Product Brief November 1999

microelectronics group

ORCA[®] OR3LxxxB Series Field-Programmable Gate Arrays

Bell Labs Innovations

Lucent Technologies

Features

- High-performance, cost-effective, 0.25 µm 5-level metal technology.
- 2.5 V internal supply voltage and 3.3 V I/O supply voltage for speed and compatibility.
- Up to 340,000 usable gates in 0.25 µm.
- Up to 612 user I/Os in 0.25 µm. (OR3LxxxB I/Os are 5 V tolerant to allow interconnection to both 3.3 V and 5 V devices, selectable on a per-pin basis, when using 3.3 V I/O supply.)
- Twin-quad programmable function unit (PFU) architecture with eight 16-bit look-up tables (LUTs) per PFU, organized in two nibbles for use in nibbleor byte-wide functions. Allows for mixed arithmetic and logic functions in a single PFU.
- Nine user registers per PFU, one following each LUT, plus one extra. All have programmable clock enable and local set/reset, plus a global set/reset (GSRN) that can be disabled per PFU.
- Flexible Input Structure (FINS) of the PFUs provides a routability enhancement for LUTs with shared inputs and the logic flexibility of LUTs with independent inputs.
- Fast-carry logic and routing to adjacent PFUs for nibble-wide, byte-wide, or longer arithmetic functions, with the option to register the PFU carry-out.
- Softwired LUTs (SWL) allow fast cascading of up to three levels of LUT logic in a single PFU.
- Supplemental logic and interconnect cell (SLIC) provides 3-statable buffers, up to 10-bit decoder, and PAL*-like AND-OR-INVERT (AOI) in each programmable logic cell (PLC).

- Abundant hierarchical routing resources based on routing two data nibbles and two control lines per set provide for faster place and route implementations and less routing delay.
- Individually programmable drive capability: 12 mA sink/6 mA source or 6 mA sink/3 mA source.
- Built-in boundary scan (*IEEE*[†]1149.1 JTAG) and TS_ALL testability function to 3-state all I/O pins.
- Enhanced system clock routing for low-skew, highspeed clocks originating on-chip or at any I/O.
- Up to four ExpressCLK inputs allow extremely fast clocking of signals on- and off-chip plus access to internal general clock routing.
- StopCLK feature to glitchlessly stop/start the ExpressCLKs independently by user command. Programmable I/O (PIO) has:
 - Fast-capture input latch and input flip-flop (FF)/ latch for reduced input setup time and zero hold time.
 - Capability to (de)multiplex I/O signals.
 - Fast access to SLIC for decodes and PAL-like functions.
 - Output FF and two-signal function generator to reduce CLK to output propagation delay.
- Fast open-drain drive capability.
- New programmable I/O 3-state FF allows 3-state buffer control signals to be set up a clock cycle early for improved clock to output delays
- * PAL is a trademark of Advanced Micro Devices, Inc.
- *† IEEE* is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

	Device	System Gates [‡]	LUTs	Registers	Max User RAM	User I/Os	Array Size	Process Technology
0	R3L165B	120K—244K	8192	10752	131K	516	32 x 32	0.25 µm/5 LM
0	R3L225B	166K—340K	11552	14820	185K	612	38 x 38	0.25 µm/5 LM

Table 1. Lucent Technologies' ORCA OR3LxxxB Series FPGAs

‡The usable gate counts range from a logic-only gate count to a gate count assuming 30% of the PFUs/SLICs being used as RAMs. The logic-only gate count includes each PFU/SLIC (counted as 108 gates/PFU), including 12 gates per LUT/FF pair (eight per PFU), and 12 gates per SLIC/FF pair (one per PFU). Each of the four PIOs per PIC is counted as 16 gates (three FFs, fast-capture latch, output logic, CLK, and I/O buffers). PFUs used as RAM are counted at four gates per bit, with each PFU capable of implementing a 32 x 4 RAM (or 512 gates) per PFU.

System-Level Features

System-level features reduce glue logic requirements and make a system on a chip possible. These features in the *ORCA* OR3LxxxB include:

- Full PCI Local Bus compliance for all devices in 3.3 V and 5 V PCI systems. Pin-selectable I/O clamping diodes provide 3.3 V and 5 V compliance and 5 V tolerance.
- Dual-use microprocessor interface (MPI) can be used for configuration, readback, device control, and device status, as well as for a general-purpose interface to the FPGA. Glueless interface to *i960** and *PowerPC*[†] processors with user-configurable address space provided.
- Parallel readback of configuration data capability with the built-in microprocessor interface.

- Programmable clock manager (PCM) adjusts clock phase and duty cycle for input clock rates from 5 MHz to 120 MHz. The PCM may be combined with FPGA logic to create complex functions, such as digital phase-locked loops (DPLL), frequency counters, and frequency synthesizers or clock doublers. Two PCMs are provided per device.
- True internal 3-state, bidirectional buses with simple control provided by the SLIC.
- 32 x 4 RAM per PFU, configurable as single- or dualport. Create large, fast RAM/ROM blocks (128 x 8 in only eight PFUs) using the SLIC decoders as bank drivers.
- Full UTOPIA Level III I/O compliance (5.0 ns CLK -> OUT, 2.0 ns setup with 0 ns hold).

* *i960* is a registered trademark of Intel Corporation.

† PowerPC is a registered trademark of International Business Machines, Inc.

Parameter	# PFUs	-7	-8	Unit
16-bit Loadable Up/Down Counter	2	151	176	MHz
16-bit Accumulator	2	151	176	MHz
8 x 8 Parallel Multiplier:				
Multiplier Mode, Unpipelined ¹	11.5	38	46	MHz
ROM Mode, Unpipelined ²	8	93	116	MHz
Multiplier Mode, Pipelined ³	15	129	152	MHz
32 x 16 RAM (synchronous):				
Single-port, 3-state Bus ⁴	4	173	209	MHz
Dual-port ⁵	4	231	277	MHz
128 x 8 RAM (synchronous):				
Single-port, 3-state Bus ⁴	8	151	181	MHz
Dual-port ⁵	8	151	181	MHz
8-bit Address Decode (internal):				
Using Softwired LUTs	0.25	2.30	2.00	ns
Using SLICs ⁶	0	1.29	1.12	ns
32-bit Address Decode (internal):				
Using Softwired LUTs	2	7.97	6.84	ns
Using SLICs ⁷	0	3.75	3.16	ns
36-bit Parity Check (internal)	2	7.97	6.84	ns

Table 2. ORCA Series 3L System Performance

1. Implemented using 8 x 1 multiplier mode (unpipelined), register-to-register, two 8-bit inputs, one 16-bit output.

2. Implemented using two 32 x 12 ROMs and one 12-bit adder, one 8-bit input, one fixed operand, one 16-bit output.

3. Implemented using 8 x 1 multiplier mode (fully pipelined), two 8-bit inputs, one 16-bit output (seven of 15 PFUs contain only pipelining registers).


4. Implemented using 32 x 4 RAM mode with read data on 3-state buffer to bidirectional read/write bus.

5. Implemented using 32 x 4 dual-port RAM mode.

6. Implemented in one partially occupied SLIC with decoded output set up to CE in same PLC.

7. Implemented in five partially occupied SLICs.

Ordering Information

OR3L165B, -7 Speed Grade, 240-pin Power Quad Shrink Flat Package (SQFP2), Commercial Temperature

Table 3. Voltage Options

Device	Voltage
OR3LxxxB	2.5 V internal/3.3 V I/O

Table 4. Temperature Options

Symbol	Description	Temperature
(Blank)	Commercial	0 °C to 70 °C
I	Industrial	–40 °C to +85 °C

Table 5. Package Options

Symbol	Description		
BA	Plastic Ball Grid Array (PBGA)		
BC	Enhanced Ball Grid Array (EBGA)		
BM	Plastic Ball Grid Array, Multilayer (PBGAM1)		
PS	Power Quad Shrink Flat Package (SQFP2)		

Table 6. ORCA OR3LxxxB Series Package Matrix

Devices	208-Pin EIAJ/SQ	240-Pin EIAJ/SQ	352-Pin PBGA	432-Pin PBGA	680-Pin PBGAM
OR3L165B	CI	CI	CI	CI	CI
OR3L225B	—		—	CI	CI

Note: C = commercial, I = industrial.

For additional	information, contact your Microelectronics Group Account Manager or the following:
INTERNET:	http://www.lucent.com/micro, or for FPGA information, http://www.lucent.com/orca
E-MAIL:	docmaster@micro.lucent.com
N. AMERICA:	Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
	1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC	: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
	Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:	Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
	200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:	Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
	Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:	Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
	Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
	FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
	ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. ORCA is a registered trademark of Lucent Technologies Inc.

Copyright © 1999 Lucent Technologies Inc. All Rights Reserved Printed in U.S.A.

November 1999 PN00-012FPGA (Replaces PN99-053FPGA) microelectronics group

Lucent Technologies Bell Labs Innovations