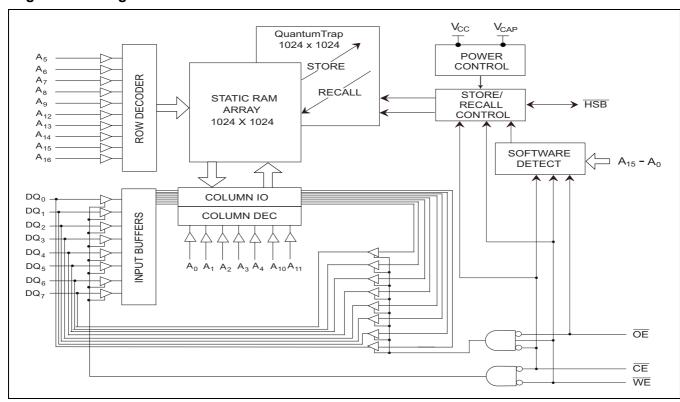
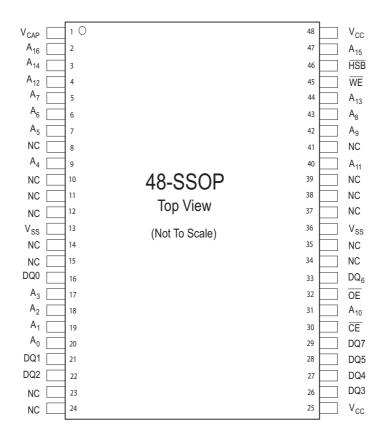


1-Mbit (128K x 8) nvSRAM


Features

- 25 ns, 35 ns, and 45 ns access times
- "Hands-off" automatic STORE on power down with only a small capacitor
- STORE to QuantumTrapTM nonvolatile elements is initiated by software, device pin, or AutostoreTM on power down
- · RECALL to SRAM initiated by software or power up
- · Infinite READ, WRITE, and RECALL cycles
- 10 mA typical I_{CC} at 200 ns cycle time
- 200,000 STORE cycles to quantum trap
- 20-year data retention @ 55°C
- Single 3V operation +20%, -10%
- · Commercial and industrial temperature
- · SOIC and SSOP packages
- · RoHS compliance

Functional Description


The Cypress CY14B101L is a fast static RAM with a nonvolatile element in each memory cell. The embedded nonvolatile elements incorporate QuantumTrap technology producing, the world's most reliable nonvolatile memory. The SRAM provides infinite read and write cycles; while independent, nonvolatile data resides in the highly reliable QuantumTrap cell. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) takes place automatically at power down. On power up, data is restored to the SRAM (the RECALL operation) from the nonvolatile memory. Both the STORE and RECALL operations are also available under software control.

Logic Block Diagram

Pin Configurations

Pin Definitions

Pin Name	IO Type	Description
A ₀ – A ₁₆	Input	Address Inputs used to select one of the 131,072 bytes of the nvSRAM.
DQ0 – DQ7	Input Output	Bidirectional Data IO Lines. Used as input or output lines depending on operation.
WE	Input	Write Enable Input, Active LOW. When selected LOW, enables data on the IO pins to be written to the address location latched by the falling edge of CE.
CE	Input	Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
ŌĒ	Input	Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read cycles. IO pins are tri-stated on deasserting OE high.
V _{SS}	Ground	Ground For The Device. Must be connected to ground of the system.
V _{CC}	Power Supply	Power Supply Inputs To The Device.
HSB	Input Output	Hardware Store Busy (HSB). When low this output indicates a hardware store is in progress. When pulled low external to the chip it initiates a nonvolatile STORE operation. A weak internal pull up resistor keeps this pin HIGH if not connected. (connection optional)
V _{CAP}	Power Supply	Autostore Capacitor . Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile elements.
NC	No Connect	No Connect. Do not connect this pin to the die.

Device Operation

The CY14B101L nvSRAM is made up of two functional components paired in the same physical cell, the SRAM memory cell and the nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Transfer of data can be from the SRAM to the nonvolatile cell (the STORE operation), or from the nonvolatile cell to SRAM (the RECALL operation). This unique architecture allows all cells to be stored and recalled in parallel. During the STORE and RECALL operations SRAM READ and WRITE operations are inhibited. The CY14B101L supports infinite reads and writes just like a typical SRAM. In addition, it provides infinite RECALL operations from the nonvolatile cells and up to 200,000 STORE operations.

SRAM Read

The CY14B101L performs a READ cycle whenever $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low while WE and HSB are high. The address specified on pins A_{0-16} determines which of the 131,072 data bytes will be accessed. When the READ is initiated by an address transition, the outputs will be valid after a delay of t_{AA} (READ cycle 1). If the READ is initiated by $\overline{\text{CE}}$ or $\overline{\text{OE}}$, the outputs will be valid at t_{ACE} or at t_{DOE} , whichever is later (READ cycle 2). The data outputs repeatedly responds to address changes within the t_{AA} access time without the need for transitions on any control input pins. It remains valid until another address change, or until $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is brought high, or $\overline{\text{WE}}$ or $\overline{\text{HSB}}$ is brought low.

SRAM Write

A WRITE cycle is performed whenever \overline{CE} and \overline{WE} are low and HSB is high. The address inputs must be stable before entering the WRITE cycle and must remain stable until either \overline{CE} or \overline{WE} goes high at the end of the cycle.

The data on the common IO pins IO_{0-7} will be written into the memory if the data is valid t_{SD} before the end of a \overline{WE} controlled WRITE or before the end of an \overline{CE} controlled WRITE. Keep the \overline{OE} high during the entire WRITE cycle to avoid data bus contention on common IO lines. If \overline{OE} is left low, internal circuitry turns off the output buffers t_{HZWE} after \overline{WE} goes low.

AutoStore Operation

The CY14B101L stores data to nvSRAM using one of the three storage operations. These three operations are Hardware Store activated by HSB, Software Store activated by an address sequence, and AutoStore on device power down. AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the CY14B101L.

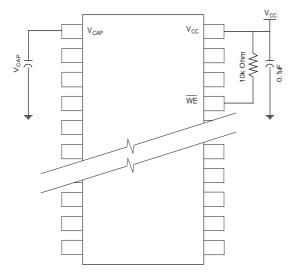

During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge will be used by the chip to perform a single STORE operation. If the voltage on the V_{CC} pin drops below V_{SWITCH} , the part automatically disconnects the V_{CAP} pin from V_{CC} . A STORE operation will be initiated with power provided by the V_{CAP} capacitor.

Figure 1 on page 4 shows the proper connection of the storage capacitor (V_{CAP}) for automatic store operation. Refer to the DC Characteristics table for the size of V_{CAP} . The voltage on the V_{CAP} pin is driven to 5V by a charge pump internal to the chip. A pull up must be placed on \overline{WE} to hold it inactive during power up.

To reduce unnecessary nonvolatile stores, AutoStore, and Hardware Store operations will be ignored unless at least one WRITE operation has taken place since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a WRITE operation has taken place. Monitor the HSB signal by the system to detect if an AutoStore cycle is in progress.

Figure 1. AutoStore Mode

Hardware STORE Operation

The CY14B101L provides the $\overline{\text{HSB}}$ pin for controlling and acknowledging the STORE operations. Use the $\overline{\text{HSB}}$ pin to request a hardware STORE cycle. When the $\overline{\text{HSB}}$ pin is driven low, the CY14B101L conditionally initiates a STORE operation after t_{DELAY}. An actual STORE cycle only begins if a WRITE to the SRAM took place since the last STORE or RECALL cycle. The $\overline{\text{HSB}}$ pin also acts as an open drain driver that is internally driven low to indicate a busy condition while the STORE (initiated by any means) is in progress.

SRAM_READ and WRITE operations that are in progress when HSB is driven low by any means are given time to complete before the STORE operation is initiated. After HSB goes low, the CY14B101L continues SRAM operations for $t_{\mbox{\scriptsize DELAY}}$. During $t_{\mbox{\scriptsize DELAY}}$, multiple SRAM READ operations may take place. If a WRITE is in progress when HSB is pulled low it will be allowed a time, $t_{\mbox{\scriptsize DELAY}}$ to complete. However, any SRAM WRITE cycles requested after HSB goes low will be inhibited until HSB returns high.

During any STORE operation, regardless of <a href="https://how.nc.edu/how.nc.

Hardware RECALL (Power Up)

During power up or after any low power condition ($V_{CC} < V_{SWITCH}$), an internal RECALL request will be latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH} ,

a RECALL cycle will automatically be initiated and takes $t_{\mbox{\scriptsize HRECALL}}$ to complete.

Software STORE

Transfer data from the SRAM to the nonvolatile memory with a software address sequence. The CY14B101L software STORE cycle is initiated by executing sequential CE-controlled READ cycles from six specific address locations in exact order. During the STORE cycle an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. Once a STORE cycle is initiated, further input and output are disabled until the cycle is completed.

Because a sequence of READs from specific addresses is used for STORE initiation, it is important that no other READ or WRITE accesses intervene in the sequence. If there are intervening READ or WRITE accesses, the sequence will be aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following READ sequence must be performed:

- 1. Read Address 0x4E38 Valid READ
- 2. Read Address 0xB1C7 Valid READ
- 3. Read Address 0x83E0 Valid READ
- 4. Read Address 0x7C1F Valid READ
- 5. Read Address 0x703F Valid READ
- 6. Read Address 0x8FC0 Initiate STORE Cycle

The software sequence may be clocked with $\overline{\text{CE}}$ controlled READs or $\overline{\text{OE}}$ controlled READs. Once the sixth address in the sequence has been entered, the STORE cycle commences and the chip will be disabled. It is important that READ cycles and not WRITE cycles be used in the sequence, although it is not necessary that $\overline{\text{OE}}$ be low for the sequence to be valid. After the t_{STORE} cycle time has been fulfilled, the SRAM will again be activated for READ and WRITE operation.

Software RECALL

Transfer the data from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of READ operations in a manner similar to the software STORE initiation. To initiate the RECALL cycle, the following sequence of CE controlled READ operations must be performed:

- 1. Read Address 0x4E38 Valid READ
- 2. Read Address 0xB1C7 Valid READ
- 3. Read Address 0x83E0 Valid READ
- 4. Read Address 0x7C1F Valid READ
- 5. Read Address 0x703F Valid READ
- 6. Read Address 0x4C63 Initiate RECALL Cycle

Internally, RECALL is a two-step procedure. First, the SRAM data is cleared and second, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time the SRAM will once again be ready for READ and WRITE operations. The RECALL operation does not alter the data in the nonvolatile elements.

Table 1. Mode Selection

CE	WE	OE	A15 – A0	Mode	Ю	Power
Н	X	Х	X	Not Selected	Output High-Z	Standby
L	Н	L	Х	Read SRAM	Output Data	Active
L	L	Х	Х	Write SRAM	Input Data	Active
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8B45	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Autostore Disable	Output Data	Active ^[1, 2, 3]
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4B46	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Autostore Enable	Output Data	Active ^[1, 2, 3]
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x8FC0	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile Store	Output Data Output Data Output Data Output Data Output Data Output Data Output High-Z	Active I _{CC2} ^[1, 2, 3]
L	Н	L	0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4C63	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile Recall	Output Data Output Data Output Data Output Data Output Data Output High-Z	Active ^[1, 2, 3]

The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.
 While there are 17 address lines on the CY14B101L, only the lower 16 lines are used to control software modes.
 IO state depends on the state of OE. The IO table shown is based on OE Low.

Preventing AutoStore

Disable the AutoStore function by initiating an AutoStore Disable sequence. A sequence of READ operations is performed in a manner similar to the software STORE initiation. To initiate the AutoStore Disable sequence, the following sequence of CE-controlled READ operations must be performed:

- 1. Read Address 0x4E38 Valid READ
- 2. Read Address 0xB1C7 Valid READ
- Read Address 0x83E0 Valid READ
- 4. Read Address 0x7C1F Valid READ
- 5. Read Address 0x703F Valid READ
- 6. Read Address 0x8B45 AutoStore Disable

Re-enable the AutoStore by initiating an AutoStore Enable sequence. A sequence of READ operations is performed in a manner similar to the software RECALL initiation. To initiate the AutoStore Enable sequence, the following sequence of CE-controlled READ operations must be performed:

- 1. Read Address 0x4E38 Valid READ
- 2. Read Address 0xB1C7 Valid READ
- 3. Read Address 0x83E0 Valid READ
- 4. Read Address 0x7C1F Valid READ
- 5. Read Address 0x703F Valid READ
- 6. Read Address 0x4B46 AutoStore Enable

If the AutoStore function is disabled or re-enabled, a manual STORE operation (Hardware or Software) must be issued to save the AutoStore state through subsequent power down cycles. The part comes from the factory with AutoStore enabled.

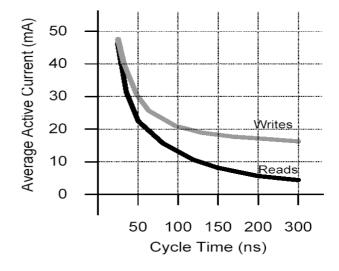
Data Protection

The CY14B101L protects data from corruption during low voltage conditions by inhibiting all externally initiated STORE and WRITE operations. The low voltage condition is detected when $V_{CC} \le V_{SWITCH}$. If the CY14B101L is in a WRITE mode (\overline{CE} and \overline{WE} low) at power up after a RECALL, or after a STORE, the WRITE will be inhibited until a negative transition on \overline{CE} or \overline{WE} is detected.

This protects against inadvertent writes during power up or brownout conditions.

Noise Considerations

The CY14B101L is a high speed memory and so must have a high frequency bypass capacitor of approximately 0.1 μ F


connected between V_{CC} and V_{SS} , using leads and traces that are as short as possible. As with all high speed CMOS ICs, careful routing of power, ground, and signals reduces circuit noise

Low Average Active Power

CMOS technology provides the CY14B101L the benefit of drawing less current when it is cycled at times longer than 50 ns. Figure 2 shows the relationship between I_{CC} and READ/WRITE cycle time. Worst case current consumption is shown for commercial temperature range V_{CC} = 3.6V and chip enable at maximum frequency. Only standby current is drawn when the chip is disabled. The overall average current drawn by the CY14B101L depends on the following items:

- 1. The duty cycle of chip enable.
- 2. The overall cycle rate for accesses.
- 3. The ratio of READs to WRITEs.
- 4. The operating temperature.
- 5. The V_{CC} level.
- 6. IO loading

Figure 2. Current vs. Cycle Time

Maximum Ratings

Package Power Dissipation Capability (T _A = 25°C)	1.0W
Surface Mount Lead Soldering Temperature (three seconds)	+260°C
Output Short Circuit Current [4]	15 mA
Static Discharge Voltage(in accordance with MIL-STD-883, method 3015)	> 2001V
Latch up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	2.7V to 3.6V
Industrial	–40°C to +85°C	2.7V to 3.6V

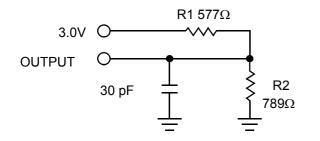
DC Electrical Characteristics

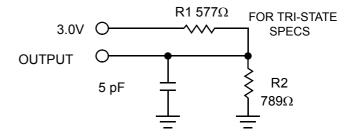
Over the Operating Range (VCC = 2.7V to 3.6V) [5, 6, 7]

Parameter	Description	Test Conditions		Min	Max	Unit
I _{CC1}	Average V _{CC} Current	t_{RC} = 25 ns t_{RC} = 35 ns t_{RC} = 45 ns Dependent on output loading and cycle rate. Values obtained without output loads. t_{OUT} = 0 mA.	Commercial Industrial		65 55 50 55 (t _{RC} = 45 ns)	mA mA mA
I _{CC2}	Average V _{CC} Current during STORE	All inputs do not care, V _{CC} = Max Average current for duration t _{STORE}		6	mA	
I _{CC3}	Average V_{CC} Current at t_{AA} = 200 ns, 3V, 25°C typical	WE > (V _{CC} – 0.2). All other inputs cycling. Dependent on output loading and cycle rate. Values obtained without output loads. I _{OUT} = 0		10	mA	
I _{CC4}	Average V _{CAP} Current during AutoStore Cycle	All inputs do not care, V _{CC} = Max Average current for duration t _{STORE}		3	mA	
I _{SB}	V _{CC} Standby Current	$\overline{\text{WE}}$ > (V _{CC} – 0.2). All others V _{IN} < 0.2V or > (Standby current level after nonvolatile cycle is Inputs are static. f = 0 MHz.		3	mA	
I _{IX}	Input Leakage Current	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$		-1	+1	μΑ
I _{OZ}	Off State Output Leakage Current	V_{CC} = Max, $V_{SS} \le V_{IN} \le V_{CC}$, \overline{CE} or $\overline{OE} > V_{IH}$		-1	+1	μА
V _{IH}	Input HIGH Voltage [7]			2.0	Vcc + 0.3	V
V _{IL}	Input LOW Voltage			Vss-0.5	0.8	V
V _{OH}	Output HIGH Voltage	I _{OUT} = –2 mA		2.4		V
V _{OL}	Output LOW Voltage	I _{OUT} = 4 mA			0.4	V
V _{CAP}	Storage Capacitor	Between V _{CAP} pin and V _{SS} , 5V rated		17	120	μF

Notes

- 4. Outputs shorted for no more than one second. No more than one output shorted at a time.
- 5. Typical conditions for the active current shown on the front page of the data sheet are average values at 25°C (room temperature), and V_{CC} = 3V. Not 100% tested.
- 6. The HSB pin has I_{OUT} = -10 μ A for V_{OH} of 2.4 V, this parameter is characterized but not tested.
- 7. V_{IH} changes by 100 mV when $V_{CC} > 3.5V$.


Capacitance [7]


Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz, $V_{CC} = 0$ to 3.0 V	7	pF
C _{OUT}	Output Capacitance		7	pF

Thermal Resistance [7]

Parameter	Description	Description Test Conditions			
Θ_{JA}	Thermal Resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, in accordance with	TBD	TBD	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (junction to case)	EIA/JESD51.	TBD	TBD	°C/W

AC Test Loads

AC Test Conditions

Input Pulse Levels	.0 V to 3 V
Input Rise and Fall Times (10% – 90%)	<u>≤</u> 5 ns
Input and Output Timing Reference Levels	1.5 V

Note

^{8.} These parameters are guaranteed but not tested.

AC Switching Characteristics

Para	meter		25 ns	part	35 ns part		45 ns part		
Cypress Parameter	Alt. Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
SRAM Read	Cycle								
t _{ACE}	t _{ACS}	Chip Enable Access Time		25		35		45	ns
t _{RC} [9]	t _{RC}	Read Cycle Time	25		35		45		ns
t _{AA} ^[10]	t _{AA}	Address Access Time		25		35		45	ns
t _{DOE}	t _{OE}	Output Enable to Data Valid		12		15		20	ns
t _{OHA}	t _{OH}	Output Hold After Address Change	3		3		3		ns
t _{LZCE} [11]	t_{LZ}	Chip Enable to Output Active	3		3		3		ns
t _{HZCE} [11]	t_{HZ}	Chip Disable to Output Inactive		10		13		15	ns
t _{LZOE} [11]	t _{OLZ}	Output Enable to Output Active	0		0		0		ns
t _{HZOE} [11]	t _{OHZ}	Output Disable to Output Inactive		10		13		15	ns
t _{PU} ^[7]	t _{PA}	Chip Enable to Power Active	0		0		0		ns
t _{PD} ^[7]	t _{PS}	Chip Disable to Power Standby		25		35		45	ns
SRAM Write	Cycle								
t _{WC}	t _{WC}	Write Cycle Time	25		35		45		ns
t _{PWE}	t _{WP}	Write Pulse Width	20		25		30		ns
t _{SCE}	t _{CW}	Chip Enable to End of Write	20		25		30		ns
t _{SD}	t _{DW}	Data SetUp to End of Write	10		12		15		ns
t _{HD}	t _{DH}	Data Hold After End of Write	0		0		0		ns
t _{AW}	t _{AW}	Address SetUp to End of Write	20		25		30		ns
t _{SA}	t _{AS}	Address SetUp to Start of Write	0		0		0		ns
t _{HA}	t _{WR}	Address Hold After End of Write	0		0		0		ns
t _{HZWE} [11, 12]	t_{WZ}	Write Enable to Output Disable		10		13		15	ns
t _{LZWE} [11]	t _{OW}	Output Active after End of Write	3		3		3		ns

^{9.} WE must be HIGH during SRAM read cycles.

10. Device is continuously selected with CE and OE low.

^{11.} Measured ± 200 mV from steady state output voltage.

12. If WE is low when CE goes low, the outputs remain in the high impedance state.

AutoStore/Power Up RECALL

Parameter	Description	CY14	\$B101L	Unit
	Description	Min	Max	Oille
	Power Up RECALL Duration		20	ms
t _{STORE} [14, 15]	STORE Cycle Duration		12.5	ms
V _{SWITCH}	Low Voltage Trigger Level		2.65	V
t _{VCCRISE}	VCC Rise Time	150		μs

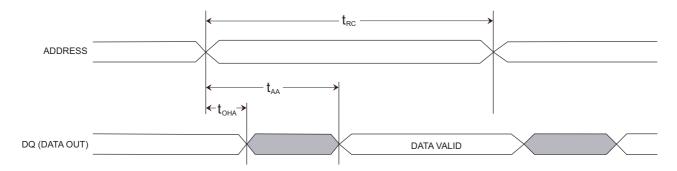
Software Controlled STORE/RECALL Cycle [16, 17, 18]

Parameter	Description	25 ns part		35 ns part		45 ns part		Unit
		Min	Max	Min	Max	Min	Max	Unit
t _{RC}	STORE/RECALL Initiation Cycle Time	25		35		45		ns
t _{AS}	Address SetUp Time	0		0		0		ns
t _{CW}	Clock Pulse Width	20		25		30		ns
t _{GHAX}	Address Hold Time	1		1		1		ns
t _{RECALL}	RECALL Duration		50		50		50	μS
t _{SS} ^[19, 20]	Soft Sequence Processing Time		70		70		70	μS

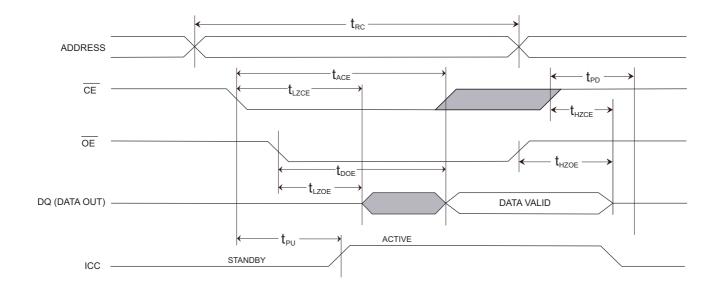
Hardware STORE Cycle

Parameter	Description	CY14	3101L	Unit
Parameter	Description	Min	Max	Offic
t _{DELAY} [21]	Time allowed to complete SRAM Cycle	1	70	μs
t_{HLHX}	Hardware STORE Pulse Width	15		ns

Notes


- 13. t_{HRECALL} starts from the time V_{CC} rises above V_{SWITCH} .
- 14. If an SRAM write has not taken place since the last nonvolatile cycle, no STORE takes place.
- 15. Industrial grade devices require 15 ms max.
- 16. The software sequence is clocked with $\overline{\text{CE}}$ controlled or $\overline{\text{OE}}$ controlled READs.
- 17. The six consecutive addresses must be read in the order listed in the Table 1, "Mode Selection," on page 5. WE must be HIGH during all six consecutive cycles.
- 18. A 600Ω resistor must be connected to $\overline{\text{HSB}}$ to use the software command.
- 19. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register the command.
- 20. Commands like STORE and RECALL lock out IO until operation is complete, which further increases this time. See the specific command.
- 21. READ and WRITE cycles in progress before $\overline{\text{HSB}}$ are given this amount of time to complete.

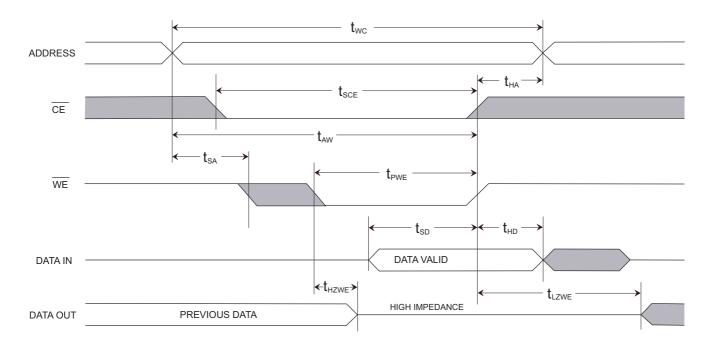
Document #: 001-06400 Rev. *E Page 10 of 18



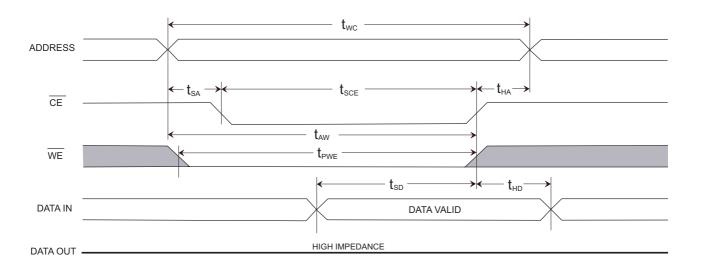
Switching Waveforms

SRAM Read Cycle 1(address controlled) $^{[9,\ 10,\ 22]}$

SRAM Read Cycle 2 (\overline{CE} and \overline{OE} controlled) $^{[9,\ 22]}$


Note

^{22.} HSB must remain HIGH during READ and WRITE cycles.



Switching Waveforms (continued)

SRAM Write Cycle 1($\overline{\text{WE}}$ controlled) [22, 23]

SRAM Write Cycle 2 (CE controlled)

Note

23. $\overline{\text{CE}}$ or $\overline{\text{WE}}$ must be \geq V_{IH} during address transitions.

Switching Waveforms (continued)

Figure 3. AutoStore/Power Up RECALL

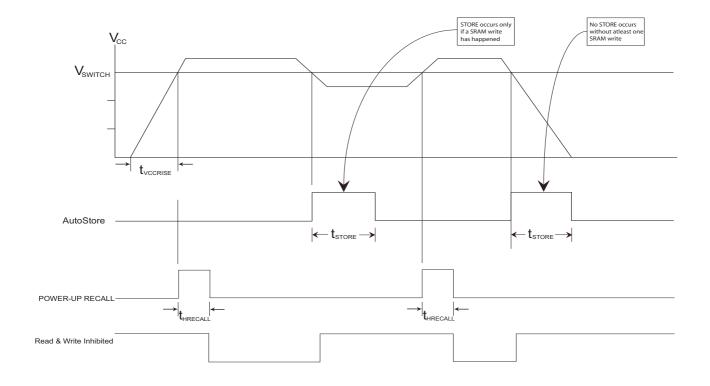
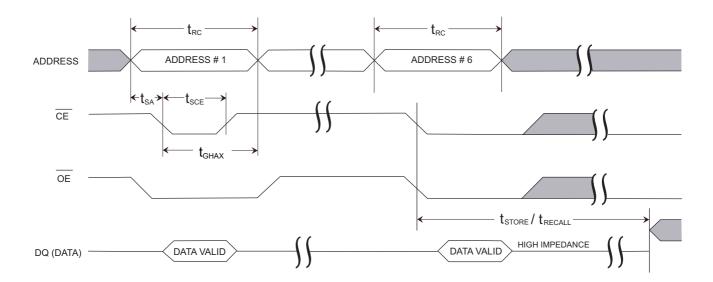



Figure 4. CE-Controlled Software STORE/RECALL Cycle [17]

Switching Waveforms (continued)

Figure 5. OE-Controlled Software STORE/RECALL Cycle [17]

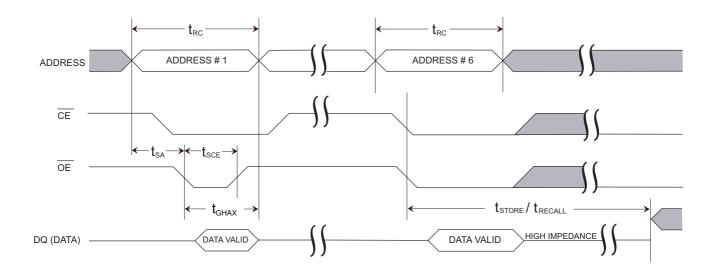


Figure 6. Hardware STORE Cycle

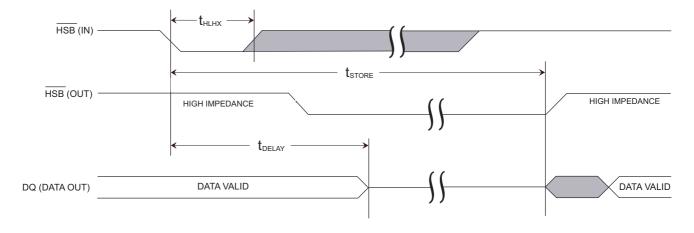
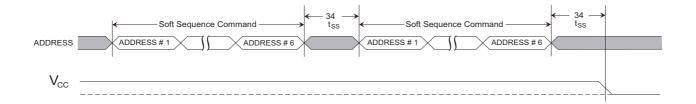
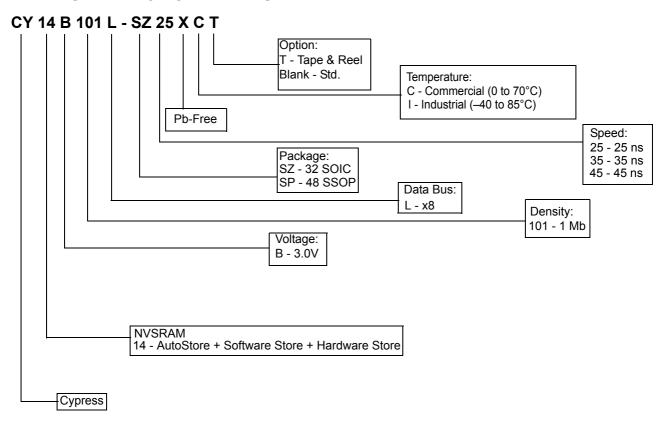
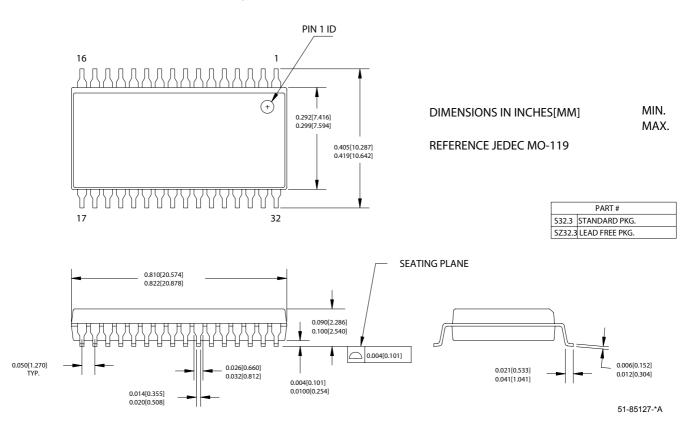




Figure 7. Soft Sequence Processing [19, 20]

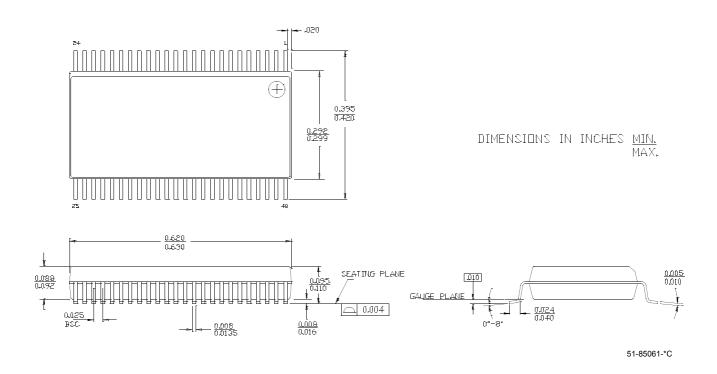
PART NUMBERING NOMENCLATURE

Ordering Information


All of the following mentioned parts are of "Pb-free" type. Shaded areas contain advance information. Contact your local Cypress sales representative for availability of these parts.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
25	CY14B101L-SZ25XCT	51-85127	32-pin SOIC	Commercial
	CY14B101L-SP25XCT	51-85061	48-pin SSOP	
35	CY14B101L-SZ35XCT	51-85127	32-pin SOIC	Commercial
	CY14B101L-SP35XCT	51-85061	48-pin SSOP	
45	CY14B101L-SZ45XCT	51-85127	32-pin SOIC	Commercial
	CY14B101L-SP45XCT	51-85061	48-pin SSOP	
45	CY14B101L-SZ45XIT	51-85127	32-pin SOIC	Industrial
	CY14B101L-SP45XIT	51-85061	48-pin SSOP	
	CY14B101L-SZ45XI	51-85127	32-pin SOIC	
	CY14B101L-SP45XI	51-85061	48-pin SSOP	

Package Diagrams


Figure 8. 32-pin (300-Mil) SOIC, 51-85127

Package Diagrams (continued)

Figure 9. 48-Pin Shrunk Small Outline Package, 51-85061

AutoStore and QuantumTrap are registered trademarks of Simtek Corporation. All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	425138	See ECN	TUP	New Data Sheet
*A	437321	See ECN	TUP	Show Data Sheet on External Web
*B	471966	See ECN	TUP	Changed I_{CC3} from 5 mA to 10 mA Changed ISB from 2 mA to 3 mA Changed $V_{IH(min)}$ from 2.2V to 2.0V Changed t_{RECALL} from 40 μs to 50 μs Changed Endurance from 1 Million Cycles to 500K Cycles Changed Data Retention from 100 Years to 20 Years Added Soft Sequence Processing Time Waveform Updated Part Numbering Nomenclature and Ordering Information
*C	503272	See ECN	PCI	Changed from Advance to Preliminary Changed the term "Unlimited" to "Infinite" Changed Endurance from 500K Cycles to 200K Cycles Added temperature spec to Data Retention - 20 years at 55°C Removed Icc ₁ values from the DC table for 25 ns and 35 ns industrial grade Changed Icc ₂ value from 3 mA to 6 mA in the DC table Added a footnote on V _{IH} Changed V _{SWITCH(min)} from 2.55V to 2.45V Added footnote 17 related to using the software command Updated Part Nomenclature Table and Ordering Information Table
*D	597002	See ECN	TUP	Removed $V_{SWITCH(min)}$ spec from the AutoStore/Power Up RECALL table Changed t_{GLAX} spec from 20 ns to 1 ns Added $t_{DELAY(max)}$ spec of 70 μs in the hardware STORE cycle table Removed t_{HLBL} specification Changed t_{SS} specification form 70 μs (min) to 70 μs (max) Changed $V_{CAP(max)}$ from 57 μF to 120 μF
*E	688776	See ECN	VKN	Added footnote related to HSB Changed t _{GLAX} to t _{GHAX}