count must include the checksum and addresses
bytes that follow. The address field is four characters wide in S0, S1, S9 and six characters
wide in S2. The most significant character always comes first.

OBSEND will always use S1 type records wherever possible (i.e., when the address is less
than $10000) and use S2 type data records where it has to (i.e., address > $FFFF).

Up to 16 data bytes then follow, with the checksum appended on the end. The checksum is
calculated by starting with $FF and subtracting the 'real value' of all bytes sent from and in-
cluding the byte count field until the checksum itself. In this context, 'real value' means the val-
ue of the byte before it is expanded into two ASCII characters.

65

52/134

ST7ASMLK

The record is concluded by a CR-LF combination $0A, $0D. The S0 and S9 (i.e., header and
EOF) records are always the same:

S0060000 484452 1B

and:

S9030000 FC

a complete example of S-record transmission may look like:

S0060000 484452 1B

S113001AFF120094FF130094D08AFF390094FF12 50

S20801C004FFC00000 73

<format>= x

The extended S-record format , selected by format x, sends code as described above, ex-
cept that after the S9, it sends a list of SX records, one after the other, in the format:

SX 0000 LABEL

where 0000 are four ASCII zeroes, and LABEL is five ASCII characters. There are two spaces
after the SX and one space after the 0000 . 0000 represents the hexadecimal value of the la-
bel. LABEL may extend to 31 characters, and end with a carriage return.

6.3.4 ST 2 and ST 4 S-record Format

<format>= 2

<format>= 4

These are industrial formats defined for specific needs.

2: This format allows to specify 2-byte words for one address.

4: This format allows to specify 4-byte words for one address.

6.3.5 GP Binary

<format>= g

This format is simple. It has a 16-byte count at the beginning low-byte first, calculated by start-
ing at 0, and adding the value of each byte until the end of the data is reached. If there are any
'gaps' in your code, obsend will fill them in with $FF, and adjust the checksum accordingly. Af-
ter that four bytes of header information, the data follows in one big block.

66

53/134

ST7ASMLK

7 LIBRARIAN

7.1 OVERVIEW

If you do a lot of work on similar boards especially those with the same processor, it makes a
great deal of sense to reuse lumps of code you've already written to do the same task in a dif-
ferent program. At the simplest level, you could just copy the source code as a block of text
into the new program. This works fine, but has a subtle disadvantage: if you update the sub-
routine, you have to hunt around all the usages of it, performing the update on each.

To get around this problem, many people have the source for common routines in one place,
and link the .OBJ module with each program needing routine. Then you only need to update
the source code once, reassemble it to get a new .OBJ file, then link again all the users of the
routine, who will now have the new .OBJ file.

This scheme works good, too. But it generates some problems of its own. For example, each
routine needs its own .OBJ file. By their nature, these common routines tend to be small, so
you end up giving dozens of extra .OBJ modules to the linker, and having the .OBJ modules
scattered around your disc.

The base concept of a librarian is to combine all these small, useful .OBJ modules into one
large .LIB library file. You could then tell the linker about the library, and it would take care of
sorting out which .OBJ modules to pull into link. It would know which ones to pull by the fact
that the main code being linked would have undefined externals, for example, to call the miss-
ing library routines. The librarian simply takes each undefined external in turn, and checks it
against all the modules in the library. If any of the modules declares a PUBLIC of the same
name, it knows you need that .OBJ module and it includes it automatically.

7.2 INVOKING THE LIBRARIAN

The librarian is called LIB , and takes one command line argument that is the name of the li-
brary to operate on. If not given, you'll be prompted for it.

LIB [library name]

.LIB is added if the suffix is left off.

If the library you gave doesn't exist, LIB asks you if it's a new library.

67

54/134

ST7ASMLK

Example:

If the answer is 'n', LIB aborts. If the library exists, LIB prints up a report on the library.

Next you're faced with the main prompt:

Pressing ENTER gives you access to the following options:

LIB LIB1

SGS-THOMSON Microelectronics - Librarian - rel 1.00

Couldn't open Library file 'LIB1.LIB'

is it a new file? (y/n): y

Library LIB1.LIB is 2K long.

16/1024 Public labels used in 2/128 modules.

LIB1.LIB: Operation (<ENTER> for help):

Table 13:

Operation Description

+filename add/update object module to/in library

-filename delete object module from library

!filename update object module in library

*filename copy object module to separate file from library

? list contents of library

x Exit to DOS

68

55/134

ST7ASMLK

7.3 ADDING MODULES TO A LIBRARY

Typing for example:

+user1\board

would look for a file, called user1\board.obj , and add it to the library.

If LIB can't find the named file, LIB reports the fact and returns to the operations prompt. Else
LIB issues the following message:

Adding new board.obj ...

15 labels added

Done.

If the library already contained a file board.obj , it would prompt you with:

board.obj already in library LIB1.LIB, replace with board.obj (Y/N):

Responding with 'N’ returns you to the operations prompt, while 'Y' first removes the old
board.obj then continues as above.

7.4 DELETING MODULES FROM A LIBRARY

This is done by, for example:

-board

If LIB cannot find board.obj in the current library, it reports an error and aborts back to the
operation prompt. If it can find it, it makes sure you know what you are doing with:

board.obj to be deleted from library LIB1.LIB: Are you sure (Y/N):

N’ aborts to operation prompt. 'Y' continues, reporting:

Removing old board.obj ...

Done.

69

56/134

ST7ASMLK

7.5 COPYING MODULES FROM A LIBRARY

To make a copy of a .OBJ module in a library back to disc, use, for example:

*board

This will check the existence of board.obj in the current library, if not it'll report the failure
and abort the operation prompt. If it does find it, it invites you to give it the name of the disc file
to create to contain the copy of the .OBJ module.

Copy into .obj file [board.obj]:

if you type <ENTER>, it'll select the original name of the object module as the copy's name.
Otherwise, give it a path spec. If the file you give already exists, LIB says:

File board.obj already exists; overwrite? (Y/N):

Again, responding 'N' aborts to the operations prompt, while 'Y' does the copy with the mes-
sage:

Copying board.obj to disk...

Done.

7.6 GETTING DETAILS IN YOUR LIBRARY

The last operation:

?

causes LIB to print out details on the current library.

Library LIB1.LIB is 2K long

16/1024 Publics labels used on 2/128 modules

0: z1.obj (z1.asm) length 2DE

1: board.obj (board.asm) length 7FFF

The name in brackets is the source module from which the named object module was assem-
bled.

70

57/134

ST7ASMLK

Appendix A

A ASSEMBLER DIRECTIVES

A.1 Introduction

Each directive has been given a new section to itself, and an entry in the index. The name of
the directive, which will always appear in the second field is given in the heading at the top of
the section.

Next there is a line showing arguments allowed (if any) for this directive. The penultimate sec-
tion describes the action of the directive and the format and nature of the argument specified
in the previous section, and the last section gives one or more example of the directive in use.

There is a 'see also' cross reference at the bottom of the page.

All the directives must be placed in the second, OPCODE, field, with any arguments one tab
away in the argument field.

71

58/134

ST7ASMLK

A.2 .BELL

Purpose: Ring bell on console.

Format: . BELL

Description: This directive simply rings the bell at the console; it can be used to signal
the end of pass-1 or pass-2 with #IF1 or #IF2. This directive does not
generate assembly code or data.

Example:

See Also:

.BELL

72

59/134

ST7ASMLK

A.3 BYTE

Purpose: Define byte in object code.

Format: BYTE <exp or "string">,[,<exp or "string">...]

Description: This directive forces the byte(s) in its argument list into the object code at
the current address. The argument may be composed of complex
expressions, which may even include external labels. If the argument was
an expression and had a value greater than 255 then the lower 8 bits of
the expression are used and no errors are generated. String argument(s)
must be surrounded by double quotes: theses are translated into ASCII
and processed byte by byte. It's generally used for defining data tables.
Synonymous with STRING and DC.B.

Example:

See Also: DC.B, STRING, WORD, LONG, DC.W, DC.L

BYTE 1,2,3 ; generates 01,02,03
BYTE “HELLO” ; generates 48,45,4C,4C,4F
BYTE “HELLO”,0 ; generates 48,45,4C,4C,4F,00

73

60/134

ST7ASMLK

A.4 BYTES

Purpose: Label type definition type=byte.

Format: BYTES

Description: When a label is defined, 4 separate attributes are defined with it: scope (in-
ternally or externally defined), value (actual numerical value of the label),
relativity (absolute or relative), and length, (BYTE, WORD and LONG).

All these attributes except length are defined explicitly before or at the def-
inition: you can force the label to be a certain length by giving a dot suffix,
eg. 'label.b' forces it to be byte length.

You may also define a default state for label length: labels are created to
this length unless otherwise forced with a suffix. The default is set to
WORD at the start of the assembly, but may be changed by BYTES,
WORDS or LONGS to the appropriate length.

Example:

See Also: LONGS, WORDS

BYTES
lab1 EQU 5 ; byte length for lab1

74

61/134

ST7ASMLK

A.5 CEQU

Purpose: Equate preexisting label to expression.

Format: label CEQU <exp>

Description: This directive is similar to EQU, but allows to change the label's value.
Used in macros and as counter for REPEAT / UNTIL.

Example:

See Also: EQU, REPEAT, UNTIL

lab1 CEQU {lab1+1} ; inc lab1

75

62/134

ST7ASMLK

A.6 .CTRL

Purpose: Send control codes to the printer.

Format: .CTRL <ctrl>[,<ctrl>]...

Description: This directive is used to send printing and non printing control codes to the
selected listing device. It's intended for sending control codes to embolden
or underline, etc. areas of listing on a printer. The arguments are sent to
the listing device if the listing is currently selected. This directive does not
generate assembly code or data.

Example:

See Also: .LIST, .NOLIST, .BELL

.CTRL 27,18

76

63/134

ST7ASMLK

A.7 DATE

Purpose: Define 12-byte ASCII date into object code.

Format: DATE

Description: This directive leaves a message for the linker to place the date of the link in
a 12-byte block the assembler leaves spare at the position of the DATE di-
rective. This means that every link will leave its date in the object code, al-
lowing automatic version control. The date takes the form (in ASCII)
DD_MMM_YYYY where character '_' represents a space; for example
18 JUL. 1988. The date is left for the linker to fill instead of the assembler
since the source code module containing the DATE directive may not be
reassembled after every editing session and it would be possible to lose
track.

Example:

See Also:

DATE

77

64/134

ST7ASMLK

A.8 DC.B

Purpose: Define byte(s) in object code.

Format: DC.B <exp or "string">,[,<exp or "string">]

Description: This directive forces the byte(s) in its argument list into the object code at
the current address. The argument may be composed of complex expres-
sions, which may even include external labels. If the argument was an ex-
pression and had a value greater than 255 then the lower 8 bits of the ex-
pression are used and no errors are generated. String argument(s) must
be surrounded by double-quotes: these are translated into ASCII and proc-
essed byte by byte.

It's generally used for defining data tables. Synonymous with BYTE and
STRING..

Example:

See Also:

DC.B 1,2,3 ; generates 01,02,03
DC.B “HELLO” ; generates 48,45,4C,4C,4F
DC.B “HELLO”,0 ; generates 48,45,4C,4C,4F,00

78

65/134

ST7ASMLK

A.9 DC.W

Purpose: Define word(s) in object code.

Format: DC.W<exp>[, <exp>...]

Description: This directive forces the word(s) in its argument list into the object code at
the current address. The arguments may be composed of complex expres-
sions, which may even include external labels. If the argument was an ex-
pression and had a value greater than FFFF then the lower 16 bits of the
expression are used and no errors are generated. DC.W sends the words
with the most significant byte first.

It's generally used for defining data tables. Synonymous with WORD, ex-
cept that DC.W places the words in High / Low order.

Example:

See Also: DC.B, BYTE, STRING, WORD, LONG, DC.L

DC.W 1,2,3,4,$1234 ;0001,0002,0003,0004,1234

79

66/134

ST7ASMLK

A.10 DC.L

Purpose: Define long word(s) in object code.

Format: DC.L <exp>[,<exp>...]

Description: This directive forces the long word(s) argument list into the object code at
the current address. The arguments may be composed of complex expres-
sions, which may even include external labels. If the argument was an ex-
pression and had a value greater than FFFFFFFF then the 32 bits of the
expression are used and no errors are generated. DC.L sends the words
with the most significant byte first.

It's generally used for defining data tables. Synonymous with LONG, ex-
cept that DC.L stores the long-words in High / Low order.

Example:

See Also: DC.B, DC.W, BYTE, STRING, WORD, LONG

DC.L 1,$12345678 ; 0000,0001,1234,5678
LONG 1,$12345678 ; 0100,0000,7856,3421

80

67/134

ST7ASMLK

A.11 #DEFINE

Purpose: Define manifest constant.

Format: #DEFINE <CONSTANT ID> <real characters>

Description: The benefits of using labels in assembler level programming are obvious
and well known. Sometimes, though, values other than the straight numer-
ics allowed in labels are used repeatedly in programs and are ideal candi-
dates for 'labelifying'.

The #DEFINE directive allows to define special labels called 'manifest
constants'. These are basically labels that contain strings instead of nu-
meric constants. During the assembly, wherever a manifest ID is found in
the source code, it is replaced by its real argument before the assembly
proceeds. The #DEFINE is not the definition of a label, so a space must
precede the declaration.

Example:

See Also:

#define value 5
ld a,#value ; ld a,#5

81

68/134

ST7ASMLK

A.12 DS.B

Purpose: Define byte space in object code.

Format: DS.B [optional number of bytes]

Description: This directive is used to 'space out' label definitions. For example let's say
we need a set of byte-sized temporary storage locations to be defined in
RAM, starting at address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4001

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.B

temp2 DS.B

which does the same job. The advantage is that the PC is incremented au-
tomatically. There are two other types of DS instructions available for doing
WORD and LONG length storage areas: DS.W and DS.L. Note that the ar-
eas in question are not initialised to any value; it's merely a way of allocat-
ing values to labels.

The optional argument specifies how many bytes to allocate; the default is
1.

Because no code is generated to fill the space, you are not allowed to use
DS.B in segments containing code, only for segments with data definitions.

Example:

See Also: DS.W, DS.L

labl DS.B

82

69/134

ST7ASMLK

A.13 DS.W

Purpose: Define word space in object code.

Format: DS.W [optional number of words]

Description: This directive is used to 'space out' label definitions. For example let's say
we need a set of word-sized temporary storage locations to be defined in
RAM, starting at address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4002

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.W

temp2 DS.W

which does the same job. The advantage is that the PC is incremented au-
tomatically. There are two other types of DS instructions available for doing
BYTE and LONG length storage areas: DS.B and DS.L. Note that the are-
as in question are not initialised to any value; it's merely a way of allocating
values to labels.

The optional argument specifies how many bytes to allocate; the default is
1.

Because no code is generated to fill the space, you are not allowed to use
DS.W in segments containing code, only for segments with data defini-
tions.

Example:

See Also: DS.B, DS.L

labl DS.W

83

70/134

ST7ASMLK

A.14 DS.L

Purpose: Define long space in object code.

Format: DS.L [optional number of long words]

Description: This directive is used to 'space out' label definitions. For example let's say
we need a set of long-word-sized temporary storage locations to be de-
fined in RAM, starting at address $4000. We could write:

segment byte at 4000 'RAM'

temp1 equ $4000

temp2 equ $4004

which would work fine, however, we recommend you to write:

segment byte at 4000 'RAM'

temp1 DS.L

temp2 DS.L

which does the same job. The advantage is that the PC is incremented au-
tomatically. There are two other types of DS instructions available for doing
BYTE and WORD length storage areas: DS.B and DS.W. Note that the ar-
eas in question are not initialised to any value; it's merely a way of allocat-
ing values to labels.

The optional argument specifies how many bytes to allocate; the default is
1.

Because no code is generated to fill the space, you are not allowed to use
DS.L in segments containing code, only for segments with data definitions.

Example:

See Also: DS.B, DS.W

labl DS.L

84

71/134

ST7ASMLK

A.15 END

Purpose: End of source code.

Format: END

Description: This directive marks the end of the assembly on the main source code file.
If no END directive is supplied in a source-code file then an illegal EOF er-
ror will be generated by the assembler. Include files do not require an END
directive.

Example:

See Also:

END

85

72/134

ST7ASMLK

A.16 EQU

Purpose: Equate the label to expression.

Format: label EQU <EXPRESSIONS>

Description: Most labels created in a program are attached to a source code line that
generates object code, and are used as a target for jumps or memory ref-
erences. The rest are labels used as 'constants', used for example, to hold
the IO port number for the system keyboard: a number that will remain con-
stant throughout the program.

The EQU directive allocates the value, segment type and length to the la-
bel field. The value is derived from the result of the expression, the relativ-
ity (absolute or segment-relative derived from the most recent segment),
the length is BYTE, WORD or LONG, derived from the size default (starts
off as WORD and may be changed by directives BYTES, WORDS or
LONGS).

Example:

See Also:

labl END 5

86

73/134

ST7ASMLK

A.17 EXTERN

Purpose: Declare external labels.

Format: EXTERN

Description: When your program consists of several modules, some modules need to
refer to labels that are defined in other modules. Since the modules are as-
sembled separately, it is not until the link stage that all the necessary label
values are going to be known.

Whenever a label appears in an EXTERN directive, a note is made for the
linker to resolve the reference.

Declaring a label external is just a way of telling the assembler not to ex-
pect that label to be defined in this module, although it will be used. Obvi-
ously, external labels must be defined in other modules at link stage, so
that all the gaps left by the assembler can be filled with the right values.

Because the labels declared external are not actually defined, the assem-
bler has no way of knowing the length, i.e., (byte, word or long) of the label.
Therefore, a suffix must be used on each label in an EXTERN directive de-
claring its type; if the type is undefined, the current default label scope (set
by BYTES, WORDS, LONGS directives) is assumed.

Example:

See Also: PUBLIC

EXTERN label.w, label1.b, label2.l

87

74/134

ST7ASMLK

A.18 #ELSE

Purpose: Conditional ELSE.

Format: #ELSE

Description: This directive forces execution of the statements until the next #ENDIF if
the last #IF statement was found false or disables execution of the state-
ments until the next #ENDIF if the last #IF statement was found true.

The #ELSE is optional in #IF / #ENDIF structures. In case of nested
#ELSE statements, a #ELSE refers to the last #IF.

Example:

See Also: #IF, #ENDIF

#IF {1 eq 0} ;
; block A ... not assembled

#ELSE
; block B ... assembled

#ENDIF

88

75/134

ST7ASMLK

A.19 #ENDIF

Purpose: Conditional terminator.

Format: #ENDIF

Description: This is the non optional terminator of a #IF structure. If there is only one
level of #IF nesting in force, then the statements after this directive will nev-
er be ignored, no matter what the result of the previous #IF was. In other
words, the #ENDIF ends the capability of the previous #IF to suppress as-
sembly. When used in a nested situation it does the same job, but if the last
#IF / #ENDIF structure was in a block of source suppressed by a previous
#IF still in force, the whole of the last #IF / #ENDIF structure will be ignored
no matter what the result of the previous #IF was.

Example:

See Also: #IF, #ELSE

#IF {count gt 0}
...
#ENDIF

89

76/134

ST7ASMLK

A.20 FCS

Purpose: Form constant string.

Format: FCS <"string"> |<bytes> [<"string"> |<bytes>]...

Description: This directive works in the same way as the common STRING directive,
except that the last character in any string argument has bit 7 (e.g. MSB)
forced high. Numeric arguments in the same list are left untouched.

Example:

See Also: STRING

FCS "ALLO" ; 41,4C,4C,CF
STRING "ALLO" ; 41,4C,4C,4F

90

77/134

ST7ASMLK

A.21 .FORM

Purpose: Set form length of the listing device.

Format: .FORM <exp>

Description: The assembler paginates the listing (when selected) with a default of 66
lines per page. This directive changes the page length from the default.
This directive does not generate assembly code or data.

Example:

See Also: TITLE, SUBTTL, %OUT, .LALL, .XALL, .SALL, .LIST,.NOLIST

.FORM 72

91

78/134

ST7ASMLK

A.22 GROUP

Purpose: Name area of source code.

Format: GROUP <exp>

Description: All source code following a GROUP directive until the next GROUP direc-
tive or the end of the file - 'belongs' to the named group. Source code not
included inside a group is allocated to a special group called 'Default'.

Example:

See Also:

GROUP mainloop

92

79/134

ST7ASMLK

A.23 #IF

Purpose: Start conditional assembly.

Format: #IF <exp>

Description: Sometimes it is necessary to have different versions of a program or mac-
ro. This can be achieved by completely SEPARATE programs / macros,
but this solution has the associated problem that changes to any part of the
program common to all the versions requires all of them being changed,
which can be tedious.

Conditional assembly offers the solution of controlled 'switching off' assem-
bly of the source code, depending on the value of the numeric expressions.

The structure is known as 'IF/ELSE/ENDIF ': see the example for the for-
mat.

The #ELSE statement is optional. If the expression resolves to 0 the ex-
pression is assumed to have a 'false' result: the source code between the
false #IF and the next #ENDIF (or #ELSE if supplied) will not be assem-
bled.

If the #ELSE is supplied, the code following the #ELSE will be assembled
only if the condition is false.

Conditionals may be nested up to 15 levels : when nesting them, keep in
mind that each #IF must have a #ENDIF at its level, and that #ENDIFs and
#ELSEs refer to the last unterminated #IF.

Example:

See Also: #ENDIF, #ELSE, #IF1, #IF2

#IF {1 eq 1}
%out true
#FALSE
%out false
#ENDIF

93

80/134

ST7ASMLK

A.24 #IF1 Conditional

Purpose: Conditional on being in pass #1.

Format: #IF1

Description: This directive works just like #IF except it has no argument and only eval-
uates itself as true if the assembler is on its first pass through the source
code. Can use #ELSE and requires #ENDIF.

Example:

See Also: #IF2, #ELSE, #IF, #ENDIF

#IF1
%OUT "Starting Assembly"
#ENDIF

94

81/134

ST7ASMLK

A.25 #IF2

Purpose: Conditional on being in pass #2.

Format: #IF2

Description: This directive works just like #IF except it has no argument and evaluates
itself as true only if the assembler is on its second pass through the source
code.

Example:

See Also: #IF1, #IF, #ENDIF, #ELSE

#IF2
%OUT "GONE through PASS-1 OK"
#ENDIF

95

82/134

ST7ASMLK

A.26 #IFB

Purpose: Conditional on argument being blank.

Format: #IFB <arg>

Description: This directive works just like #IF except it doesn't evaluate its argument: it
simply checks to see if it is empty or blank. Spaces count as blank.

Example:

See Also: #IF2, #ELSE, #IF, #END

check MACRO param1
#IFB param1
%OUT "No param1"
#ELSE
%OUT param1
#ENDIF
MEND
...
check ,
check 5

96

83/134

ST7ASMLK

A.27 #IFIDN

Purpose: Conditional on arguments being identical.

Format: #IFIDN <arg-1> <arg-2>

Description: This directive works just like #IF except it compares two strings separated
by a space. If identical, the result is true.

Example:

See Also: #IF2, #ELSE, #IF, #END

check MACRO param1
#IFIDN param1 HELLO
%OUT "Hello"
#ELSE
%OUT “No Hello”
#ENDIF
MEND

97

84/134

ST7ASMLK

A.28 #IFDEF

Purpose: Conditional on argument being defined.

Format: #IFDEF <exp>

Description: This directive works just like #IF except it tests for its argument being
defined.

Example:

See Also: #IF2, #ELSE, #IF, #END

check MACRO param1
#IFDEF param1
%OUT "Arg is OK"
#ELSE
%OUT “Arg is undefined”
#ENDIF
MEND

98

85/134

ST7ASMLK

A.29 #IFLAB

Purpose: Conditional on argument being a label.

Format: #IFLAB <arg>

Description: This directive works just like #IF except it tests that its argument is a valid,
predefined label..

Example:

See Also: #IF2, #ELSE, #IF, #END

check MACRO param1
#IFLAB param1
%OUT "LABEL"
#ENDIF
MEND

99

86/134

ST7ASMLK

A.30 #INCLUDE

Purpose: Insert external source code file.

Format: #INCLUDE "<filename>"

Description: INCLUDE files are source code files in the same format as normal modules
but with two important differences: the first line usually reserved for the
processor name is like any other source line, and they have no END direc-
tive. They are used to contain #DEFINE and macro definitions that may be
used by many different modules in your program.

Instead of having each module declare its own set of #DEFINE and macro
definitions, each module just includes the contents of the same #INCLUDE
file. The assembler goes off to the named INCLUDE file and assembles
this file before returning to the line after the #INCLUDE directive in the
former source code file.

The benefit is that any alterations made to a macro must be done once, in
the include file; but you'll still have to reassemble all modules referring to
the changed entry.

NOTE that the filename must be inside double-quotes.

Example:

See Also:

st7/
#include "defst7.h"
...
END

100

87/134

ST7ASMLK

A.31 INTEL

Purpose: Force Intel-style radix specifier.

Format: INTEL

Description: The Intel style:

0ABh Hexadecimal

17o or 17q Octal

100b Binary

17 Decimal (default)

$ Current program counter

This directive forces the INTEL format to be required during the assembly.

Example:

See Also: MOTOROLA, TEXAS, ZILOG

INTEL
ld X,0FFFFh

101

88/134

ST7ASMLK

A.32 .LALL

Purpose: List whole body of macro calls.

Format: .LALL

Description: This directive forces the complete listing of a macro expansion each time a
macro is invoked. This is the default. This directive does not generate as-
sembly code or data.

Example:

See Also: .XALL, .SALL

.LALL

102

89/134

ST7ASMLK

A.33 .LIST

Purpose: Enable listing (default).

Format: .LIST

Description: This directive switches on the listing if a previous .NOLIST has disabled it.
The -'pa ' or -'li ' options must also have been set from the command line to
generate a listing. This directive, in conjunction with the directive .NOLIST,
can be used to control the listing of macro definitions. This directive does
not generate assembly code or data.

Example:

See Also: .NOLIST

.LIST

103

90/134

ST7ASMLK

A.34 #LOAD

Purpose: Load named object file at link time.

Format: #LOAD "path-name[.ext]"

Description: This directive leaves a message for the linker to load the contents of the
named file at the current position in the current segment. The file should be
in 'straight binary' format, i.e., a direct image of the bytes you want into the
object code.

Example:

See Also:

segment byte at 8000-C000 'EPROM1'
#LOAD "table.hex"

104

91/134

ST7ASMLK

A.35 LOCAL

Purpose: Define labels as local to macro.

Format: LOCAL <arg>

Description: A macro that generates loop code gives rise to an assembly problem since
the loop label would be defined as many times as the macro is called. The
LOCAL directive enables you to overcome this difficulty.

Consider the following piece of code:

waiter MACRO ads

loop ld A,ads

jrne loop

MEND

If this macro is called twice, you will be creating two labels called 'loop '.
The answer is to declare very early in the MACRO all labels created by the
macro as LOCAL . This has the effect of replacing the actual name of a lo-
cal label (here 'loop ') with LOCXXXX where XXXX starts from 0 and incre-
ments each time a local label is used. This provides each occurrence of the
labels created inside the macro with a unique identity.

Example:

See Also: MACRO, MEND

waiter MACRO ads
LOCAL loop

loop ld A,ads
jrne loop
MEND

105

92/134

ST7ASMLK

A.36 LONG

Purpose: Define long word in object code.

Format: LONG <exp>[,<exp>...]

Description: This directive forces the long word(s) in its argument list into the object
code at the current address. The arguments may be composed of complex
expressions, which may even include external labels. If the argument was
an expression and had a value greater than FFFFFFFF then the 32 bits of
the expression are used and no errors are generated. LONG sends long
words with the least significant byte first.

It's generally used for defining data tables. Synonymous with DC.L, except
that LONG sends the low-byte first.

Example:

See Also: DC.B, DC.L, DC.W, BYTE, STRING, WORD

DC.L 1,$12345678 ; 0000,0001,1234,5678
LONG 1,$12345678 ; 0100,0000,7856,3421

106

93/134

ST7ASMLK

A.37 LONGS

Purpose: Default new label length long.

Format: LONGS

Description: When a label is defined, four SEPARATE attributes are defined with it:
scope (internally or externally defined), value (actual numerical value of the
label), relativity (absolute or relative), and lastly, length (BYTE, WORD or
LONG).

All these attributes except length are defined explicitly before or at the end
of the definition: you can force a label to be a certain length by giving a dot
suffix, eg. 'label.b' forces it to be byte length.

You may also define a default state for label length: labels are created to
this length unless otherwise forced with a suffix. The default is set to
WORD at the start of the assembly, but may be changed by BYTES,
WORDS or LONGS to the appropriate length.

Example:

See Also: BYTES, WORDS

LONGS
lab1 EQU 5 ; long length for lab1

107

94/134

ST7ASMLK

A.38 MACRO

Purpose: Define macro template.

Format: <macro> MACRO [param-1][,param-2]...

Description: This directive defines a macro template that can be invoked later in the pro-
gram. The label field holds the name of the macro: this name is used to in-
voke the rest of the macro whenever it is found in the opcode field. The ar-
guments are dummy names for parameters that will be passed to the mac-
ro when it is used: these dummy names will be replaced by the actual call-
ing line's arguments.

Note : If you don't want the definition of the macro to be listed, insert direc-
tive .NOLIST before the macro definition, and append directive .LIST after
the macro definition.

Example:

See Also: MEND, .LALL, .SALL, .XAL

cmp16 MACRO first,second,result
LOCAL trylow
ld A,first
add A,second
cp A,#0
jreq trylow
cpl A

trylow ld result,A
MEND

108

95/134

ST7ASMLK

A.39 MEND

Purpose: End of macro definition.

Format: MEND

Description: End of macro definition.

Example:

See Also: MACRO

cmp16 MACRO first,second,result
LOCAL trylow
ld A,first
add A,second
cp A,#0
jreq trylow
cpl A

trylow ld result,A
MEND

109

96/134

ST7ASMLK

A.40 MOTOROLA

Purpose: Force Motorola-style radix specifier.

Format: MOTOROLA

Description: The Motorola style:

$AB Hexadecimal

~17 Octal

%100 Binary

17 Decimal (default)

* Current program counter

This directive forces the Motorola format to be required during the assem-
bly. The default format is MOTOROLA .

Example:

See Also: INTEL, TEXAS, ZILOG

MOTOROLA
ld X,$FFFF

110

97/134

ST7ASMLK

A.41 .NOCHANGE

Purpose: List original #define strings.

Format: .NOCHANGE

Description: Strings named in the first argument of a #DEFINE directive will be changed
to the second argument of the #DEFINE: the default is that the changed
strings will be listed. If you want the original source code to be listed in-
stead, place a .NOCHANGE directive near the start of your source code.
This directive does not generate assembly code or data.

Example:

See Also: #DEFINE

.NOCHANGE

111

98/134

ST7ASMLK

A.42 .NOLIST

Purpose: Turn off listing.

Format: .NOLIST

Description: Certain parts of your modules may not be required on a listing; this direc-
tive disables the listing until the next .LIST directive. The default is for the
listing to be enabled. This directive, in conjunction with the directive .LIST,
can be used to control the listing of macro definitions. This directive does
not generate assembly code or data.

Example:

See Also: LIST

.NOLIST

112

99/134

ST7ASMLK

A.43 %OUT

Purpose: Output string to the console.

Format: %OUT string

Description: This directive prints its argument (which does not need to be enclosed in
quotes) to the console. This directive does not generate assembly code or
data.

Example:

See Also:

%OUT hello!

113

100/134

ST7ASMLK

A.44 .PAGE

Purpose: Perform a form feed.

Format: .PAGE

Description: Forces a new page listing. This directive does not generate assembly code
or data.

Example:

See Also:

.PAGE

114

101/134

ST7ASMLK

A.45 PUBLIC

Purpose: Make labels public.

Format: PUBLIC <arg>

Description: This directive marks out given labels defined during an assembly as 'PUB-
LIC' , i.e., accessible by other modules. This directive is related to EX-
TERN; if one module wants to use a label defined in another, then the other
module must have that label declared PUBLIC .

A label may also be declared PUBLIC as its definition by preceding
the label name with a dot; it won't need to be declared in a PUBLIC di-
rective then.

Example:

See Also: EXTERN

module1.asm
EXTERN print.w, print1.w
...
call print
...
jp print1

module2.asm
PUBLIC print
print nop
.print1 nop

115

102/134

ST7ASMLK

A.46 REPEAT

Purpose: Assembly-time loop initiator.

Format: REPEAT

Description: Used together with UNTIL to make assembly-time loops; it is useful for
making tables etc. This directive should not be used within macros.

Example:

See Also: CEQU, UNTIL

REPEAT

116

103/134

ST7ASMLK

A.47 .SALL

Purpose: Suppress all body of called macro.

Format: .SALL

Description: This directive forces the complete suppression of the listing of a macro ex-
pansion each time a macro is invoked. This instruction itself is never listed.

Note: This directive may produce confusing listings.

Example:

See Also: .LALL, .XALL

.SALL

117

104/134

ST7ASMLK

A.48 SEGMENT

Purpose: Start of new segment.

Format: [<name>] SEGMENT <align> <combine> '<class>' [cod]

Description: The SEGMENT directive is very important: every module in your program
will need at least one.

The <name> field may be up to 11 characters in length, and may include
underscores. The <align> field is one of the following:

Align Type: byte no alignment; can start on any byte boundaries

word aligned to next word boundaries if necessary, i.e., 8001=8002

para aligned to the next paragraph (=16 bytes) boundary, i.e., 8001=8010

64 aligned to the next 64-byte boundary, i.e., 8001=8040

128 aligned to the next 128-byte boundary, i.e., 8001=8080

page aligned to the next page (=256 bytes) boundary ,i.e., 8001=8100

long aligned to the next long-word(=4 bytes) boundary, i.e., 8001=8004

1K aligned to next 1K boundaries, i.e., 8001=8400

4K aligned to next 4K boundaries, i.e., 8001=9000

118

105/134

ST7ASMLK

SEGMENT (Continued)

Combine:at X[-Y] Introduces new class that starts from X and goes through
to address Y. Address Y is optional.

<none> Tack this code on the end of the last segment of this class.

common Put the segment at the same address than other common
segments that have the same name, and note the longest
length segment.

The optional [cod] suffix is a number from 0 to 9 - it de-
cides into which. COD file the linker sends the contents of
this class. 0 is the default and is chosen if the suffix is left
off. A suffix of 1-9 will cause the linker to open the [cod] suf-
fix, and send the contents of this class into the cod file in-
stead of the default. This allows bank switching to be sup-
ported directly at link level- different code areas at the
same address can be separated out into different .cod
files.

See Also: For more information, see Chapter 3, “Segmentation” on page 31

119

106/134

ST7ASMLK

A.49 .SETDP

Purpose: Set base address for direct page.

Format: .SETDP <base address>

Description: If you have used ST7 processor , you'll be aware of its 'zero-page' or 'direct'
addressing modes. These use addresses in the range 00..FF in shorter,
faster instructions than the more general 0000..FFFF versions. Other proc-
essors, use the same scheme , but at a twist : you can choose the 'base
page', that is , the direct mode does not have to be in range 0000 00FF but
can be from nn00..nnFF where nn00 is the 'base page', loaded into a reg-
ister at run-time. Because the assembler cannot track what's in the base
page register at run-time, you need to fill it in about the current 'base page'
with the .SETDP directive. At the start of the assembly, SETDP defaults to
0000.

Example:

See Also:

.SETDP $400
ld A,$401 ; direct mode chosen

120

107/134

ST7ASMLK

A.50 SKIP

Purpose: Inserts given number of bytes with an initialization value.

Format: SKIP <number of bytes>,<value to fill>

Description: This directive leaves a message for the linker that you want X number of Y
bytes to be inserted into the object code at this point. Both the arguments
must be absolute values rather than external or relative values.

Example:

See Also:

SKIP 100,$FF ; insert 100 bytes all $FF

121

108/134

ST7ASMLK

A.51 STRING

Purpose: Define a byte-level string.

Format: STRING <exp or "string">,[,<exp or "string">...]

Description: This directive forces the byte(s) in its argument list into the object code at
the current address. The arguments may be composed of complex expres-
sions, which may even include external labels. If the argument was an ex-
pression and had a value greater than 255 the lower 8 bits of the expres-
sion are used and no errors are generated. String argument(s) must be
surrounded by double-quotes: these are translated into ASCII and proc-
essed byte by byte. It's generally used for defining data tables. Synony-
mous BYTE and DC.B.

Example:

See Also: DC.B, BYTE, WORD, LONG, DC.W, DC.L, FCS

STRING 1,2,3 ; generates 01,02,03
STRING “HELLO” ; generates 48,45,4C,4C,4F
STRING “HELLO”,0 ; generates 48,45,4C,4C,4F,00

122

109/134

ST7ASMLK

A.52 SUBTTL

Purpose: Define a subtitle for listing heading.

Format: SUBTTL "<Subtitle string>"

Description: This directive is related to the TITLE directive: its argument is used as a
subtitle at the beginning of each page on a listing. We recommend that in-
dividual subtitles are generated for each module in a program, while the TI-
TLE is defined once in the include file called by all the modules. This direc-
tive does not generate assembly code or data.

Example:

See Also: TITLE

SUBTTL "A/D control routines"

123

110/134

ST7ASMLK

A.53 .TAB

Purpose: Set listing field lengths.

Format: .TAB <label>,<Opcode>,<operand>,<comment>

Description: Sets the size of the four source code fields for listings. The defaults of 0, 8,
16, 24 are for 80-column printer; if yours can go wider, you need to tell the
assembler using this directive. The four fields are the width of the label
field, the opcode field, operand and comment. This directive does not gen-
erate assembly code or data.

Example:

See Also: .LIST, .NOLIST

.tab 10,6,16,40

124

111/134

ST7ASMLK

A.54 TEXAS

Purpose: Texas-Instrument style radix specifier.

Format: TEXAS

Description: The Motorola style:

>AB Hexadecimal

~17 Octal

?100 Binary

17 Decimal (default)

$ Current program counter

This directive forces the Texas format to be required during the assembly.

Example:

See Also: INTEL, MOTOROLA, ZILOG

TEXAS
ld X,>FFFF

125

112/134

ST7ASMLK

A.55 TITLE

Purpose: Define main title for listing.

Format: TITLE "<Subtitle string>"

Description: The first fifty-nine characters of the argument (which must be enclosed in
double-quotes) will be included on the first line of each page in a listing as
the main title for the listing. We suggest you set the title in the include file
called by each module in your program, and give each module a separate
subtitle (see SUBTTL section). This directive does not generate assembly
code or data.

Example:

See Also: SUBTTL

TITLE "ST7 controller program"

126

113/134

ST7ASMLK

A.56 UNTIL

Purpose: Assembly time loop terminator.

Format: UNTIL <exp>

Description: Related to REPEAT directive: if the expression in the argument resolves to
a non zero value then the assembler returns to the line following the last
REPEAT directive. This directive cannot be used inside macros.

Example:

See Also: CEQU, REPEAT

val CEQU 0
REPEAT
DC.L {10 mult val}

val CEQU {val+1}
UNTIL {val eq 50}

127

114/134

ST7ASMLK

A.57 WORD

Purpose: Define word in object code.

Format: WORD <exp>[, <exp>...]

Description: This directive forces the word(s) in its argument list into the object code at
the current address. The arguments may be composed of complex expres-
sions that may even include external labels. If the argument was an ex-
pression and had a value greater than FFFF then the lower 16 bits of the
expression are used and no errors are generated. WORD sends the words
with the least significant byte first.

It's generally used for defining data tables. Synonymous with DC.W.

Example:

See Also: DC.B, BYTE, STRING, DC.W, LONG, DC.L

WORD 1,2,3,4,$1234 ;0001,0002,0003,0004,1234

128

115/134

ST7ASMLK

A.58 WORDS

Purpose: Default new label length word.

Format: WORDS

Description: When a label is defined, four SEPARATE attributes are defined with its
scope (internal or external defined) value (actual numerical value of the la-
bel) relativity (the label is ABSOLUTE or RELATIVE), and lastly length
(BYTE, WORD, or LONG).

All these attributes except length are defined explicitly before or at the
definition: you can force the label to be of a certain length by giving a dot
suffix, eg. 'label.b ' forces it to byte length.

You may also define a default state for label length: the label is created
to this length unless otherwise forced with a suffix. The default is set to
WORD at the start of the assembly, but may be CHANGED by BYTES,
WORDS or LONGS to the appropriate length.

Example:

See Also: BYTES, WORDS

WORDS
lab1 EQU 5 ; word length for lab1

129

116/134

ST7ASMLK

A.59 .XALL

Purpose: List only code producing macro lines.

Format: .XALL

Description: This directive forces a reduced listing of a macro expansion each time a
macro is invoked. Only those lines of the macro that generated object code
are listed. This instruction itself is not listed. This directive does not gener-
ate assembly code or data.

Example:

See Also: .LALL,.SALL

.XALL

130

117/134

ST7ASMLK

A.60 ZILOG

Purpose: Force Zilog-style radix specifiers.

Format: ZILOG

Description: The Motorola style:

%AB Hexadecimal

%(8)17 Octal

%(2)100 Binary

17 Decimal (default)

$ Current program counter

This directive forces the Zilog format to be required during the assembly.

Example:

See Also: INTEL, MOTOROLA, TEXAS

ZILOG
ld X,%FFFF

131

118/134

ST7ASMLK

Appendix B

B ERROR MESSAGES

B.1 Format of Error Messages

There are two classes of errors trapped by the assembler: fatal and recoverable .

A fatal error stops the assembly there and then, returning you to the caller (which may or may
not be DOS; CBE can also invoke the assembler) with a message and error number describ-
ing the problem.

The actual format of the error messages is as follows:

file.asm(line): as<pass> : Error <errno> : <message> '<text>'

Example:

Notes

The name of the program that handled the error (third field), can be as1 or as2 depending on
the pass in progress when the error was found.

The error number (fourth field) can be used as an index to find a more complete description of
the error in the next section (fatal errors read 'FATAL nn' , instead of 'ERROR nn').

error number

name of the program that handled the error

 name of the file where the error was found

line number in the file

string describing the error

prog.asm(10): as2 : Error 50 : Doubly defined label 'fred'

132

119/134

ST7ASMLK

B.2 File CBE.ERR

Fatal and recoverable errors both are copied into the file CBE.ERR as they occur. CBE
can use this error file to give automatic error-finding. Most linker errors are also copied into
CBE.ERR.

LINKER errors are described page 126.

B.3 ASSEMBLER ERRORS

1. Empty file

The assembler couldn't read even the first line of the given source code file.

2. EOF while in Macro Definition

The file ended while a macro was being defined; you should end the last macro defi-
nition properly with a MEND.

3. Couldn't return to old place in source file 'X.asm'

This error should never occur; it implies you have a disc fault of some kind. After a #in-
clude, the assembler returns to the line after the #include itself. If it cannot return to that
line this error is produced.

4. Illegal Source EOF

Main source code files must end with an END directive and a carriage-return.

5. EOF before line terminator

The END directive must have at least one CR after it: for example <TAB> END <EOF>
will generate this error while <TAB> END <EOF> will work fine.

6. Code produced outside Segment

Any code produced by the assembler is going to have to be placed on a given address
in the target system at the end of the day. Since segments are the assemblers way of
allocating addresses to lumps of code, any code generated before the first SEGMENT
directive is nonsense.

^T 55 Move to top line of current window

^V 56 Move to last line of current window

^U 57 Undo changes to last edited line

133

120/134

ST7ASMLK

^[58 Drop start of black marker

^] 59 Drop end of black marker

^F 60 Find Source Code for Hex address

^J 61 Report value of given label

^N 62 Report address of current Editor line

These functions mostly explain themselves; the Alternate functions do the same job
as the original functions of the same name: having two indexes for the same job al-
lows the cursor keys and control codes to move the cursor, whichever the user prefers.
Some indexes are not used by the default key sequence matrix; these allow some
WordStar-like commands to be implemented with more meaning.

Multiple-key sequences, such as those found in WordStar format control codes need to
be implemented as follows: take the sequence <^Y><L>, i.e., CTRL-Y followed by the
letter L should be coded as ^Y+L where the + denotes that the following character
needs no CTRL or SHIFT.

18. File capture Error

#Include had problems finding the named file.

19. Can't find position in Source File

Again to do with #include, another 'impossible' error reporting that it couldn't find the
current position of the source file to remember it for after the #include.

20. Can't have more than 180 #defines

Each #define has to be checked for in each possible position in each source line: hav-
ing tons of them slows the assembly noticeably. Although you can have up to 180 #de-
fines, there are also limits on the storage space for both the arguments (error 23); an
average of eight characters for both arguments is catered for.

21. Run out of #define storage space (1)

See Error 20.

22. #define has no second argument

#define requires a space between the two parts of its argument to delimit it.

23. Run out of #define storage space (2)

See 20 and 21 above; you've reached the limit of the storage space set aside for the
second argument of #defines.

24. No strings in DC.W

Strings are only allowed as parts of BYTE, DC.B or STRING directives.

134

121/134

ST7ASMLK

25. No strings in DC.L

Strings are only allowed as parts of BYTE, DC.B or STRING directives.

26. Illegal External Suffix

Only the suffixes .b, .B, .w, .W, .l, .L are legal after an external label in an external di-
rective. If the suffix is left out then the default label size is used (as set by BYTES,
WORDS or LONGS; default is WORDS).

27. Bad Character in public line

28. More than four characters in single quotes

This assembler uses double-quotes to surround string items and single-quotes to sur-
round character constants. See “Source Code Format” on page 18

29. Uneven Single Quotes

Single-quoted items must have a closing quote to delimit.

30. Sequential operator error

It does not allow arithmetic operators to be hard up against each other.

31. No lvalue in Expression.

An lvalue is the left-hand argument of an operator: a + b has 'a' as its lvalue. +b would
cause this error.

32. Divide by zero

Attempt to divide a number by zero, in a numeric expression.

33. Ifs nested past 15 levels

Exceeded maximum number of nested #IF statements.

34. Spurious ELSE

An ELSE was discovered when no active IF was in force.

35. Spurious ENDIF

An ENDIF was discovered when no active IF was in force.

36. Only allowed inside Macros

A LOCAL directive was attempted outside a Macro definition.

37. No strings in Word

See Error 24.

38. No string in Long

See Error 25.

39. No REPEAT for this UNTIL

135

122/134

ST7ASMLK

An UNTIL directive is found with no matching REPEAT directive.

40. Couldn't return to old place in Source

Similar to Error 3 but generated by UNTIL instead of #include.

43. Syntax Error in SKIP arguments

SKIP expects two numeric arguments, separated by a comma.

44. First SKIP argument is extern/relative; SKIP aborted

SKIP arguments must be known to the assembler absolutely. Extern or relative argu-
ments are not allowed, although arithmetic is. If you need to move up to a new page,
for example, use a new SEGMENT of the same class with a page align type.

45. Second SKIP argument is extern/Relative; SKIP aborted

See Error 44.

46. Undefined label

This error happens when a reference is made to an undefined label.

47. Out of label space

A maximum of 1024 labels are allowed per module, and 10k is set aside to contain their
names. If either of these limits is exceeded, this error results. Cut the module into two
smaller ones; the assemblies will happen twice as fast and you'll only have to reassem-
ble the half you've made changes to, speeding things up.

48. Label more than 30 characters

Labels longer than 30 characters are not allowed.

49. Label defined as PUBLIC twice

This warning occurs if the same label appears more than once in a PUBLIC statement.
It's trapped because the second appearance may be a mistype of a slightly different la-
bel you wanted declared as public.

50. Doubly Defined label

This happens when a label is defined twice or more.

51. Phase Inconsistency (P1=X,P2=Y) 'label'

Reports that the named label was allocated different values from pass-1 and pass-2,
implies awful things. It's generally caused when for some reason the assembler has
generated different lengths for the same instruction between pass-1 and pass-2.
Sometimes if the assembler has problems identifying which addressing mode you
wanted for a particular instruction because of mistypes, or labels that are discovered to
be undefined during the second pass it may give an error (see Error 54) and create no
object code for that line. All labels after that line will then be allocated different values

136

123/134

ST7ASMLK

seeing as the object code is now that many bytes shorter, causing tons of Phase Incon-
sistency errors. Because this mass of Error 51s can sometimes hide the real cause of
the error, a special assembler switch /np for 'no phase [errors]' can be used to switch
them off. We strongly suggest that you don't always use /np on all your assemblies;
only use it when you need it or you might miss critical phase errors.

52. Public Symbol Undefined

You defined a symbol in a PUBLIC directive that was not defined in the module.

53. Missing Hex Number

The assembler was led to expect a hex number but found one of zero length.

54. Can't match Addressing Mode

This error is a catchall for the assembler if it cannot see anything wrong with your line
but cannot match it to a known addressing mode either.

There are two main causes of errors: significant ordering and numeric range errors.
The significant ordering error is a simple mistype: what should have been (val),y was
coded as (valy, or whatever. All the components of the addressing mode are properly
formed; it's just that the ordering is wrong. The numeric range errors can be harder to
detect. For example, an 8-bit relative branch branching out of range would be trapped
as an addressing mode error.

To aid diagnostics of what went wrong the assembler dumps out its model of the line to
the screen just before the error. Numerics are printed as a hex value followed by an at-
tribute string: INTernal, EXTernal, ABSolute, RELative and .b, .w, .l.. Significands are
printed as the characters they represent, and strings are printed with their string.

Numeric range errors are also trapped at the link stage (See “What the linker does” on
page 46).

55. Bad PSIG Index

An 'impossible' error that could only occur through corruption of the .TAB file.

56. Un-recognized Opcode

The Opcode (second field) could not be matched against any opcode names for this in-
struction set, nor could it be matched against any macro names or directives.

57. No closing quote

String must have closing double-quote before the end of the line.

58. No more than 12 Numerics allowed on one line

These's a limit of 12 Numeric units allowed on one line: this usually only matters on
long DC.B-type directives where data tables are being defined. If it's a problem, simply
cut the offending long line into two shorter lines.

137

124/134

ST7ASMLK

59. Out of space for Macro Definition

The Macro Storage area (ca 64K) has been overflowed. You must have some really
big macros!

60. Too many Macros Attempted

There is a limit of 128 Macros allowed per source code module.

61. Mend only allowed in Macro

MEND directive found with no matching MACRO directive.

62. No closing single Quote

See error 29.

63. Bad Ending

Another 'impossible' error, saying that the CR on the end of a source code line was
missing.

64. Bad Character in line

As each source code line is read into the assembler it's checked for non-ASCII charac-
ters (i.e., >128).

65. Parameter Mismatch

The macro definition implies that there is a different number of parameters than there
actually were in this calling line.

66. Currently Unknown Numeric type

An error in your Tabgen File, or a corrupted .TAB file: the numeric handler was asked
to check a number against an undefined numeric type. Are you using the latest version
of ASM.EXE and your. TAB file ?

67. Improper Characters

Unusual characters have been spotted in the source file, of value >127.

68. Label used before its EXTERN definition

Labels must be declared EXTERNAL before their use, preferably in a group at the top
of the file.

69. Ambiguous Label Name

The label name in the single-quotes at the end of the error-line can be confused with a
register name in this instruction set. Change the name.

70. Cannot have DS.X in segments containing code/data! (only for [void] segs!)

DS.X does not produce any code; it simply advances the assembler's notional Pro-
gram Counter. It cannot be used in the same segment as real 'code' or data.

138

125/134

ST7ASMLK

71. Cannot have code in segments previously containing DS.X (only for non-void
segs!)

DS.X does not produce any code; it simply advances the assembler's notional Pro-
gram Counter. It cannot be used in the same segment as real 'code' or data.

72. Constant too large for directive 'value'

A DC.B cannot be given an argument >255, for example. Use LOW or OFFSET oper-
ators to truncate any wild arguments.

73. Couldn't find entry for segment in mapfile

This is for listings produced with '-fi' option. Complex include file structures and empty
segments can sometimes throw the assembler off the track.

74. COD index only allowed on Introduction

When you're using the multiple linker output file scheme, you can only specify the linker
output file number for a particular class at the time of that class's introduction.

75. #LOAD before Segment!

The #load has to be but at a given address! Before the first segment the assembler
won't know what address to put it at! Shift the #load after a SEGMENT directive.

76. #LOAD before Segment!

The assembler had problems finding the file you've named in a #LOAD directive.

77. All EQUs Involving External args must be before first segment!

78. Cannot nest #includes > 5 levels

79. Couldn't find label list in mapfile

Happens with option '-fi' - Implies problem with the mapfile itself, or unsuccessful pre-
vious link, etc.

80. Couldn't find label in mapfile

As above. Is the Mapfile up to date with your Edits ? A label may be declared EXTERN,
but never used.

81. Couldn't find label in mapfile

The date info has to be stored at a given address - before a SEGMENT there is no ad-
dress information for the assembler to work on.

82. No string given on FCS line?

FCS is used for defining strings. Why is there no string on this line? Did you intend
that? If so, use DC.B or BYTE.

83. Address not on WORD boundary

139

126/134

ST7ASMLK

For 68000 and certain other genuine 16-bit, Opcodes must be on word boundary. This
error occurs if you have assembled an instruction at an odd address. Your processor
would crash!

84. Byte size label has value >255 (need WORDS?)

85. Word size label has value > 65535 (need LONGS?)

86. Over 250 Macline Pull

Internal Error.

87. Run out of Source File

Internal Error.

88. TAB arguments incorrect

Must be in order num, num, num, num for example, TAB 8, 8, 12, 32.

B.4 LINKER ERRORS

1. File List must be supplied

2, 3, 11, 13. Incomplete Object File

Fatal error - the linker has identified that the given object file has been truncated. How
are you for disc space?

4, 23. Size mismatch on EXTERN from F1 says .X, PUBLIC from F2 says .Y.

When declared PUBLIC in file F2 the label L was given size attribute Y. However, when
you came to use it in file F1, the EXTERN statement named L as being of size .X - they
didn't tally. They must. Find out which is incorrect and alter it.

5. No info on start address of class 'class'

The first time the linker sees a class (remember it goes through the object files in the
order given on the link command line), it must be given the full 'introduction' to the
class, with start and stop addresses. See “Segmentation” on page 31.

6. Too many secondary externals (32)

Secondary Externals ought to occur only rarely in your code - If you're using >32 then
your structure has something seriously wrong with it. Hint - all your labels that are used
all over the place, like constants, addresses of IO, and the like: make a module just for
them, just containing EQUs and/or DS.Xs, all declared public. Any arithmetic needs

140

127/134

ST7ASMLK

doing more than once throughout your code, do it there, and declare the result with its
own public label. Then refer to these PUBLICs using simple EXTERNs in each module.

7, 19. Corrupted Object File

Disc Nastiness. Reassemble. There may be an object code inconsistency: re-assem-
ble all the files, and link again.

8. Public of same name as secondary EXTERN already exists!

This error cannot be seen until link time. Rename one or the other.

9. To many XREFs to link (12048)

10. Undefined EXTERN L (from F1)

12. Couldn't seek back in file 'F1'

Internal Error. Should never occur.

14. Unexpected 7f

Disc nastiness. Reassemble.

15. Byte size exp >Offh 'value'

Needs looking at. If it is what you intended, either use the LOW operator to saw off up-
per bits, or change the size attribute.

141

128/134

Index

Symbols

.asm ... 5, 12

.cod .. 5, 29, 40, 48

.fin... 5, 48

.lib ... 53

.map ... 44

.obj.. 5, 40

.rsp ... 42

.s19 .. 5, 49

.sym ... 44

.tab ... 12
/np assembler switch 123
‘@’ sign (linker) .. 41
’&’ character.. 33
’.’ in labels ... 17

Numerics

128-byte boundary 27
16-byte boundary....................................... 27
1k-byte boundary....................................... 27
256-byte boundary 27
30 characters.. 122
4-byte boundary... 27
4K-byte boundary 27
64-byte boundary....................................... 27
80-column printer..................................... 110

A

address representation............................. 18
align

128 ... 104
1K ... 27, 104
4K ... 27, 104
64 ... 27, 104
byte .. 27, 104
long .. 27, 104
page... 27, 104
para.. 27, 104
word ... 27, 104

Align argument in segments 26
ampersand (’&’) character........................ 33

asli.bat ... 5
ASM ... 35
assembler (role)... 5
assembler options

-d .. 37
-fi .. 37
-li... 36
-np .. 37
-obj ... 36
-pa .. 36
-sym ... 37

attributes
byte .. 14
externally... 14
internally.. 14
linker relative or absolute 14
long .. 14
relativity ... 14, 15
scope ... 14, 16
size... 14
word ... 14

autoexec.bat... 6

C

cbe.err ... 12, 119
CD-ROM ... 6
class-names ... 26
combine

at .. 28, 105
common 28, 105

Combine argument in a segment 27
comments ... 24
conditional assembly 33
conditionals (nesting)................................ 79
constants... 19, 20
copied code .. 30
cross-references.. 5

D

delivery package.. 6
directives

#DEFINE... 67
#ELSE ... 74

142

129/134

Index

#ENDIF.. 75
#IF .. 79
#IF1.. 80
#IF2.. 81
#IFB ... 82
#IFDEF.. 84
#IFIDN ... 83
#IFLAB .. 85
#INCLUDE.. 86
#LOAD... 90
%OUT.. 99
.BELL... 58
.CTRL .. 62
.FORM... 77, 78
.LALL ... 88
.LIST .. 89
.NOCHANGE 97, 98
.NOLIST .. 98
.PAGE.. 100
.SALL... 103
.SETDP ... 106
.TAB... 110
.XALL... 116
BYTE ... 59
BYTES... 60
CEQU .. 61
DATE ... 63
DC.B .. 64
DC.L... 66
DC.W ... 65
DS.B .. 68
DS.L ... 70
DS.W ... 69
END ... 71
EQU ... 72
EXTERN.................................. 16, 42, 73
FCS.. 76
GROUP ... 78
INTEL .. 87
LOCAL... 31, 91
LONG .. 92
LONGS.. 93
MACRO... 31, 94
MEND .. 31, 95
MOTOROLA....................................... 96

PUBLIC 16, 42, 101
REPEAT.. 102
SEGMENT.. 104
SKIP... 107
STRING... 108
SUBTTL .. 109
TEXAS... 111
TITLE... 112
UNTIL .. 113
WORD ... 114
WORDS .. 115
ZILOG.. 117

E

environment variable (METAI) 13
errors

#define has no second argument . 120
#LOAD before Segment!................ 125
Address not on WORD boundary. 125
All EQUs Involving External args must

be before first segment! . 125
Ambiguous Label Name................. 124
Bad Character in line 124
Bad Character in public line 121
Bad Ending 124
Bad PSIG Index............................... 123
Byte size exp >Offh ’value’ 127
Byte size label has value >255 126
Can’t find position in Source File.. 120
Can’t have more than 180 #defines120
Can’t match Addressing Mode...... 123
Cannot have code in segments previ-

ously containing DS.X.... 125
Cannot have DS.X in segments contain-

ing code/data!... 124
Cannot nest #includes > 5 levels.. 125
COD index only allowed on Introduc-

tion 125
Code produced outside Segment. 119
Constant too large for directive ’value’

125
Corrupted Object File 127
Couldn’t find entry for segment in map-

file 125

143

130/134

Index

Couldn’t find label in mapfile 125
Couldn’t find label list in mapfile ... 125
Couldn’t return to old place in Source

122
Couldn’t return to old place in source file

’X.asm’ 119
Couldn’t seek back in file ’F1’........ 127
Currently Unknown Numeric type. 124
Divide by zero 121
Doubly Defined label....................... 122
Empty file .. 119
EOF before line terminator 119
EOF while in Macro Definition....... 119
File capture Error............................. 120
File List must be supplied 126
First SKIP argument is extern/relative

122
Ifs nested past 15 levels................. 121
Illegal External Suffix 121
Illegal Source EOF 119
Improper Characters 124
Incomplete Object File.................... 126
Label defined as PUBLIC twice 122
Label more than 30 characters 122
Label used before its EXTERN defini-

tion 124
Mend only allowed in Macro.......... 124
Missing Hex Number 123
More than four characters in single

quotes................................ 121
No closing quote.............................. 123
No closing single Quote 124
No info on start address of class ’class’

126
No lvalue in Expression.................. 121
No more than 12 Numerics allowed on

one line.............................. 123
No REPEAT for this UNTIL 121
No string given on FCS line? 125
No string in Long 121
No strings in DC.L 121
No strings in DC.W.......................... 120
No strings in Word........................... 121
Only allowed inside Macros........... 121
Out of label space 122

Out of space for Macro Definition. 124
Over 250 Macline Pull 126
Parameter Mismatch....................... 124
Phase Inconsistency (P1=X,P2=Y) ’la-

bel’ 122
Public of same name as secondary EX-

TERN already exists!...... 127
Public Symbol Undefined............... 123
Run out of #define storage space (1)

120
Run out of #define storage space (2)

120
Run out of Source File.................... 126
Second SKIP argument is extern/Rela-

tive 122
Sequential operator error 121
Size mismatch on EXTERN from F1

says .X, PUBLIC from F2 says
.Y.. 126

Spurious ELSE 121
Spurious ENDIF............................... 121
Syntax Error in SKIP arguments... 122
TAB arguments incorrect 126
To many XREFs to link (12048) ... 127
Too many Macros Attempted........ 124
Too many secondary externals (32)126
Undefined EXTERN L (from F1)... 127
Undefined label................................ 122
Uneven Single Quotes 121
Unexpected 7f.................................. 127
Un-recognized Opcode 123
Word size label has value > 65535126

executable files .. 6
executables

ASM ... 1, 35
LIB.. 53
LYN .. 40
OBSEND... 48

expressions .. 21
extended S-record format 52
external label list .. 47

F

files

144

131/134

Index

asli.bat ... 5
autoexec.bat... 6
cbe.err ... 12, 119
readme.txt... 6
response files 41
setup.exe .. 6
st7.tab.. 5, 12
st7vars.bat .. 6

formats
INTEL .. 19
MOTOROLA....................................... 19
TEXAS... 19
ZILOG.. 19

G

GP binary .. 52
GP Industrial binary format 49

I

INCLUDE files .. 17
installation directory 6
INTEL format .. 19
INTEL hex format 50

L

label structure... 14
labels with ’.’ ... 17
LIB.. 53
librarian.. 53
library files... 41
linker .. 40
linker (role).. 5
linker (segments in)................................... 42
linking modules .. 41
listing file ... 5
LOCXXXX ... 32, 91
LYN .. 40

M

machine description files............................ 5
macro parameters 33

macros... 30
mapfile listing ... 46
METAI variable .. 13
module (segments in) 25
modules to be linked................................. 41
MOTOROLA format 19
MOTOROLA S-record format.................. 51

N

Name of a segment................................... 26
nested levels .. 21
nesting conditionals 79
number representation 18
numbers

$ABCD .. 19
%(2)100... 20
%(8)665... 20
%100 ... 19
%ABCD ... 19
&ABCD.. 19
>ABCD .. 19
?100... 19
~665... 19
0ABCDH ... 19
100B .. 19
665O .. 19
665Q .. 19

O

object file ... 5
OBSEND... 41
OBSEND (role) .. 5
obsend formats

2.. 49
4.. 49
f... 49
g.. 49
i ... 49
i32 .. 49
ix ... 49
s.. 49
x.. 49

Opcodes.. 17

145

132/134

Index

Operands .. 18
operators... 21

{} ... 21
-a .. 21
a*b.. 23
a+b ... 23
a/b .. 23
a-b .. 23
and ... 22
bnot .. 22
div... 23
eq ... 22
ge ... 22
gt... 22
high .. 22
lnot ... 22
low.. 22
lt .. 22
mult .. 23
ne ... 22
offset .. 22
precedence... 21
seg ... 22
sexbl .. 22
sexbw .. 22
sexwl.. 22
shl... 22
shr .. 22
wnot ... 22
xor .. 22

P

pass-1,-2 ... 122
pass-1,-2 listing.. 36
precedence (operators) 21
program counter .. 21
PUBLIC labels.. 17

R

radix ... 19
readme.txt ... 6
representation of addresses 18
representation of numbers....................... 18

response files ... 41
role of OBSEND .. 5
role of the assembler 5
role of the linker ... 5

S

segment .. 25
segment address list 46
Segment name... 26
segmentation.. 25
segments in the linker............................... 42
setup.exe .. 6
SKIP aborted.. 122
source files ... 12
ST S-record .. 49
ST S-record format.................................... 52
st7.tab.. 12
st7vars.bat .. 6
straight binary format 49, 50
string constants.. 20
suffixes

.asm ... 5, 12

.cod 5, 29, 40, 48

.fin .. 5, 48

.lib... 53

.lst... 5

.map... 44

.obj ... 5, 40, 53

.rsp ... 42

.s19 .. 5, 49

.sym ... 44

.tab ... 12

T

table of segments 46
TEXAS format .. 19
tool-chain .. 4, 5

U

utilities
asli.bat ... 5

146

133/134

Index

Z

ZILOG format ... 19

147

134/134

ST7ASMLK

Notes:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

148

