

CAT521

Configured Digitally Programmable Potentiometer (DPP™): Programmable Voltage Applications

FEATURES

- 8-bit DPP configured as a programmable voltage source in DAC-like applications
- Buffered wiper output
- Non-volatile NVRAM memory wiper storage
- Output voltage range includes both supply rails
- 1 LSB accuracy, high resolution
- Serial Microwire-like interface
- Single supply operation: 2.7V 5.5V
- Setting read-back without effecting outputs

DESCRIPTION

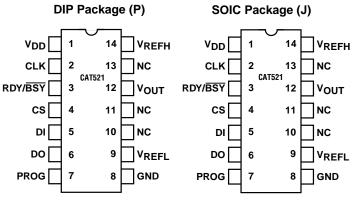
The CAT521 is a 8-bit digitally-programmable potentiometer (DPP[™]) configured for programmable voltage and DAC-like applications. Intended for final calibration of products such as camcorders, fax machines and cellular telephones on automated high volume production lines, it is also well suited for self-calibrating systems and for applications where equipment which requires periodic adjustment is either difficult to access or in a hazardous environment.

The programmable DPP has an output voltage range which includes both supply rails. The wiper is buffered by a rail to rail op amp. The wiper setting, stored in non-volatile NVRAM memory, is not lost when the device is powered down and is automatically reinstated when power is returned. The wiper can be dithered to test new output values without effecting the stored

APPLICATIONS

- Automated product calibration
- Remote control adjustment of equipment
- Offset, gain and zero adjustments in self-calibrating and adaptive control systems
- Tamper-proof calibrations
- DAC (with memory) substitute

settings and stored settings can be read back without disturbing the DPP's output.


The CAT521 is controlled with a simple 3-wire, Microwirelike serial interface. A Chip Select pin allows several devices to share a common serial interface. Communication back to the host controller is via a single serial data line thanks to the CAT521 Tri-Stated Data Output pin. A RDY/BSY output working in concert with an internal low voltage detector signals proper operation of the non-volatile NVRAM memory Erase/Write cycle.

The CAT521 is available in 0°C to 70°C commercial and -40°C to 85°C industrial operating temperature ranges. Both 14-pin plastic DIP and surface mount packages are available.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage*
V _{DD} to GND0.5V to +7V
Inputs
CLK to GND0.5V to V _{DD} +0.5V
CS to GND0.5V to V _{DD} +0.5V
DI to GND0.5V to V _{DD} +0.5V
RDY/BSY to GND0.5V to V _{DD} +0.5V
PROG to GND0.5V to V _{DD} +0.5V
$V_{REF}H$ to GND0.5V to V_{DD} +0.5V
V _{REF} L to GND0.5V to V _{DD} +0.5V
Outputs
D_0 to GND0.5V to V_{DD} +0.5V
V_{OUT} 1– 4 to GND0.5V to V_{DD} +0.5V

Operating Ambient Temperature

Commercial ('C' or Blank suffix) .	0°C to +70°C
Industrial ('I' suffix)	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Method
V _{ZAP} ⁽¹⁾	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	100		mA	JEDEC Standard 17

NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.

2. Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V.

POWER SUPPLY

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD1}	Supply Current (Read)	Normal Operating	_	400	600	μA
I _{DD2}	Supply Current (Write)	Programming, $V_{DD} = 5V$	—	1600	2500	μA
		$V_{DD} = 3V$	—	1000	1600	μA
V _{DD}	Operating Voltage Range		2.7	_	5.5	V

LOGIC INPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Іін	Input Leakage Current	$V_{IN} = V_{DD}$			10	μA
lı∟	Input Leakage Current	$V_{IN} = 0V$		—	-10	μA
Vін	High Level Input Voltage		2	—	Vdd	V
VIL	Low Level Input Voltage		0	—	0.8	V

LOGIC OUTPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vон	High Level Output Voltage	I _{OH} = -40μA	V _{DD} -0.3	_		V
VIL	Low Level Output Voltage	$I_{OL} = 1 \text{ mA}, V_{DD} = +5V$		—	0.4	V
		$I_{OL} = 0.4 \text{ mA}, V_{DD} = +3V$			0.4	V

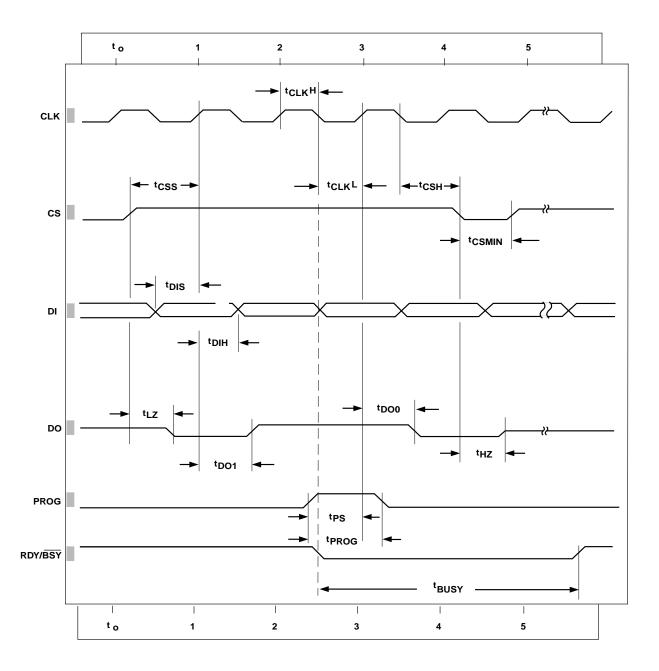
POTENTIOMETER CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance			28		kΩ
	R _{POT} to R _{POT} Match			<u>+</u> 0.5	<u>+</u> 1	%
	Pot Resistance Tolerance				<u>+</u> 15	%
	Voltage on V _{REFH} pin		2.7		V _{DD}	V
	Voltage on V _{REFL} pin		OV		V _{DD} - 2.7	V
	Resolution			0.4		%
INL	Integral Linearity Error			0.5	1	LSB
DNL	Differential Linearity Error			0.25	0.5	LSB
R _{OUT}	Buffer Output Resistance				10	Ω
I _{OUT}	Buffer Output Current				3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC					ppm/°C
R _{ISO}	Isolation Resistance					Ω
V _N	Noise					nV/√Hz
C _H /C _L	Potentiometer Capacitances			8/8		pF
fc	Frequency Response	Passive Attenuator				MHz

AC ELECTRICAL CHARACTERISTICS:

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital					I	1
t _{CSMIN}	Minimum CS Low Time		150		_	ns
tcss	CS Setup Time		100	_	—	ns
t _{CSH}	CS Hold Time		0	_	—	ns
t _{DIS}	DI Setup Time	CL=100pF,	50	_	_	ns
t _{DIH}	DI Hold Time	see note 1	50		_	ns
t _{DO1}	Output Delay to 1		—	—	150	ns
t _{DO0}	Output Delay to 0		—	_	150	ns
t _{HZ}	Output Delay to High-Z			400	_	ns
t _{LZ}	Output Delay to Low-Z			400	—	ns
t _{BUSY}	Erase/Write Cycle Time			4	5	ms
t _{PS}	PROG Setup Time		150	_	_	ns
t _{PROG}	Minimum Pulse Width		700		_	ns
t _{CLK} H	Minimum CLK High Time		500		_	ns
t _{CLK} L	Minimum CLK Low Time		300	_	_	ns
f _C	Clock Frequency		DC	_	1	MHz
Analog	•					

t _{DS}	DPP Settling Time to 1 LSB	C_{LOAD} = 10 pF, V_{DD} = +5V	_	3	10	μs
		$C_{LOAD} = 10 \text{ pF}, V_{DD} = +3V$		6	10	μs

NOTES: 1. All timing measurements are defined at the point of signal crossing V_{DD} / 2.

2. These parameters are periodically sampled and are not 100% tested.

A. C. TIMING DIAGRAM

PIN DESCRIPTION

Pin	Name	Function
1	V _{DD}	Power supply positive
2	CLK	Clock input pin
3	RDY/BSY	Ready/Busy output
4	CS	Chip select
5	DI	Serial data input pin
6	DO	Serial data output pin
7	PROG	EEPROM Programming Enable Input
8	GND	Power supply ground
9	V _{REFL}	Minimum DAC output voltage
10	NC	No Connect
11	NC	No Connect
12	Vout	DPP output
13	NC	No Connect
14	V _{REFH}	Maximum DPP 1 output voltage

DPP addressing is as follows:

DPP OUTPUT	A0	A1
V _{OUT}	1	0

DEVICE OPERATION

The CAT521 is a single 8-bit configured digitally programmable potentiometer (DPP^{TM}) whose output can be programmed to any one of 256 individual voltage steps. Once programmed, the output setting is retained in non-volatile memory and will not be lost when power is removed from the chip. Upon power up the DPP returns to the setting stored in non-volatile memory. The DPP can be written to and read from without effecting the output voltage during the read or write cycle. The output can also be adjusted without altering the stored output setting, which is useful for testing new output settings before storing them in memory.

DIGITAL INTERFACE

The CAT521 employs a 3 wire, Microwire-like serial control interface consisting of Clock (CLK), Chip Select (CS) and Data In (DI) inputs. For all operations, address and data are shifted in LSB first. In addition, all digital data must be preceded by a logic "1" as a start bit. The DPP address and data are clocked into the DI pin on the clock's rising edge. When sending multiple blocks of information a minimum of two clock cycles is required between the last block sent and the next start bit.

Multiple devices may share a common input data line by selectively activating the CS control of the desired IC. Data Outputs (DO) can also share a common line because the DO pin is Tri-Stated and returns to a high impedance when not in use.

CHIP SELECT

Chip Select (CS) enables and disables the CAT521's read and write operations. When CS is high data may be read to or from the chip, and the Data Output (DO) pin is active. Data loaded into the DPP control register will remain in effect until CS goes low. Bringing CS to a logic low returns all DPP outputs to the settings stored in non-volatile memory and switches DO to its high impedance Tri-State mode.

Because CS functions like a reset the CS pin has been desensitized with a 30 ns to 90 ns filter circuit to prevent noise spikes from causing unwanted resets and the loss of volatile data.

CLOCK

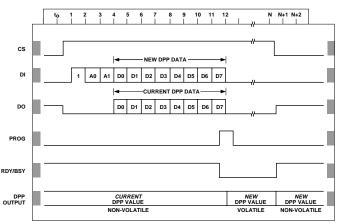
The CAT521 clock controls both data flow in and out of the device and non-volatile memory cell programming. Serial data is shifted into the DI pin and out of the DO pin on the clock's rising edge. While it is not necessary for the clock to be running between data transfers, the clock must be operating in order to write to non-volatile memory, even though the data being saved may already be resident in the DPP wiper control register.

No clock is necessary upon system power-up. The CAT521 internal power-on reset circuitry loads data from non-volatile memory to the DPP without using the external clock.

As data transfers are edge triggered clean clock transitions are necessary to avoid falsely clocking data into the control register. Standard CMOS and TTL logic families work well in this regard and it is recommended that any mechanical switches used for breadboarding or device evaluation purposes be debounced by a flip-flop or other suitable debouncing circuit.

VREF

 V_{REF} , the voltage applied between pins $V_{REFH} \& V_{REFL}$, sets the DPP's Zero to Full Scale output range where $V_{REFL} = Zero$ and $V_{REFH} = Full Scale$. V_{REF} can span the full power supply range or just a fraction of it. In typical applications $V_{REFH} \& V_{REFL}$ are connected across the power supply rails. When using less than the full supply voltage be mindfull of the limits placed on V_{REFH} and V_{REFL} as specified in the References section of DC Electrical Characteristics.


READY/BUSY

When saving data to non-volatile memory, the Ready/ Busy ouput (RDY/BSY) signals the start and duration of the non-volatile erase/write cycle. Upon receiving a command to store data (PROG goes high) RDY/BSY goes low and remains low until the programming cycle is complete. During this time the CAT521 will ignore any data appearing at DI and no data will be output on DO.

RDY/BSY is internally ANDed with a low voltage detector circuit monitoring V_{DD}. If V_{DD} is below the minimum value required for non-volatile programming, RDY/BSY will remain high following the program command indicating a failure to record the desired data in non-volatile memory.

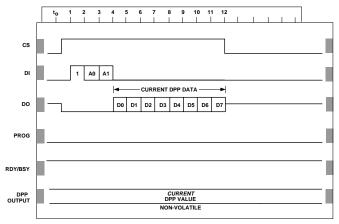
DATA OUTPUT

Data is output serially by the CAT521, LSB first, via the Data Out (DO) pin following the reception of a start bit and two address bits by the Data Input (DI). DO becomes active whenever CS goes high and resumes its high impedance Tri-State mode when CS returns low. Tri-Stating the DO pin allows several 521s to share a

Figure 1. Writing to Memory

single serial data line and simplifies interfacing multiple 521s to a microprocessor.

WRITING TO MEMORY


Programming the CAT521's non-volatile memory is accomplished through the control signals: Chip Select (CS) and Program (PROG). With CS high, a start bit followed by a two bit DPP address and eight data bits are clocked into the DPP wiper control register via the DI pin. Data enters on the clock's rising edge. The DPP output changes to its new setting on the clock cycle following D7, the last data bit.

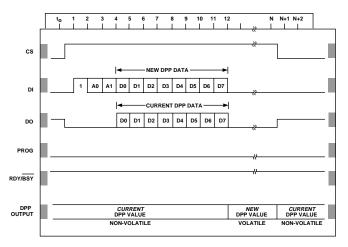
Programming is accomplished by bringing PROG high sometime after the start bit and at least 150 ns prior to the rising edge of the clock cycle immediately following the D7 bit. Two clock cycles after the D7 bit the DPP wiper control register will be ready to receive the next set of address and data bits. The clock must be kept running throughout the programming cycle. Internal control circuitry takes care of generating and ramping up the programming voltage for data transfer to the non-volatile memory cells. The CAT521 non-volatile memory cells will endure over 1,000,000 write cycles and will retain data for a minimum of 100 years without being refreshed.

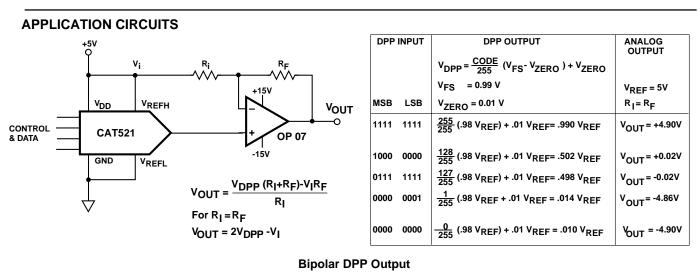
READING DATA

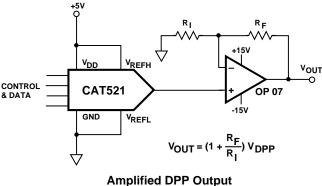
Each time data is transferred into the DPP wiper control register currently held data is shifted out via the D0 pin, thus in every data transaction a read cycle occurs. Note, however, that the reading process is destructive. Data must be removed from the register in order to be read. Figure 2 depicts a Read Only cycle in which no change occurs in the DPP's output. This feature allows μ Ps to poll DPPs for their current setting without disturbing the output voltage but it assumes that the setting being read is also stored in non-volatile memory so that it can be restored at the end of the read cycle. In Figure 2 CS returns low before the 13th clock cycle completes. In doing so the non-volatile memory's setting is reloaded into the DPP wiper control register. Since this value is

Figure 2. Reading from Memory

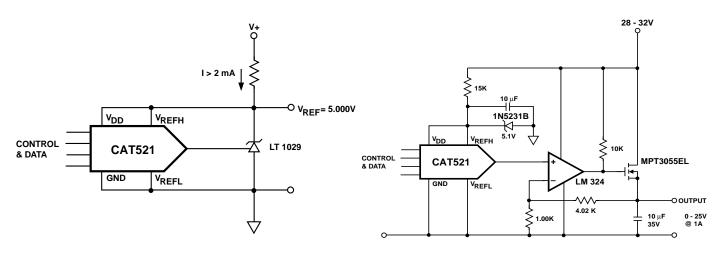
the same as that which had been there previously no change in the DPP's output is noticed. Had the value held in the control register been different from that stored in non-volatile memory then *a change would occur* at the read cycle's conclusion.

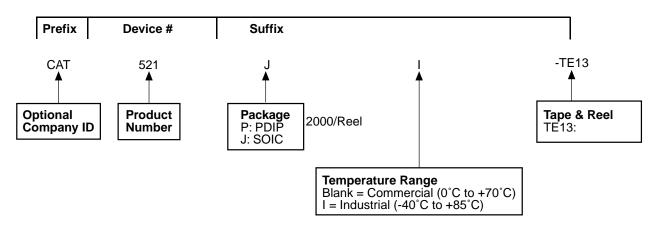

TEMPORARILY CHANGE OUTPUT


The CAT521 allows temporary changes in the DPP's output to be made without disturbing the settings retained in non-volatile memory. This feature is particularly useful when testing for a new output setting and allows for user adjustment of preset or default values without losing the original factory settings.


Figure 3 shows the control and data signals needed to effect a temporary output change. DPP settings may be changed as many times as required. The temporary setting remains in effect long as CS remains high. When CS returns low the DPP will return to the output value stored in non-volatile memory.

When it is desired to save a new setting acquired using this feature, the new value must be reloaded into the DPP wiper control register prior to programming. This is because the CAT521's internal control circuitry discards from the programming register the new data two clock cycles after receiving it if no PROG signal is received.


Figure 3. Temporary Change in Output


APPLICATION CIRCUITS (Cont.)

Digitally Trimmed Voltage Reference

Digitally Controlled Voltage Reference

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT521JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2003Revison:CIssue date:3/22/02Type:Final

CAT522

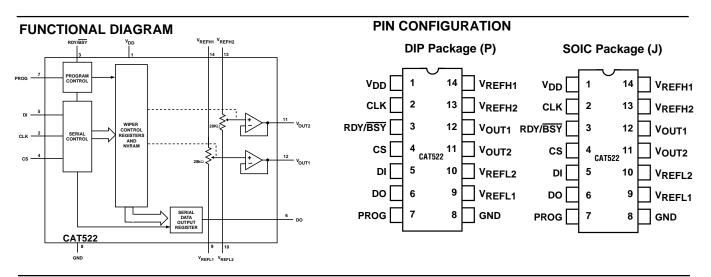
Configured Digitally Programmable Potentiometer (DPP[™]): Programmable Voltage Applications

FEATURES

- Two 8-bit DPPs configured as programmable voltage sources in DAC-like applications
- Independent reference inputs
- Non-volatile NVRAM memory wiper storage
- Output voltage range includes both supply rails
- 2 independently addressable buffered output wipers
- 1 LSB accuracy, high resolution
- Serial Microwire-like interface
- Single supply operation: 2.7V 5.5V
- Setting read-back without effecting outputs

APPLICATIONS

- Automated product calibration.
- Remote control adjustment of equipment
- Offset, gain and zero adjustments in selfcalibrating and adaptive control systems.
- Tamper-proof calibrations.
- DAC (with memory) substitute.


DESCRIPTION

The CAT522 is a dual, 8-bit digitally-programmable potentiometer (DPP[™]) configured for programmable voltage and DAC-like applications. Intended for final calibration of products such as camcorders, fax machines and cellular telephones on automated high volume production lines, it is also well suited for self-calibrating systems and for applications where equipment which requires periodic adjustment is either difficult to access or in a hazardous environment.

The CAT522 offers two independently programmable DPPs each having its own reference inputs and each capable of rail to rail output swing. The wipers are buffered by rail to rail opamps. Wiper settings, stored in non-volatile NVRAM memory, are not lost when the device is powered down and are automatically reinstated when power is returned. Each wiper can be dithered to test new output values without effecting the stored settings and stored settings can be read back without disturbing the DPP's output.

The CAT522 is controlled with a simple 3-wire, microwirelike serial interface. A Chip Select pin allows several devices to share a common serial interface. Communication back to the host controller is via a single serial data line thanks to the CAT522 Tri-Stated Data Output pin. A RDY/BSY output working in concert with an internal low voltage detector signals proper operation of the non-volatile NVRAM memory Erase/Write cycle.

The CAT522 is available in the 0°C to 70°C commercial and -40°C to 85°C industrial operating temperature ranges. Both 14-pin plastic DIP and surface mount packages are available.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage*	
V _{DD} to GND	0.5V to +7V
Inputs	
CLK to GND	-0.5V to V_{DD} +0.5V
CS to GND	-0.5V to V_{DD} +0.5V
DI to GND	-0.5V to V_{DD} +0.5V
RDY/BSY to GND	-0.5V to V_{DD} +0.5V
PROG to GND	-0.5V to V_{DD} +0.5V
V _{REF} H to GND	-0.5V to V_{DD} +0.5V
V _{REF} L to GND	-0.5V to V_{DD} +0.5V
Outputs	
D ₀ to GND	-0.5V to V _{DD} +0.5V
V _{OUT} 1– 4 to GND	-0.5V to V_{DD} +0.5V

Operating Ambient	Temperature
--------------------------	-------------

Commercial ('C' or Blank suffix) .	0°C to +70°C
Industrial ('I' suffix)	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Method
VZAP ⁽¹⁾	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	100		mA	JEDEC Standard 17

NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.

2. Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V.

POWER SUPPLY

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD1}	Supply Current (Read)	Normal Operating	_	400	600	μA
I _{DD2}	Supply Current (Write)	Programming, $V_{DD} = 5V$	_	1600	2500	μA
		$V_{DD} = 3V$	_	1000	1600	μA
V _{DD}	Operating Voltage Range		2.7		5.5	V

LOGIC INPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Іін	Input Leakage Current	$V_{IN} = V_{DD}$	_		10	μΑ
lı∟	Input Leakage Current	$V_{IN} = 0V$			-10	μΑ
Vih	High Level Input Voltage		2		Vdd	V
VIL	Low Level Input Voltage		0	_	0.8	V

LOGIC OUTPUTS

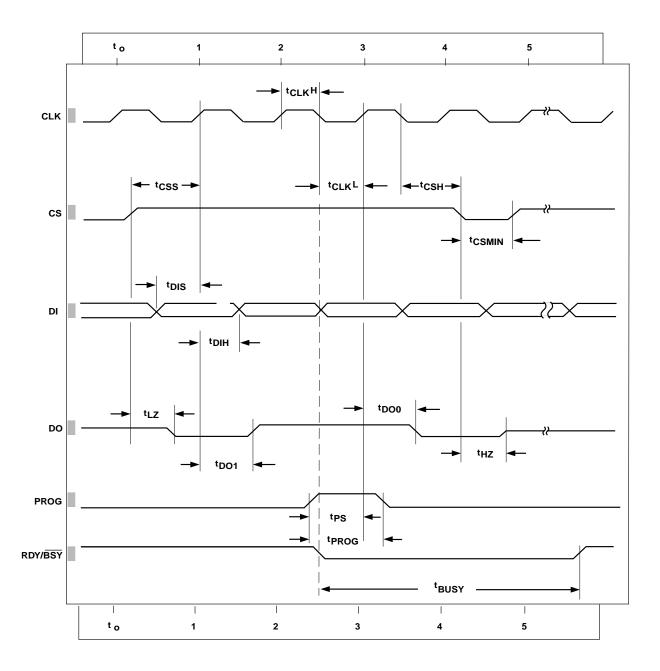
Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OH}	High Level Output Voltage	I _{OH} = -40μA	V _{DD} -0.3	_	_	V
VIL	Low Level Output Voltage	$I_{OL} = 1 \text{ mA}, V_{DD} = +5V$		—	0.4	V
		$I_{OL} = 0.4 \text{ mA}, V_{DD} = +3V$		_	0.4	V

POTENTIOMETER CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = $V_{DD},\,V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance			28		kΩ
	R _{POT} to R _{POT} Match		_	<u>+</u> 0.5	<u>+</u> 1	%
	Pot Resistance Tolerance				<u>+</u> 15	%
	Voltage on V _{REFH} pin		2.7		V _{DD}	V
	Voltage on V _{REFL} pin		OV		V _{DD} - 2.7	V
	Resolution			0.4		%
INL	Integral Linearity Error			0.5	1	LSB
DNL	Differential Linearity Error			0.25	0.5	LSB
R _{OUT}	Buffer Output Resistance				10	Ω
I _{OUT}	Buffer Output Current				3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC					ppm/°C
R _{ISO}	Isolation Resistance					Ω
V _N	Noise					nV/√Hz
C _H /C _L	Potentiometer Capacitances			8/8		pF
fc	Frequency Response	Passive Attenuator				MHz

AC ELECTRICAL CHARACTERISTICS:


 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital						
t _{CSMIN}	Minimum CS Low Time		150		—	ns
t _{CSS}	CS Setup Time		100	_	_	ns
t _{CSH}	CS Hold Time		0	_	_	ns
t _{DIS}	DI Setup Time	C _L =100pF,	50		_	ns
t _{DIH}	DI Hold Time	see note 1	50	_	_	ns
t _{DO1}	Output Delay to 1		_		150	ns
t _{DO0}	Output Delay to 0		_	—	150	ns
t _{HZ}	Output Delay to High-Z		_	400	—	ns
t _{LZ}	Output Delay to Low-Z		_	400	—	ns
t _{BUSY}	Erase/Write Cycle Time		_	4	5	ms
t _{PS}	PROG Setup Time		150	_	—	ns
t _{PROG}	Minimum Pulse Width		700	_	—	ns
t _{CLK} H	Minimum CLK High Time		500	_	—	ns
t _{CLK} L	Minimum CLK Low Time		300	_	—	ns
f _C	Clock Frequency		DC	—	1	MHz
Analog						
t _{DS}	DPP Settling Time to 1 LSB	C _{LOAD} = 10 pF, V _{DD} = +5V	_	3	10	μs
		$C_{LOAD} = 10 \text{ pF}, V_{DD} = +3V$		6	10	μs

NOTES: 1. All timing measurements are defined at the point of signal crossing V_{DD} / 2.

2. These parameters are periodically sampled and are not 100% tested.

A. C. TIMING DIAGRAM

4

PIN DESCRIPTION

Pin	Name	Function
1	V _{DD}	Power supply positive
2	CLK	Clock input pin
3	RDY/BSY	Ready/Busy output
4	CS	Chip select
5	DI	Serial data input pin
6	DO	Serial data output pin
7	PROG	EEPROM Programming Enable Input
8	GND	Power supply ground
9	V _{REFL1}	Minimum DPP 1 output voltage
10	V _{REFL2}	Minimum DPP 2 output voltage
11	V _{OUT2}	DPP 2 output
12	V _{OUT1}	DPP 1 output
13	V _{REFH2}	Maximum DPP 2 output voltage
14	V _{REFH1}	Maximum DPP 1 output voltage

DPP addressing is as follows:

DPP OUTPUT	A0	A1
V _{OUT1}	0	1
V _{OUT2}	1	1

DEVICE OPERATION

The CAT522 is a dual 8-bit configured digitally programmable potentiometer (DPP) whose outputs can be programmed to any one of 256 individual voltage steps. Once programmed, these output settings are retained in non-volatile memory and will not be lost when power is removed from the chip. Upon power up the DPPs return to the settings stored in non-volatile memory. Each DPP can be written to and read from independently without effecting the output voltage during the read or write cycle. Each output setting, which is useful for testing new output settings before storing them in memory.

DIGITAL INTERFACE

The CAT522 employs a 3 wire serial, Microwire-like control interface consisting of Clock (CLK), Chip Select (CS) and Data In (DI) inputs. For all operations, address and data are shifted in LSB first. In addition, all digital data must be preceded by a logic "1" as a start bit. The DPP address and data are clocked into the DI pin on the clock's rising edge. When sending multiple blocks of information a minimum of two clock cycles is required between the last block sent and the next start bit.

Multiple devices may share a common input data line by selectively activating the CS control of the desired IC. Data Outputs (DO) can also share a common line because the DO pin is Tri-Stated and returns to a high impedance when not in use.

CHIP SELECT

Chip Select (CS) enables and disables the CAT522's read and write operations. When CS is high data may be read to or from the chip, and the Data Output (DO) pin is active. Data loaded into the DPP control registers will remain in effect until CS goes low. Bringing CS to a logic low returns all DPP outputs to the settings stored in non-volatile memory and switches DO to its high impedance Tri-State mode.

Because CS functions like a reset the CS pin has been desensitized with a 30 ns to 90 ns filter circuit to prevent noise spikes from causing unwanted resets and the loss of volatile data.

CLOCK

The CAT522's clock controls both data flow in and out of the IC and non-volatile memory cell programming. Serial data is shifted into the DI pin and out of the DO pin on the clock's rising edge. While it is not necessary for the clock to be running between data transfers, the clock must be operating in order to write to non-volatile memory, even though the data being saved may already be resident in the DPP wiper control register.

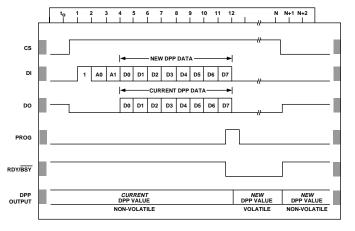
No clock is necessary upon system power-up. The CAT522's internal power-on reset circuitry loads data from non-volatile memory to the DPPs without using the external clock.

As data transfers are edge triggered clean clock transitions are necessary to avoid falsely clocking data into the control registers. Standard CMOS and TTL logic families work well in this regard and it is recommended that any mechanical switches used for breadboarding or device evaluation purposes be debounced by a flip-flop or other suitable debouncing circuit.

VREF

 V_{REF} , the voltage applied between pins $V_{REFL} \& V_{REFL}$, sets the configured DPP's Zero to Full Scale output range where $V_{REFL} = Zero$ and $V_{REFH} = Full Scale$. V_{REF} can span the full power supply range or just a fraction of it. In typical applications $V_{REFH} \& V_{REFL}$ are connected across the power supply rails. When using less than the full supply voltage be mindful of the limits placed on V_{REFL} and V_{REFL} as specified in the References section of DC Electrical Characteristics.

READY/BUSY


When saving data to non-volatile memory, the Ready/ Busy ouput (RDY/BSY) signals the start and duration of the non-volatile erase/write cycle. Upon receiving a command to store data (PROG goes high) RDY/BSY goes low and remains low until the programming cycle is complete. During this time the CAT522 will ignore any data appearing at DI and no data will be output on DO.

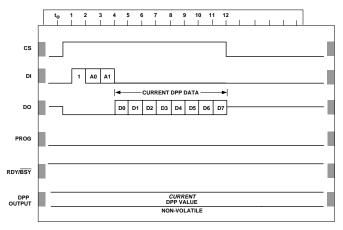
RDY/BSY is internally ANDed with a low voltage detector circuit monitoring V_{DD}. If V_{DD} is below the minimum value required for non-volatile programming, RDY/BSY will remain high following the program command indicating a failure to record the desired data in non-volatile memory.

DATA OUTPUT

Data is output serially by the CAT522, LSB first, via the Data Out (DO) pin following the reception of a start bit and two address bits by the Data Input (DI). DO becomes active whenever CS goes high and resumes its high impedance Tri-State mode when CS returns low. Tri-Stating the DO pin allows several 522s to share a

single serial data line and simplifies interfacing multiple 522s to a microprocessor.

WRITING TO MEMORY


Programming the CAT522's non-volatile memory is accomplished through the control signals: Chip Select (CS) and Program (PROG). With CS high, a start bit followed by a two bit DPP address and eight data bits are clocked into the DPP wiper control register via the DI pin. Data enters on the clock's rising edge. The DPP output changes to its new setting on the clock cycle following D7, the last data bit.

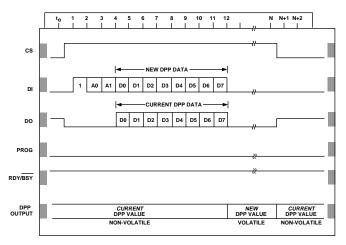
Programming is accomplished by bringing PROG high sometime after the start bit and at least 150 ns prior to the rising edge of the clock cycle immediately following the D7 bit. Two clock cycles after the D7 bit the DPP wiper control register will be ready to receive the next set of address and data bits. The clock must be kept running throughout the programming cycle. Internal control circuitry takes care of generating and ramping up the programming voltage for data transfer to the non-volatile cells. The CAT522's non-volatile memory cells will endure over 1,000,000 write cycles and will retain data for a minimum of 100 years without being refreshed.

READING DATA

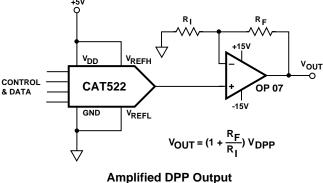
Each time data is transferred into a DPP control register currently held data is shifted out via the D0 pin, thus in every data transaction a read cycle occurs. Note, however, that the reading process is destructive. Data must be removed from the register in order to be read. Figure 2 depicts a Read Only cycle in which no change occurs in the DPP's output. This feature allows μ Ps to poll DPPs for their current setting without disturbing the output voltage but it assumes that the setting being read is also stored in non-volatile memory so that it can be restored at the end of the read cycle. In Figure 2 CS returns low before the 13th clock cycle completes. In doing so the non-volatile memory setting is reloaded into the DPP wiper control register. Since this value is the

Figure 2. Reading from Memory

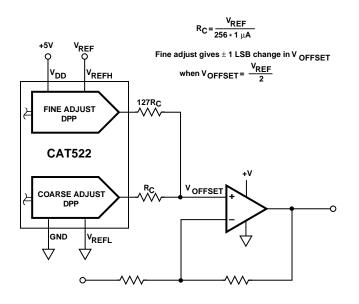
same as that which had been there previously no change in the DPP's output is noticed. Had the value held in the control register been different from that stored in nonvolatile memory then a change would occur at the read cycle's conclusion.

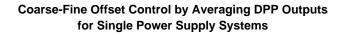

TEMPORARILY CHANGE OUTPUT

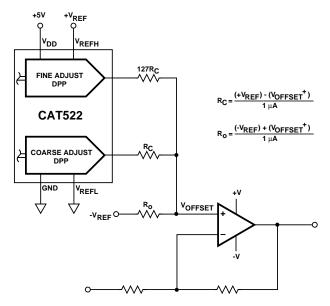
The CAT522 allows temporary changes in DPP's output to be made without disturbing the settings retained in non-volatile memory. This feature is particularly useful when testing for a new output setting and allows for user adjustment of preset or default values without losing the original factory settings.


Figure 3 shows the control and data signals needed to effect a temporary output change. DPP wiper settings may be changed as many times as required and can be made to any of the two DPPs in any order or sequence. The temporary setting(s) remain in effect long as CS remains high. When CS returns low all two DPPs will return to the output values stored in non-volatile memory.

When it is desired to save a new setting acquired using this feature, the new value must be reloaded into the DPP wiper control register prior to programming. This is because the CAT522's internal control circuitry discards from the programming register the new data two clock cycles after receiving it if no PROG signal is received.






APPLICATION CIRCU	ITS				,,
+5V		DPP	INPUT	DPP OUTPUT	ANALOG OUTPUT
0 v _i	R _i R _F			$V_{DPP} = \frac{CODE}{255} (V_{FS} - V_{ZERO}) + V_{ZERO}$	
• •				V _{FS} = 0.99 V _{REF}	V _{REF} = 5V
V _{DD} V _{REFH}	+15V	MSB	LSB	V _{ZERO} = 0.01 V _{REF}	R _I =R _F
		1111	1111	$\frac{255}{255}$ (.98 V _{REF}) + .01 V _{REF} = .990 V _{REF}	V _{OUT} = +4.90V
	-15V OP 07		0000	$\frac{128}{255}$ (.98 V _{REF}) + .01 V _{REF} = .502 V _{REF}	V _{OUT} = +0.02V
GND V _{REFL}	V _{OUT} =V _{DPP} (R _i + R _F)-V _i R _F	0111	1111	$\frac{127}{255}$ (.98 V _{REF}) + .01 V _{REF} = .498 V _{REF}	V _{OUT} = -0.02V
		0000	0001	$\frac{1}{255}$ (.98 V _{REF}) + .01 V _{REF} = .014 V _{REF}	V _{OUT} = -4.86V
V	For R _i = R _F V _{OUT} = 2V _{DPP} -V _i	0000	0000	<u>-0</u> 255 (.98 V _{REF}) + .01 V _{REF} = .010 V _{REF}	V _{OUT} = -4.90V
	Bipolar DPF	P Out	put		
	+5V O	RI		R _F	

APPLICATION CIRCUITS (Cont.)

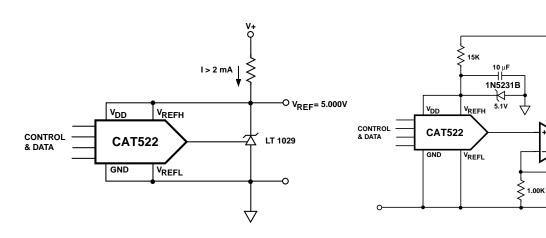
Coarse-Fine Offset Control by Averaging DPP Outputs for Dual Power Supply Systems

28 - 32V

MPT3055EL

10 μF 35V

-O OUTPUT

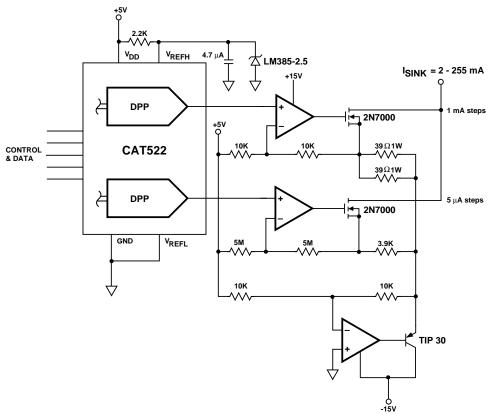

0 - 25V @ 1A

≶ 10K

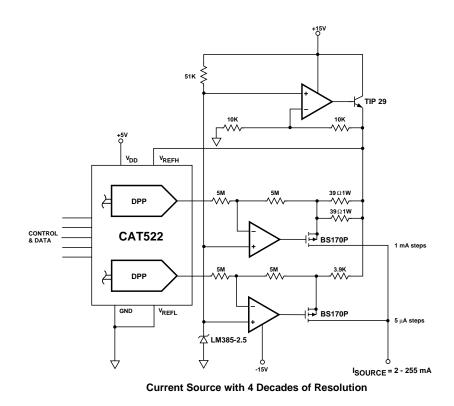
LM 324

 \sim

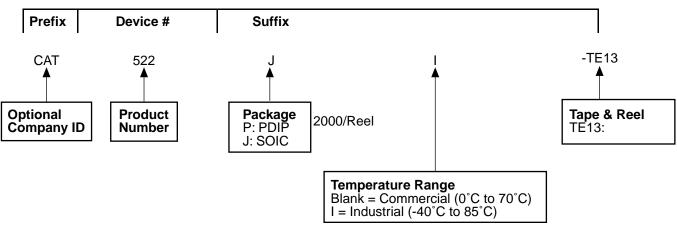
4.02 K



Digitally Trimmed Voltage Reference


Digitally Controlled Voltage Reference

4


APPLICATION CIRCUITS (Cont.)

Current Sink with 4 Decades of Resolution

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT522JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

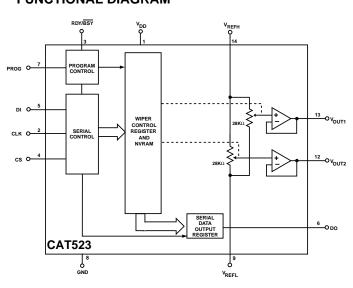
Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2004Revison:BIssue date:03/21/02Type:Final

CAT523

Configured Digitally Programmable Potentiometer (DPP[™]): Programmable Voltage Applications

FEATURES


- Two 8-bit DPPs configured as programmable voltage sources in DAC-like applications
- Common reference inputs
- Non-volatile NVRAM memory wiper storage
- Output voltage range includes both supply rails
- 2 independently addressable buffered output wipers
- 1 LSB accuracy, high resolution
- Serial microwire-like interface
- Single supply operation: 2.7V 5.5V
- Setting read-back without effecting outputs

DESCRIPTION

The CAT523 is a dual, 8-bit digitally-programmable potentiometer (DPPTM) configured for programmable voltage and DAC-like applications. Intended for final calibration of products such as camcorders, fax machines and cellular telephones on automated high volume production lines, it is also well suited for systems capable of self calibration, and applications where equipment which is either difficult to access or in a hazardous environment, requires periodic adjustment.

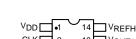
The two independently programmable DPPs have a common output voltage range which includes both supply rails. The wipers are buffered by rail to rail op amps. Wiper settings, stored in non-volatile NVRAM memory, are not lost when the device is powered down and are automatically reinstated when power is returned. Each wiper can be dithered to test new output

FUNCTIONAL DIAGRAM

APPLICATIONS

- Automated product calibration.
- Remote control adjustment of equipment
- Offset, gain and zero adjustments in selfcalibrating and adaptive control systems.
- Tamper-proof calibrations.
- DAC (with memory) substitute

values without effecting the stored settings and stored settings can be read back without disturbing the DPP's output.


Control of the CAT523 is accomplished with a simple 3wire, Microwire-like serial interface. A Chip Select pin allows several CAT523's to share a common serial interface and communication back to the host controller is via a single serial data line thanks to the CAT523's Tri-Stated Data Output pin. A RDY/BSY output working in concert with an internal low voltage detector signals proper operation of non-volatile NVRAM memory Erase/ Write cycle.

The CAT523 is available in the 0°C to 70°C Commercial and -40°C to + 85°C Industrial operating temperature ranges and offered in 14-pin plastic DIP and SOIC mount packages.

PIN CONFIGURATION

VDD 14 13 VOUT1 CLK 2 12 VOUT2 RDY/BSY 3 CAT cs 4 11 🗖 NC 523 10 NC DI 5 DO 6 9 VREFL PROG 8 GND

DIP Package (P)

SOIC Package (J)

CLK	2	13	
RDY/BSY	3	12	
CS	4	CAT 11	□ NC
DI	5	⁵²³ 10	NC
DO	6	9	VREFL
PROG 🔤	7	8	GND

ABSOLUTE MAXIMUM RATINGS

Supply Voltage* V _{DD} to GND	-0.5V to +7V
Inputs	
CLK to GND	-0.5V to V _{DD} +0.5V
CS to GND	-0.5V to V _{DD} +0.5V
DI to GND	-0.5V to V _{DD} +0.5V
RDY/BSY to GND	-0.5V to V _{DD} +0.5V
PROG to GND	-0.5V to V _{DD} +0.5V
V _{REF} H to GND	-0.5V to V _{DD} +0.5V
V _{REF} L to GND	-0.5V to V _{DD} +0.5V
Outputs	
D ₀ to GND	-0.5V to V _{DD} +0.5V
V _{OUT} 1– 4 to GND	-0.5V to V _{DD} +0.5V

Operating Ambient Temperature	
Commercial ('C' or Blank suffix)	0°C to +70°C
Industrial ('l' suffix)	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Method
V _{ZAP} ⁽¹⁾	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	100		mA	JEDEC Standard 17

NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.

2. Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to $V_{CC} + 1V$.

POWER SUPPLY

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD1}	Supply Current (Read)	Normal Operating	—	400	600	μA
I _{DD2}	Supply Current (Write)	Programming, $V_{DD} = 5V$	—	1600	2500	μA
		V _{DD} = 3V	—	1000	1600	μA
V _{DD}	Operating Voltage Range		2.7	_	5.5	V

LOGIC INPUTS

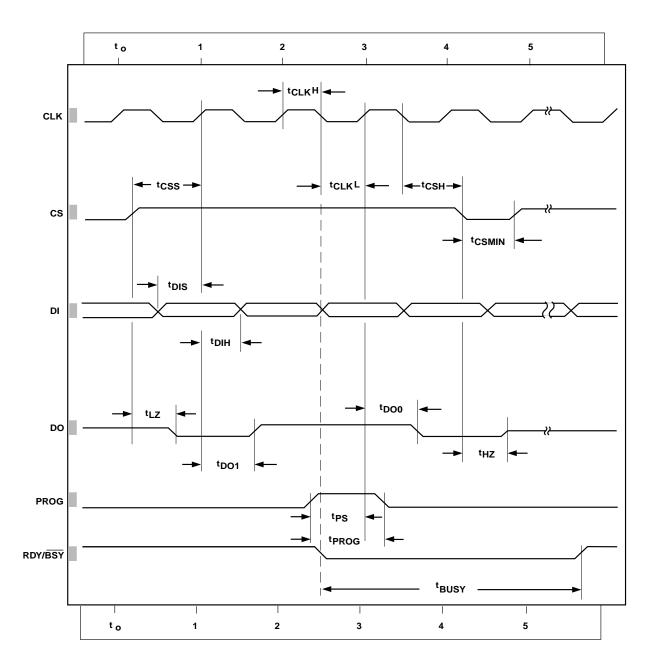
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Іін	Input Leakage Current	$V_{IN} = V_{DD}$			10	μΑ
lı∟	Input Leakage Current	$V_{IN} = 0V$		_	-10	μΑ
Vih	High Level Input Voltage		2	—	Vdd	V
VIL	Low Level Input Voltage		0	_	0.8	V

LOGIC OUTPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vон	High Level Output Voltage	I _{OH} = -40μA	V _{DD} -0.3			V
VIL	Low Level Output Voltage	$I_{OL} = 1 \text{ mA}, V_{DD} = +5V$			0.4	V
		$I_{OL} = 0.4 \text{ mA}, V_{DD} = +3V$			0.4	V

POTENTIOMETER CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified


Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance			28		kΩ
	R _{POT} to R _{POT} Match		_	<u>+</u> 0.5	<u>+</u> 1	%
	Pot Resistance Tolerance				<u>+</u> 15	%
	Voltage on V _{REFH} pin		2.7		V _{DD}	V
	Voltage on V _{REFL} pin		OV		V _{DD} - 2.7	V
	Resolution			0.4		%
INL	Integral Linearity Error			0.5	1	LSB
DNL	Differential Linearity Error			0.25	0.5	LSB
R _{OUT}	Buffer Output Resistance				10	Ω
I _{OUT}	Buffer Output Current				3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC					ppm/°C
R _{ISO}	Isolation Resistance					Ω
V _N	Noise					nV/√Hz
C _H /C _L	Potentiometer Capacitances			8/8		pF
fc	Frequency Response	Passive Attenuator				MHz

AC ELECTRICAL CHARACTERISTICS:

 V_{DD} = +2.7V to +5.5V, $V_{REF}H = V_{DD}$, $V_{REF}L = 0V$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital						
tCSMIN	Minimum CS Low Time		150	_	_	ns
t _{CSS}	CS Setup Time		100	_	_	ns
t _{CSH}	CS Hold Time		0	_	_	ns
t _{DIS}	DI Setup Time	C _L =100pF,	50	—	—	ns
t _{DIH}	DI Hold Time	see note 1	50	—	—	ns
t _{DO1}	Output Delay to 1		_	_	150	ns
t _{DO0}	Output Delay to 0		_	—	150	ns
t _{HZ}	Output Delay to High-Z		—	400	—	ns
t _{LZ}	Output Delay to Low-Z		_	400	—	ns
t _{BUSY}	Erase/Write Cycle Time		—	4	5	ms
t _{PS}	PROG Setup Time		150	—	—	ns
t _{PROG}	Minimum Pulse Width		700	—	—	ns
t _{CLK} H	Minimum CLK High Time		500	—	—	ns
t _{CLK} L	Minimum CLK Low Time		300	—	—	ns
f _C	Clock Frequency		DC	—	1	MHz
Analog						
t _{DS}	DPP Settling Time to 1 LSB	$C_{LOAD} = 10 \text{ pF}, V_{DD} = +5 \text{V}$	_	3	10	μs
		$C_{LOAD} = 10 \text{ pF}, V_{DD} = +3V$	_	6	10	μs

A. C. TIMING DIAGRAM

PIN DESCRIPTION

Pin	Name	Function
1	V _{DD}	Power supply positive.
2	CLK	Clock input pin.Clock input pin.
3	RDY/BSY	Ready/Busy Output
4	CS	Chip Select
5	DI	Serial data input pin.
6	DO	Serial data output pin.
7	PROG	EEPROM Programming Enable
		Input
8	GND	Power supply ground.
9	V _{REFL}	Minimum DPP output voltage.
10	NC	No Connect.
11	NC	No Connect.
12	V _{OUT2}	DPP output channel 2.
13	V _{OUT1}	DPP output channel 1.
14	V _{REFH}	Maximum DPP output voltage.

DEVICE OPERATION

The CAT523 is a dual 8-bit configured digitally programmable potentiometer (DPP) whose outputs can be programmed to any one of 256 individual voltage steps. Once programmed, these output settings are retained in non-volatile memory and will not be lost when power is removed from the chip. Upon power up the DPPs return to the settings stored in non-volatile memory. Each DPP can be written to and read from independently without effecting the output voltage during the read or write cycle. Each output can also be temporarily adjusted without changing the stored output setting, which is useful for testing new output settings before storing them in memory.

DIGITAL INTERFACE

The CAT523 employs a 3 wire, Microwire-like, serial control interface consisting of Clock (CLK), Chip Select (CS) and Data In (DI) inputs. For all operations, address and data are shifted in LSB first. In addition, all digital data must be preceded by a logic "1" as a start bit. The DPP address and data are clocked into the DI pin on the clock's rising edge. When sending multiple blocks of information a minimum of two clock cycles is required between the last block sent and the next start bit.

Multiple devices may share a common input data line by selectively activating the CS control of the desired IC. Data Outputs (DO) can also share a common line because the DO pin is Tri-Stated and returns to a high impedance when not in use.

CHIP SELECT

Chip Select (CS) enables and disables the CAT523's

DPP addressing is as follows:

DPP OUTPUT	A0	A1
Vout1	0	0
V _{OUT2}	1	0

read and write operations. When CS is high data may be read to or from the chip, and the Data Output (DO) pin is active. Data loaded into the DPP control registers will remain in effect until CS goes low. Bringing CS to a logic low returns all DPP outputs to the settings stored in nonvolatile memory and switches DO to its high impedance Tri-State mode.

Because CS functions like a reset the CS pin has been equipped with a 30 ns to 90 ns filter circuit to prevent noise spikes from causing unwanted resets and the loss of volatile data.

CLOCK

The CAT523's clock controls both data flow in and out of the IC and non-volatile memory cell programming. Serial data is shifted into the DI pin and out of the DO pin on the clock's rising edge. While it is not necessary for the clock to be running between data transfers, the clock must be operating in order to write to non-volatile memory, even though the data being saved may already be resident in the DPP wiper control register.

No clock is necessary upon system power-up. The CAT523's internal power-on reset circuitry loads data from non-volatile memory to the DPPs without using the external clock.

As data transfers are edge triggered clean clock transitions are necessary to avoid falsely clocking data into the control registers. Standard CMOS and TTL logic families work well in this regard and it is recommended that any mechanical switches used for breadboarding or device evaluation purposes be debounced by a flip-flop or other suitable debouncing circuit.

V_{REF}

 V_{REF} , the voltage applied between pins V_{REFH} and V_{REFL} , sets the DPP's Zero to Full Scale output range where V_{REFL} = Zero and V_{REFH} = Full Scale. V_{REF} can span the full power supply range or just a fraction of it. In typical applications V_{REFH} and V_{REFL} are connected across the power supply rails. When using less than the full supply voltage V_{REFH} is restricted to voltages between V_{DD} and $V_{DD}/2$ and V_{REFL} to voltages between GND and $V_{DD}/2$.

READY/BUSY

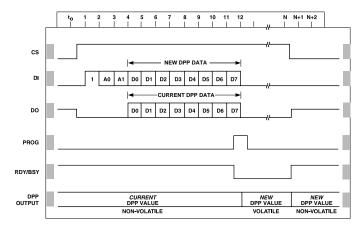
When saving data to non-volatile memory, the Ready/ Busy output (RDY/BSY) signals the start and duration of the non-volatile erase/write cycle. Upon receiving a command to store data (PROG goes high) RDY/BSY goes low and remains low until the programming cycle is complete. During this time the CAT523 will ignore any data appearing at DI and no data will be output on DO.

RDY/BSY is internally ANDed with a low voltage detector circuit monitoring V_{DD} . If V_{DD} is below the minimum value required for non-volatile programming, RDY/BSY will remain high following the program command indicating a failure to record the desired data in non-volatile memory.

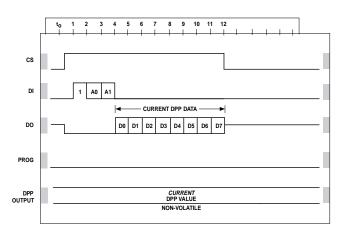
DATA OUTPUT

Data is output serially by the CAT523, LSB first, via the Data Out (DO) pin following the reception of a start bit and two address bits by the Data Input (DI). DO becomes active whenever CS goes high and resumes its high impedance Tri-State mode when CS returns low. Tri-Stating the DO pin allows several 523s to share a single serial data line and simplifies interfacing multiple 523s to a microprocessor.

WRITING TO MEMORY


Figure 1. Writing to Memory

Programming the CAT523's non-volatile memory is accomplished through the control signals: Chip Select (CS) and Program (PROG). With CS high, a start bit followed by a two bit DPP address and eight data bits are clocked into the DPP control register via the DI pin. Data enters on the clock's rising edge. The DPP output changes to its new setting on the clock cycle following D7, the last data bit.


Programming is achieved by bringing PROG high for a minimum of 3 ms. PROG must be brought high sometime after the start bit and at least 150 ns prior to the rising edge of the clock cycle immediately following the D7 bit. Two clock cycles after the D7 bit the DAC control register will be ready to receive the next set of address and data bits. The clock must be kept running throughout the programming cycle. Internal control circuitry takes care of ramping the programming voltage for data transfer to the non-volatile memory cells. The CAT523's non-volatile memory cells will endure over 100,000 write cycles and will retain data for a minimum of 100 years without being refreshed.

READING DATA

Each time data is transferred into a DPP wiper control register currently held data is shifted out via the D0 pin, thus in every data transaction a read cycle occurs. Note, however, that the reading process is destructive. Data must be removed from the register in order to be read. Figure 2 depicts a Read Only cycle in which no change occurs in the DPP's output. This feature allows μ Ps to poll DPPs for their current setting without disturbing the output voltage but it assumes that the setting being read is also stored in non-volatile memory so that it can be restored at the end of the read cycle. In Figure 2 CS returns low before the 13th clock cycle completes. In doing so the non-volatile memory setting is reloaded into the DPP wiper control register.

Figure 2. Reading from Memory

Since this value is the same as that which had been there previously no change in the DPP's output is noticed. Had the value held in the control register been different from that stored in non-volatile memory then a change would occur at the read cycle's conclusion.

TEMPORARILY CHANGE OUTPUT

The CAT523 allows temporary changes in DPP's output to be made without disturbing the settings retained in non-volatile memory. This feature is particularly useful when testing for a new output setting and allows for user adjustment of preset or default values without losing the original factory settings.

Figure 3 shows the control and data signals needed to effect a temporary output change. DPP wiper settings may be changed as many times as required and can be made to any of the two DPPs in any order or sequence. The temporary setting(s) remain in effect long as CS remains high. When CS returns low all two DPPs will return to the output values stored in non-volatile memory.

When it is desired to save a new setting acquired using

DPP OUTPUT

 $V_{\text{DPP}} = \frac{\text{CODE}}{255} (V_{\text{FS}} - V_{\text{ZERO}}) + V_{\text{ZERO}}$

255 (.98 V_{REF}) + .01 V_{REF} = .990 V_{REF}

 $\frac{128}{255}$ (.98 V_{RFF}) + .01 V_{RFF} = .502 V_{RFF}

 $\frac{127}{255}$ (.98 V_{REF}) + .01 V_{REF} = .498 V_{REF}

 $\frac{1}{255}$ (.98 V_{REF}) + .01 V_{REF} = .014 V_{REF}

 $\frac{0}{255}$ (.98 V_{REF}) + .01 V_{REF} = .010 V_{REF}

APPLICATION CIRCUITS

 $V_{FS} = 0.99 V_{REF}$

V_{ZERO} = 0.01 V_{REF}

DPP INPUT

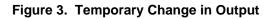
LSB

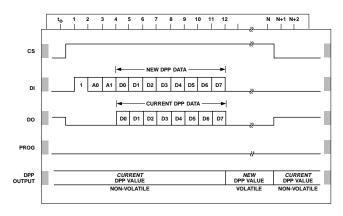
0000

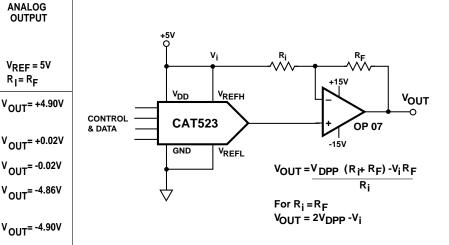
0001

MSB

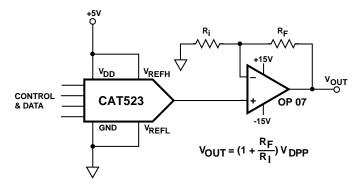
1000


0000

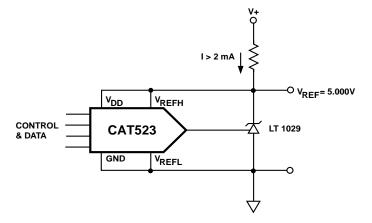

1111 1111


0111 1111

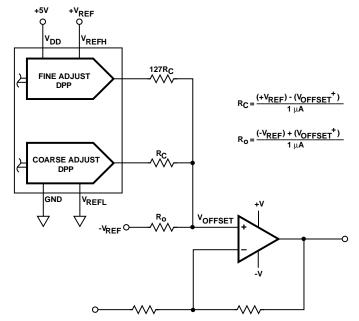
0000 0000

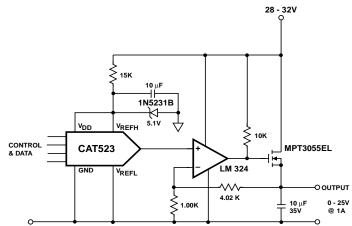

this feature, the new value must be reloaded into the DPP wiper control register prior to programming. This is because the CAT523's internal control circuitry discards the new data from the programming register two clock cycles after receiving it (after reception is complete) if no PROG signal is received.



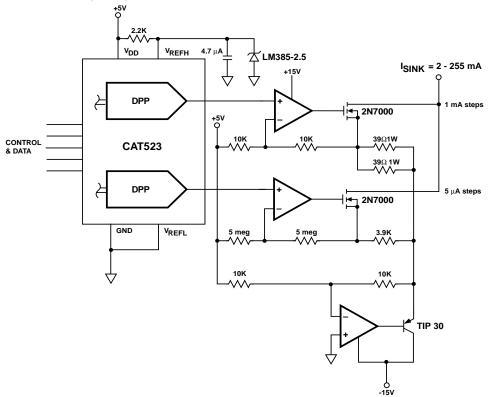

 $R_I = R_F$

Amplified DPP Output

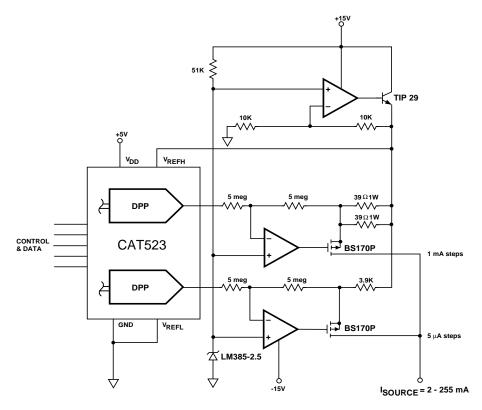

APPLICATION CIRCUITS (Cont.)



Digitally Trimmed Voltage Reference

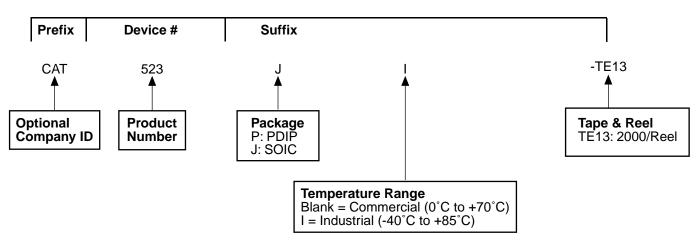


Coarse-Fine Offset Control by Averaging DPP Outputs for Dual Power Supply Systems



Digitally Controlled Voltage Reference

APPLICATION CIRCUITS (Cont.)



Current Sink with 4 Decades of Resolution

Current Source with 4 Decades of Resolution

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT523JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2005Revison:BIssue date:3/22/02Type:Final

CAT524

Configured Digitally Programmable Potentiometer (DPP™): Programmable Voltage Applications

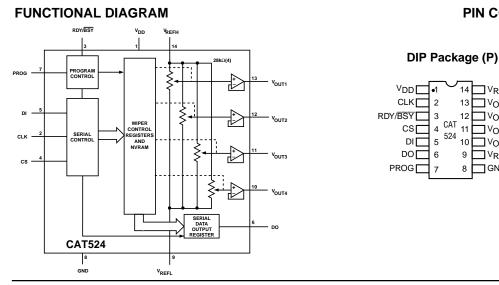
FEATURES

- Four 8-bit DPPs configured as programmable voltage sources in DAC-like applications
- Common reference inputs
- Buffered wiper outputs
- Non-volatile NVRAM memory wiper storage
- Output voltage range includes both supply rails
- 4 independently addressable buffered output wipers
- 1 LSB accuracy, high resolution
- Serial Microwire-like interface
- Single supply operation: 2.7V 5.5V
- Setting read-back without effecting outputs

DESCRIPTION

The CAT524 is a guad, 8-bit digitally-programmable potentiometer (DPP™) configured for programmable voltage and DAC-like applications. Intended for final calibration of products such as camcorders, fax machines and cellular telephones on automated high volume production lines, it is also well suited for self-calibrating systems and for applications where equipment which requires periodic adjustment is either difficult to access or in a hazardous environment.

The four independently programmable DPPs have an output range which includes both supply rails. The wipers are buffered by rail to rail op amps. Wiper settings, stored in non-volatile NVRAM memory, are not lost when the device is powered down and are automatically reinstated when power is returned. Each wiper can be dithered to test new output values without


APPLICATIONS

- Automated product calibration
- Remote control adjustment of equipment
- Offset, gain and zero adjustments in self-calibrating and adaptive control systems
- Tamper-proof calibrations
- DAC (with memory) substitute

effecting the stored settings, and stored settings can be read back without disturbing the DPP's output.

The CAT524 is controlled with a simple 3-wire serial, Microwire-like interface. A Chip Select pin allows several devices to share a common serial interface. Communication back to the host controller is via a single serial data line thanks to the Tri-Stated CAT524 Data Output pin. A RDY/BSY output working in concert with an internal low voltage detector signals proper operation of the non-volatile NVRAM memory Erase/Write cycle.

The CAT524 is available in the 0°C to 70°C commercial and -40°C to 85°C industrial operating temperature ranges. Both 14-pin plastic DIP and SOIC packages are offered.

PIN CONFIGURATION

14 VREFH

13 🗖 VOUT1

12 VOUT2

11 🗖 VOUT3

9 VREFL

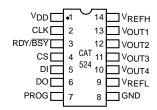
8 GND

2

3

5

6


7

4 CAT

524

10

SOIC Package (J)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage* V _{DD} to GND	-0.5V to +7V
Inputs	
CLK to GND	-0.5V to V _{DD} +0.5V
CS to GND	-0.5V to V _{DD} +0.5V
DI to GND	-0.5V to V _{DD} +0.5V
RDY/BSY to GND	-0.5V to V _{DD} +0.5V
PROG to GND	-0.5V to V _{DD} +0.5V
V _{REF} H to GND	-0.5V to V _{DD} +0.5V
V _{REF} L to GND	-0.5V to V _{DD} +0.5V
Outputs	
D ₀ to GND	-0.5V to V _{DD} +0.5V
V _{OUT} 1–4 to GND	-0.5V to V _{DD} +0.5V

Operating Ambient	Temperature
-------------------	-------------

Commercial ('C' or Blank suffix)	0°C to +70°C
Industrial ('l' suffix)	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Method
V _{ZAP} ⁽¹⁾	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	100		mA	JEDEC Standard 17

NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.

2. Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to $V_{CC} + 1V$.

POWER SUPPLY

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD1}	Supply Current (Read)	Normal Operating		400	600	μA
I _{DD2}	Supply Current (Write)	Programming, $V_{DD} = 5V$	—	1600	2500	μA
		$V_{DD} = 3V$	—	1000	1600	μA
V _{DD}	Operating Voltage Range		2.7		5.5	V

LOGIC INPUTS

Symbol	Parameter	Min	Тур	Max	Units	
IIH	Input Leakage Current	$V_{IN} = V_{DD}$	_		10	μΑ
IIL	Input Leakage Current	$V_{IN} = 0V$			-10	μΑ
VIH	High Level Input Voltage		2		V_{DD}	V
VIL	Low Level Input Voltage		0	_	0.8	V

LOGIC OUTPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vон	High Level Output Voltage	I _{OH} = -40μA	V _{DD} -0.3		_	V
VIL	Low Level Output Voltage	$I_{OL} = 1 \text{ mA}, V_{DD} = +5V$		—	0.4	V
		I_{OL} = 0.4 mA, V_{DD} = +3V	_	_	0.4	V

POTENTIOMETER CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance			28		kΩ
	R _{POT} to R _{POT} Match			<u>+</u> 0.5	<u>+</u> 1	%
	Pot Resistance Tolerance				<u>+</u> 15	%
	Voltage on V _{REFH} pin		2.7		V _{DD}	V
	Voltage on V _{REFL} pin		OV		V _{DD} - 2.7	V
	Resolution			0.4		%
INL	Integral Linearity Error			0.5	1	LSB
DNL	Differential Linearity Error			0.25	0.5	LSB
R _{OUT}	Buffer Output Resistance				10	Ω
I _{OUT}	Buffer Output Current				3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC					ppm/°C
R _{ISO}	Isolation Resistance					Ω
V _N	Noise					nV/√Hz
C _H /C _L	Potentiometer Capacitances			8/8		pF
fc	Frequency Response	Passive Attenuator				MHz

AC ELECTRICAL CHARACTERISTICS:

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital						
tCSMIN	Minimum CS Low Time		150		_	ns
t _{CSS}	CS Setup Time		100	—	—	ns
t _{CSH}	CS Hold Time		0	—	_	ns
t _{DIS}	DI Setup Time	C _L =100pF,	50	—	—	ns
t _{DIH}	DI Hold Time	see note 1	50	—	_	ns
t _{DO1}	Output Delay to 1		_	_	150	ns
t _{DO0}	Output Delay to 0		_	_	150	ns
t _{HZ}	Output Delay to High-Z		_	400		ns
t _{LZ}	Output Delay to Low-Z		_	400	—	ns
t _{BUSY}	Erase/Write Cycle Time		_	4	5	ms
t _{PS}	PROG Setup Time		150	_		ns
t _{PROG}	Minimum Pulse Width		700	_	_	ns
t _{CLK} H	Minimum CLK High Time		500	_		ns
t _{CLK} L	Minimum CLK Low Time		300			ns
f _C	Clock Frequency		DC	_	1	MHz
Analog						
t _{DS}	DPP Settling Time to 1 LSB	$C_{LOAD} = 10 \text{ pF}, V_{DD} = +5 \text{V}$	_	3	10	μs
		$C_{LOAD} = 10 \text{ pF}, V_{DD} = +3V$	_	6	10	μs

NOTES: 1. All timing measurements are defined at the point of signal crossing V_{DD} / 2.

2. These parameters are periodically sampled and are not 100% tested.

A. C. TIMING DIAGRAM

TO	Min	dge Min	t (DI) Min	.K edge	 je Min	Min		valid	Max	high (Max)	Max high (Max)	Min	Min	to Max	
TIMING FROM	Rising CLK edge to falling CLK edge	Falling CLK edge to CLK rising edge	Falling CLK edge for last data bit (DI) to falling CS edge	Rising CS edge to next rising CLK edge	tCSMIN Falling CS edge to rising CS edge	Data valid to first rising CLK edge after CS = high		Rising CLK edge to end of data valid	Rising CLK edge to D0 = low	Rising CS edge to D0 becoming high low impedance (active output)	Rising CLK edge to D0 = high Falling CS edge to D0 becoming high impedance (Tri-State)	Rising PROG edge to next rising	CLK edge Rising PROG edge to falling PROG edge	Falling CLK edge after PROG=H to rising RDY/BSY edge	
PARAM NAME F	tcLKH Risi	tcLKL Fall	t CSH Falli to fa	tcss Risi	tCSMIN Fall	t DIS Dat edg	l	toIH Risi	tpo0 Risi	tLZ Risi low	tD01 Risi tHZ Fall imp	tPS Risi	tprog Risi PRO	tBUSY Fall	
- 1 - 3	tcLKH			← tcss → tcLKL ← ←tcsH→				tolH ▲			t tool		tprog		

PIN DESCRIPTION

Pin	Name	Function
1	V _{DD}	Power supply positive.
2	CLK	Clock input pin.Clock input pin.
3	RDY/BSY	Ready/Busy Output
4	CS	Chip Select
5	DI	Serial data input pin.
6	DO	Serial data output pin.
7	PROG	Non-volatile Memory Programming Enable Input
8	GND	Power supply ground.
9	V _{REFL}	Minimum DPP output voltage.
10	V _{OUT4}	DPP output channel 4.
11	V _{OUT3}	DPP output channel 3.
12	V _{OUT2}	DPP output channel 2.
13	Vout1	DPP output channel 1.
14	V _{REFH}	Maximum DPP output voltage.

DPP addressing is as follows:

DPP OUTPUT	A0	A1
V _{OUT1}	0	0
V _{OUT2}	1	0
V _{OUT3}	0	1
V _{OUT4}	1	1

DEVICE OPERATION

The CAT524 is a quad 8-bit configured digitally programmable potentiometer (DPP) whose outputs can be programmed to any one of 256 individual voltage steps. Once programmed, these output settings are retained in non-volatile memory and will not be lost when power is removed from the chip. Upon power up the DPPs return to the settings stored in non-volatile memory. Each DPP can be written to and read from independently without effecting the output voltage during the read or write cycle. Each output can also be temporarily adjusted without changing the stored output setting, which is useful for testing new output settings before storing them in memory.

DIGITAL INTERFACE

The CAT524 employs a 3 wire serial, Microwire-like control interface consisting of Clock (CLK), Chip Select (CS) and Data In (DI) inputs. For all operations, address and data are shifted in LSB first. In addition, all digital data must be preceded by a logic "1" as a start bit. The DPP address and data are clocked into the DI pin on the clock's rising edge. When sending multiple blocks of information a minimum of two clock cycles is required between the last block sent and the next start bit.

Multiple devices may share a common input data line by selectively activating the CS control of the desired IC. Data Outputs (DO) can also share a common line because the DO pin is Tri-Stated and returns to a high impedance when not in use.

CHIP SELECT

Chip Select (CS) enables and disables the CAT524's

read and write operations. When CS is high data may be read to or from the chip, and the Data Output (DO) pin is active. Data loaded into the DPP control registers will remain in effect until CS goes low. Bringing CS to a logic low returns all DPP outputs to the settings stored in nonvolatile memory and switches DO to its high impedance Tri-State mode.

Because CS functions like a reset the CS pin has been equipped with a 30 ns to 90 ns filter circuit to prevent noise spikes from causing unwanted resets and the loss of volatile data.

CLOCK

The CAT524's clock controls both data flow in and out of the IC and non-volatile memory cell programming. Serial data is shifted into the DI pin and out of the DO pin on the clock's rising edge. While it is not necessary for the clock to be running between data transfers, the clock must be operating in order to write to non-volatile memory, even though the data being saved may already be resident in the DPP wiper control register.

No clock is necessary upon system power-up. The CAT524's internal power-on reset circuitry loads data from non-volatile memory to the DPPs without using the external clock.

As data transfers are edge triggered clean clock transitions are necessary to avoid falsely clocking data into the control registers. Standard CMOS and TTL logic families work well in this regard and it is recommended that any mechanical switches used for breadboarding or device evaluation purposes be debounced by a flip-flop or other suitable debouncing circuit.

VREF

 V_{REF} , the voltage applied between pins V_{REFH} and V_{REFL} , sets the configured DPP's Zero to Full Scale output range where V_{REFL} = Zero and V_{REFH} = Full Scale. V_{REF} can span the full power supply range or just a fraction of it. In typical applications V_{REFH} and V_{REFL} are connected across the power supply rails. When using less than the full supply voltage V_{REFH} is restricted to voltages between V_{DD} and $V_{DD}/2$ and V_{REFL} to voltages between GND and $V_{DD}/2$.

READY/BUSY

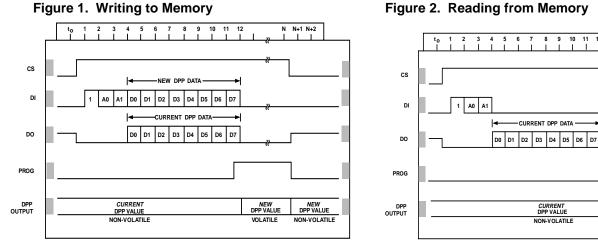
When saving data to non-volatile memory, the Ready/ Busy ouput (RDY/BSY) signals the start and duration of the non-volatile erase/write cycle. Upon receiving a command to store data (PROG goes high) RDY/BSY goes low and remains low until the programming cycle is complete. During this time the CAT524 will ignore any data appearing at DI and no data will be output on DO.

RDY/BSY is internally ANDed with a low voltage detector circuit monitoring V_{DD} . If V_{DD} is below the minimum value required for non-volatile programming, RDY/BSY will remain high following the program command indicating a failure to record the desired data in non-volatile memory.

DATA OUTPUT

Data is output serially by the CAT524, LSB first, via the Data Out (DO) pin following the reception of a start bit and two address bits by the Data Input (DI). DO becomes active whenever CS goes high and resumes its high impedance Tri-State mode when CS returns low. Tri-Stating the DO pin allows several 524s to share a single serial data line and simplifies interfacing multiple 524s to a microprocessor.

WRITING TO MEMORY


Programming the CAT524's non-volatile memory is accomplished through the control signals: Chip Select

(CS) and Program (PROG). With CS high, a start bit followed by a two bit DPP address and eight data bits are clocked into the DPP control register via the DI pin. Data enters on the clock's rising edge. The DPP output changes to its new setting on the clock cycle following D7, the last data bit.

Programming is achieved by bringing PROG high for a minimum of 3 ms. PROG must be brought high sometime after the start bit and at least 150 ns prior to the rising edge of the clock cycle immediately following the D7 bit. Two clock cycles after the D7 bit the DPP wiper control register will be ready to receive the next set of address and data bits. The clock must be kept running throughout the programming cycle. Internal control circuitry takes care of ramping the programming voltage for data transfer to the non-volatile cells. The CAT524 non-volatile memory cells will endure over 100,000 write cycles and will retain data for a minimum of 20 years without being refreshed.

READING DATA

Each time data is transferred into a DPP wiper control register currently held data is shifted out via the D0 pin, thus in every data transaction a read cycle occurs. Note, however, that the reading process is destructive. Data must be removed from the register in order to be read. Figure 2 depicts a Read Only cycle in which no change occurs in the DPP's output. This feature allows µPs to poll DPPs for their current setting without disturbing the output voltage but it assumes that the setting being read is also stored in non-volatile memory so that it can be restored at the end of the read cycle. In Figure 2 CS returns low before the 13th clock cycle completes. In doing so the non-volatile memory setting is reloaded into the DPP wiper control register.

Figure 1. Writing to Memory

Since this value is the same as that which had been there previously no change in the DPP's output is noticed. Had the value held in the control register been different from that stored in non-volatile memory then *a change would occur* at the read cycle's conclusion.

TEMPORARILY CHANGE OUTPUT

The CAT524 allows temporary changes in DPP's output to be made without disturbing the settings retained in non-volatile memory. This feature is particularly useful when testing for a new output setting and allows for user adjustment of preset or default values without losing the original factory settings.

Figure 3 shows the control and data signals needed to effect a temporary output change. DPP wiper settings may be changed as many times as required and can be made to any of the four DPPs in any order or sequence. The temporary setting(s) remain in effect long as CS remains high. When CS returns low all four DPPs will return to the output values stored in non-volatile memory.

When it is desired to save a new setting acquired using

DPP OUTPUT

 $V_{\text{DPP}} = \frac{\text{CODE}}{255} (V_{\text{FS}} - V_{\text{ZERO}}) + V_{\text{ZERO}}$

255 (.98 V_{REF}) + .01 V_{REF} = .990 V_{REF}

 $\frac{128}{255}$ (.98 V_{RFF}) + .01 V_{RFF} = .502 V_{RFF}

 $\frac{127}{255}$ (.98 V_{REF}) + .01 V_{REF} = .498 V_{REF}

 $\frac{1}{255}$ (.98 V_{REF}) + .01 V_{REF} = .014 V_{REF}

 $\frac{0}{255}$ (.98 V_{REF}) + .01 V_{REF} = .010 V_{REF}

APPLICATION CIRCUITS

 $V_{FS} = 0.99 V_{REF}$

V_{ZERO} = 0.01 V_{REF}

DPP INPUT

LSB

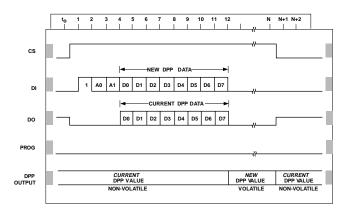
0000

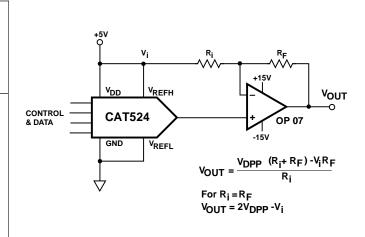
0001

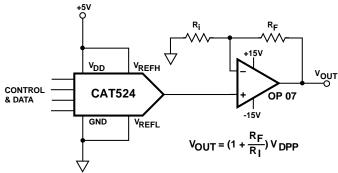
MSB

1000

0000


1111 1111


0111 1111


0000 0000

this feature, the new value must be reloaded into the DPP control register prior to programming. This is because the CAT524's internal control circuitry discards the new data from the programming register two clock cycles after receiving it (after reception is complete) if no PROG signal is received.

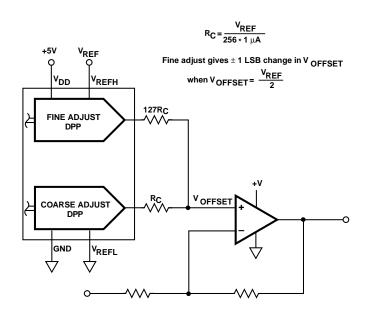
ANALOG OUTPUT

 $V_{REF} = 5V$

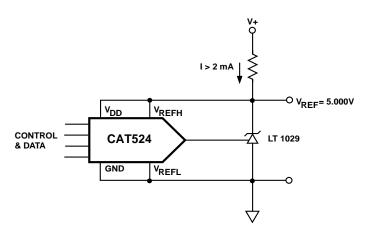
V_{OUT}= +4.90V

V_{OUT}= +0.02V

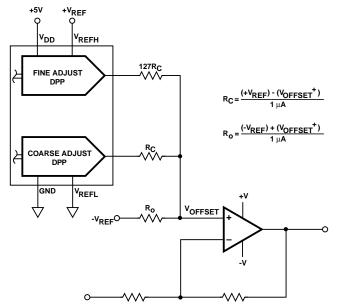
V_{OUT}= -0.02V

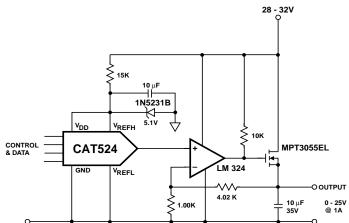

V_{OUT}= -4.86V

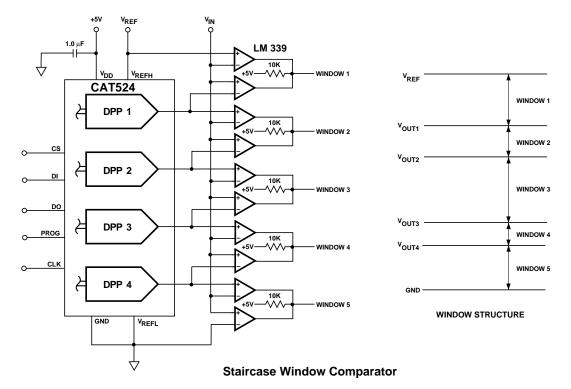
V_{OUT}= -4.90V

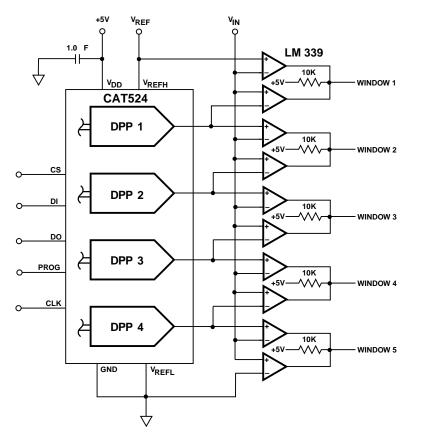

 $R_I = R_F$

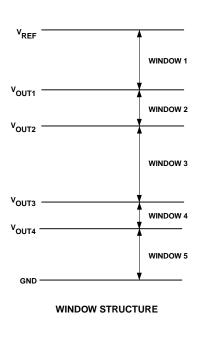
Bipolar DPP Output

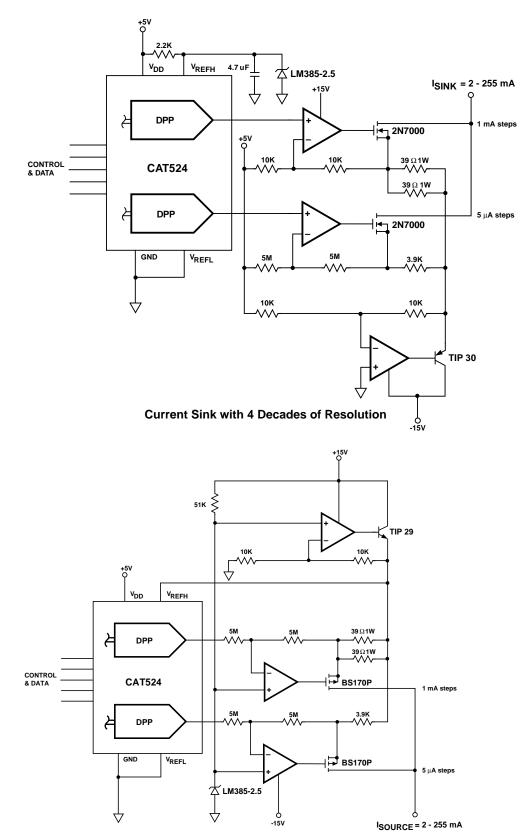

Amplified DPP Output

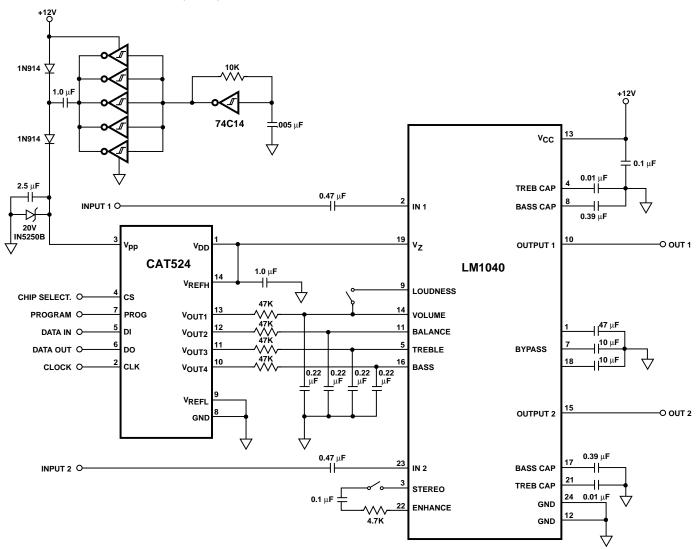

Coarse-Fine Offset Control by Averaging DPP Outputs for Single Power Supply Systems


Digitally Trimmed Voltage Reference

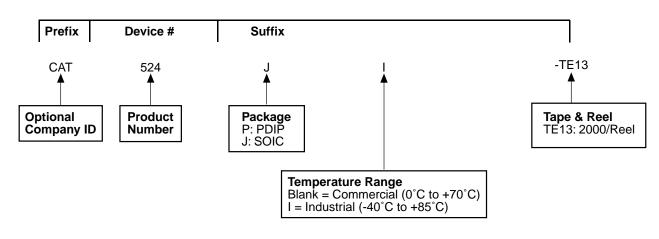



Coarse-Fine Offset Control by Averaging DPP Outputs for Dual Power Supply Systems


Digitally Controlled Voltage Reference



Overlapping Window Comparator



Current Source with 4 Decades of Resolution

Digital Stereo Control

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT524JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

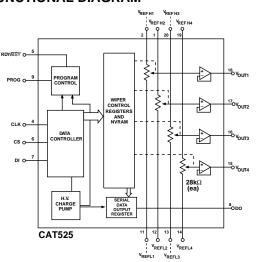
Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2006Revison:BIssue date:03/22/02Type:Final

CAT525

Configured Digitally Programmable Potentiometer (DPP™): Programmable Voltage Applications

FEATURES


- Four 8-bit DPPs configured as programmable voltage sources in DAC-like applications
- Independent reference inputs
- Buffered wiper outputs
- Non-volatile NVRAM memory wiper storage
- Output voltage range includes both supply rails
- 4 independently addressable buffered output wipers
- 1 LSB accuracy, high resolution
- Serial Microwire-like interface
- Single supply operation: 2.7V 5.5V
- Setting read-back without effecting outputs

DESCRIPTION

The CAT525 is a quad 8-bit digitally programmable potentiometer (DPPTM) configured for programmable voltage and DAC-like applications. Intended for final calibration of products such as camcorders, fax machines and cellular telephones on automated high volume production lines and systems capable of self calibration, it is also well suited for applications were equipment requiring periodic adjustment is either difficult to access or located in a hazardous environment.

The CAT525 offers four independently programmable DPPs each having its own reference inputs and each capable of rail to rail output swing. The wipers are buffered by rail to rail op amps. Wiper settings, stored in non-volatile NVRAM memory, are not lost when the device is powered down and are automatically reinstated when power is returned. Each wiper can be dithered to

FUNCTIONAL DIAGRAM

APPLICATIONS

- Automated product calibration
- Remote control adjustment of equipment
- Offset, gain and zero adjustments in self-calibrating and adaptive control systems
- Tamper-proof calibrations
- DAC (with memory) substitute

test new output values without effecting the stored settings and stored settings can be read back without disturbing the DPP's output.

Control of the CAT525 is accomplished with a simple 3wire, Microwire-like serial interface. A Chip Select pin allows several CAT525's to share a common serial interface and communications back to the host controller is via a single serial data line thanks to the CAT525's Tri-Stated Data Output pin. A RDY/BSY output working in concert with an internal low voltage detector signals proper operation of non-volatile NVRAM Memory Erase/ Write cycle.

The CAT525 is available in the 0°C to 70°C commercial and -40°C to 85°C industrial operating temperature ranges and offered in 20-pin plastic DIP and surface mount packages.

PIN CONFIGURATION SOIC Package (J) **DIP Package (P)** VREFH2 20 VREFH3 20 VREFH3 1 VREFH2 2 V_{REFH4} VREFH1 19 VREFH1 2 19 VREFH4 3 18 VOUT1 VDD 18 VOUT1 V_{DD} 3 CLK 4 17 V_{OUT2} CLK 17 VOUT2 4 RDY/BSY 5 RDY/BSY 16 VOUT3 5 16 VOUT3 CAT525 cs 6 VOUT4 6_{САТ525}15 🗌 V_{ОUT4} cs 7 DI V_{REFL4} 14 VREFL4 14 DI 7 DO 8 13 VREFL3 DO 8 13 V_{REFL3} 9 12 V_{REFL2} PROG 12 PROG 9 GND 10 11 VREFL1 11 GND 10 VREFL1 Doc. No. 2001, Rev. B

ABSOLUTE MAXIMUM RATINGS

Supply Voltage*
V_{DD} to GND0.5V to +7V
Inputs
CLK to GND0.5V to V _{DD} +0.5V
CS to GND0.5V to V_{DD} +0.5V
DI to GND0.5V to V_{DD} +0.5V
RDY/BSY to GND0.5V to V _{DD} +0.5V
PROG to GND0.5V to V _{DD} +0.5V
$V_{REF}H$ to GND0.5V to V_{DD} +0.5V
$V_{REF}L$ to GND0.5V to V_{DD} +0.5V
Outputs
D_0 to GND0.5V to V_{DD} +0.5V
V_{OUT} 1– 4 to GND0.5V to V_{DD} +0.5V

Operating Ambient	Temperature
--------------------------	-------------

Commercial ('C' or Blank suffix)	0°C to +70°C
Industrial ('l' suffix)	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Units	Test Method
V _{ZAP} ⁽¹⁾	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	100		mA	JEDEC Standard 17

NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.

2. Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to $V_{CC} + 1V$.

POWER SUPPLY

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD1}	Supply Current (Read)	Normal Operating	_	400	600	μA
I _{DD2}	Supply Current (Write)	Programming, $V_{DD} = 5V$	_	1600	2500	μA
		$V_{DD} = 3V$	_	1000	1600	μA
V _{DD}	Operating Voltage Range		2.7	—	5.5	V

LOGIC INPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{IH}	Input Leakage Current	$V_{IN} = V_{DD}$	_		10	μΑ
IIL	Input Leakage Current	$V_{IN} = 0V$	—	—	-10	μΑ
VIH	High Level Input Voltage		2	—	V _{DD}	V
VIL	Low Level Input Voltage		0	_	0.8	V

LOGIC OUTPUTS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OH}	High Level Output Voltage	I _{OH} = -40μA	V _{DD} -0.3			V
VIL	Low Level Output Voltage	I_{OL} = 1 mA, V_{DD} = +5V		—	0.4	V
		$I_{OL} = 0.4 \text{ mA}, V_{DD} = +3V$			0.4	V

POTENTIOMETER CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance			28		kΩ
	R _{POT} to R _{POT} Match			<u>+</u> 0.5	<u>+</u> 1	%
	Pot Resistance Tolerance				<u>+</u> 15	%
	Voltage on V _{REFH} pin		2.7		V _{DD}	V
	Voltage on V _{REFL} pin		OV		V _{DD} - 2.7	V
	Resolution			0.4		%
INL	Integral Linearity Error			0.5	1	LSB
DNL	Differential Linearity Error			0.25	0.5	LSB
R _{OUT}	Buffer Output Resistance				10	Ω
I _{OUT}	Buffer Output Current				3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC					ppm/°C
R _{ISO}	Isolation Resistance					Ω
V _N	Noise					nV/√Hz
C _H /C _L	Potentiometer Capacitances			8/8		pF
fc	Frequency Response	Passive Attenuator				MHz

AC ELECTRICAL CHARACTERISTICS:

 V_{DD} = +2.7V to +5.5V, $V_{REF}H$ = V_{DD} , $V_{REF}L$ = 0V, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Digital				I		
t _{CSMIN}	Minimum CS Low Time		150		_	ns
t _{CSS}	CS Setup Time		100	_	—	ns
t _{CSH}	CS Hold Time		0	_	_	ns
t _{DIS}	DI Setup Time	CL=100pF,	50	_	_	ns
t _{DIH}	DI Hold Time	see note 1	50	_	_	ns
t _{DO1}	Output Delay to 1		—	—	150	ns
t _{DO0}	Output Delay to 0		—	_	150	ns
t _{HZ}	Output Delay to High-Z		_	400	_	ns
t _{LZ}	Output Delay to Low-Z		_	400	—	ns
t _{BUSY}	Erase/Write Cycle Time			4	5	ms
t _{PS}	PROG Setup Time		150	_	_	ns
t _{PROG}	Minimum Pulse Width		700	_	—	ns
t _{CLK} H	Minimum CLK High Time		500	_	_	ns
t _{CLK} L	Minimum CLK Low Time		300	_	_	ns
f _C	Clock Frequency		DC	_	1	MHz
Analog						•

tDSDPP Settling Time to 1 LSB $C_{LOAD} = 10 \text{ pF}, V_{DD} = +5V$ -310 μs $C_{LOAD} = 10 \text{ pF}, V_{DD} = +3V$ -610 μs

NOTES: 1. All timing measurements are defined at the point of signal crossing V_{DD} / 2.

2. These parameters are periodically sampled and are not 100% tested.

A. C. TIMING DIAGRAM

to 1 2 3 4 5	PARAM NAME	FROM TO	MIN/MAX
tcLKH ▲	tcLKH	Rising CLK edge to falling CLK edge	Min
	tCLKL	Falling CLK edge to CLK rising edge	Min
	tCSH	Falling CLK edge for last data bit (DI) to falling CS edge	Min
← tcss ← tcLkL ← ← tcsH ←	tcss	Rising CS edge to next rising CLK edge	Min
	tCSMIN	tCSMIN Falling CS edge to rising CS edge	Min
	tDIS	Data valid to first rising CLK edge after CS = high	Min
+ I I I I I I I I I I I I I	tDIH	Rising CLK edge to end of data valid	Min
	tD00	Rising CLK edge to D0 = low	Max
	tLZ	Rising CS edge to D0 becoming high low impedance (active output)	(Max)
	tD01 tHZ	Rising CLK edge to D0 = high Falling CS edge to D0 becoming high impedance (Tri-State)	Max (Max)
	tps	Rising PROG edge to next rising CLK edge	Min
throg	tprog		Min
	tBUSY	Falling CLK edge after PROG=H to rising RDY/ <u>BSY</u> edge	Max
to 1 2 3 4 5			

PIN DESCRIPTION

Pin	Name	Function
1	V _{REFH2}	Maximum DPP 2 output voltage
2	V _{REFH1}	Maximum DPP 1 output voltage
3	V _{DD}	Power supply positive
4	CLK	Clock input pin
5	RDY/BSY	Ready/Busy output
6	CS	Chip select
7	DI	Serial data input pin
8	DO	Serial data output pin
9	PROG	Non-volatile Memory Programming Enable Input
10	GND	Power supply ground
11	V _{REFL1}	Minimum DPP 1 output voltage
12	V _{REFL2}	Minimum DPP 2 output voltage
13	V _{REFL3}	Minimum DPP 3 output voltage
14	V _{REFL4}	Minimum DPP 4 output voltage
15	V _{OUT4}	DPP 4 output
16	V _{OUT3}	DPP 3 output
17	V _{OUT2}	DPP 2 output
18	V _{OUT1}	DPP 1 output
19	V _{REFH4}	Maximum DPP 4 output voltage
20	V _{REFH3}	Maximum DPP 3 output voltage

CDPP/DPP addressing is as follows:

DPP OUTPUT	A0	A1
VOUT1	0	0
VOUT2	1	0
Vout3	0	1
V _{OUT4}	1	1

DEVICE OPERATION

The CAT525 is a quad 8-bit configured digitally programmable potentiometer (DPP/CDPP) whose outputs can be programmed to any one of 256 individual voltage steps. Once programmed, these output settings are retained in non-volatile memory and will not be lost when power is removed from the chip. Upon power up the DPPs return to the settings stored in non-volatile memory. Each confitured DPP can be written to and read from independently without effecting the output voltage during the read or write cycle. Each output can also be adjusted without altering the stored output setting, which is useful for testing new output settings before storing them in memory.

DIGITAL INTERFACE

The CAT525 employs a 3 wire serial, Microwire-like control interface consisting of Clock (CLK), Chip Select (CS) and Data In (DI) inputs. For all operations, address and data are shifted in LSB first. In addition, all digital data must be preceded by a logic "1" as a start bit. The DPP address and data are clocked into the DI pin on the clock's rising edge. When sending multiple blocks of information a minimum of two clock cycles is required between the last block sent and the next start bit.

Multiple devices may share a common input data line by selectively activating the CS control of the desired IC. Data Outputs (DO) can also share a common line because the DO pin is Tri-Stated and returns to a high

impedance when not in use.

CHIP SELECT

Chip Select (CS) enables and disables the CAT525's read and write operations. When CS is high data may be read to or from the chip, and the Data Output (DO) pin is active. Data loaded into the DPP wiper control registers will remain in effect until CS goes low. Bringing CS to a logic low returns all DPP outputs to the settings stored in non-volatile memory and switches DO to its high impedance Tri-State mode.

Because CS functions like a reset the CS pin has been desensitized with a 30 ns to 90 ns filter circuit to prevent noise spikes from causing unwanted resets and the loss of volatile data.

CLOCK

The CAT525's clock controls both data flow in and out of the IC and non-volatile memory cell programming. Serial data is shifted into the DI pin and out of the DO pin on the clock's rising edge. While it is not necessary for the clock to be running between data transfers, the clock must be operating in order to write to non-volatile memory, even though the data being saved may already be resident in the DPP wiper control register.

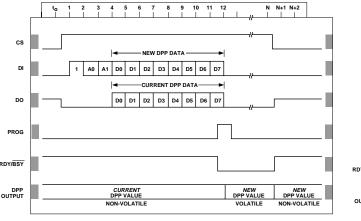
No clock is necessary upon system power-up. The CAT525's internal power-on reset circuitry loads data from non-volatile memory to the DPPs without using the external clock.

As data transfers are edge triggered clean clock transitions are necessary to avoid falsely clocking data into the control registers. Standard CMOS and TTL logic families work well in this regard and it is recommended that any mechanical switches used for breadboarding or device evaluation purposes be debounced by a flip-flop or other suitable debouncing circuit.

VREF

 V_{REF} , the voltage applied between pins $V_{REFL} \& V_{REFL}$, sets the configured DPP's Zero to Full Scale output range where $V_{REFL} = Zero$ and $V_{REFH} = Full Scale$. V_{REF} can span the full power supply range or just a fraction of it. In typical applications $V_{REFH} \& V_{REFL}$ are connected across the power supply rails. When using less than the full supply voltage be mindfull of the limits placed on V_{REFH} and V_{REFL} as specified in the References section of DC Electrical Characteristics.

READY/BUSY


When saving data to non-volatile memory, the Ready/ Busy ouput (RDY/BSY) signals the start and duration of the erase/write cycle. Upon receiving a command to store data (PROG goes high) RDY/BSY goes low and remains low until the programming cycle is complete. During this time the CAT525 will ignore any data appearing at DI and no data will be output on DO.

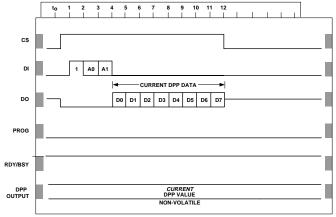
RDY/BSY is internally ANDed with a low voltage detector circuit monitoring V_{DD} . If V_{DD} is below the minimum value required for EEPROM programming, RDY/BSY will remain high following the program command indicating a failure to record the desired data in non-volatile memory.

DATA OUTPUT

Data is output serially by the CAT525, LSB first, via the Data Out (DO) pin following the reception of a start bit and two address bits by the Data Input (DI). DO becomes active whenever CS goes high and resumes its high impedance Tri-State mode when CS returns low. Tri-Stating the DO pin allows several 525s to share a

single serial data line and simplifies interfacing multiple 525s to a microprocessor.

WRITING TO MEMORY


Programming the CAT525's non-volatile memory is accomplished through the control signals: Chip Select (CS) and Program (PROG). With CS high, a start bit followed by a two bit DPP address and eight data bits are clocked into the DPP wiper control register via the DI pin. Data enters on the clock's rising edge. The DPP output changes to its new setting on the clock cycle following D7, the last data bit.

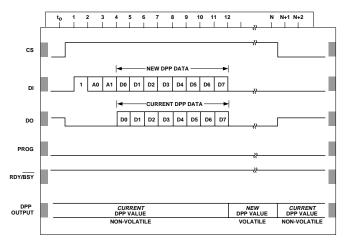
Programming is accomplished by bringing PROG high sometime after the start bit and at least 150 ns prior to the rising edge of the clock cycle immediately following the D7 bit. Two clock cycles after the D7 bit the DPP control register will be ready to receive the next set of address and data bits. The clock must be kept running throughout the programming cycle. Internal control circuitry takes care of generating and ramping up the programming voltage for data transfer to the non-volatile memory cells. The CAT525's non-volatile memory cells will endure over 100,000 write cycles and will retain data for a minimum of 20 years without being refreshed.

READING DATA

Each time data is transferred into a DPP wiper control register currently held data is shifted out via the D0 pin, thus in every data transaction a read cycle occurs. Note, however, that the reading process is destructive. Data must be removed from the register in order to be read. Figure 2 depicts a Read Only cycle in which no change occurs in the DPP's output. This feature allows μ Ps to poll DPPs for their current setting without disturbing the output voltage but it assumes that the setting being read is also stored in non-volatile memory so that it can be restored at the end of the read cycle. In Figure 2 CS returns low before the 13th clock cycle completes. In doing so the non-volatile memory setting is reloaded into the DPP wiper control register. Since this value is the

Figure 2. Reading from Memory

same as that which had been there previously no change in the DPP's output is noticed. Had the value held in the control register been different from that stored in nonvolatile memory then *a change would occur* at the read cycle's conclusion.


TEMPORARILY CHANGE OUTPUT

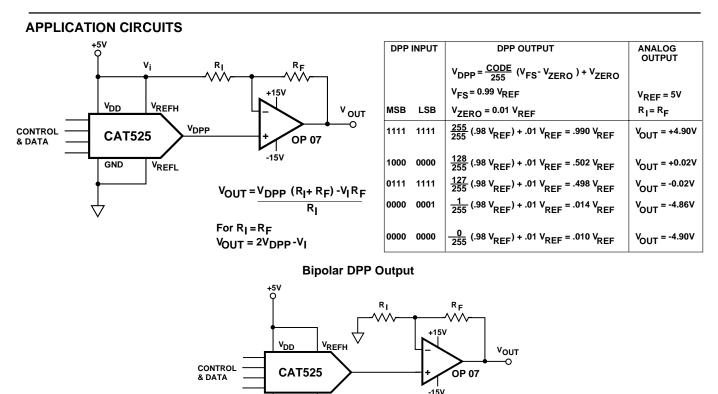

The CAT525 allows temporary changes in DPP's output to be made without disturbing the settings retained in non-volatile memory. This feature is particularly useful when testing for a new output setting and allows for user adjustment of preset or default values without losing the original factory settings.

Figure 3 shows the control and data signals needed to effect a temporary output change. DPP settings may be changed as many times as required and can be made to any of the four DPPs in any order or sequence. The temporary setting(s) remain in effect long as CS remains high. When CS returns low all four DPPs will return to the output values stored in non-volatile memory.

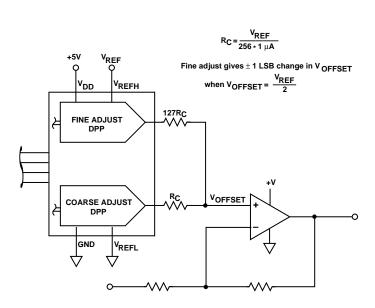
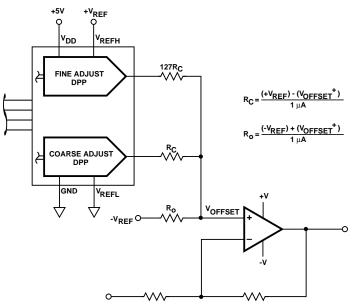
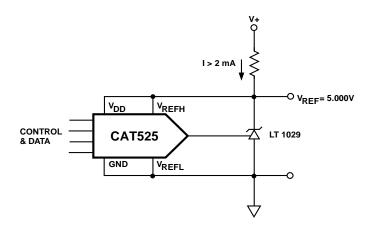
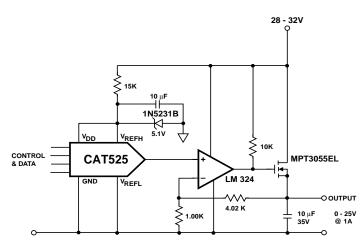
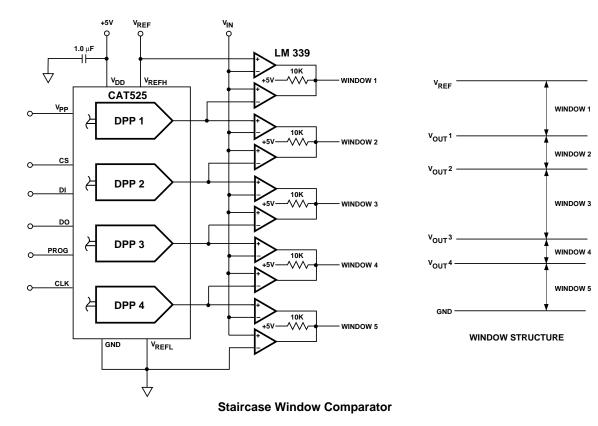

When it is desired to save a new setting acquired using this feature, the new value must be reloaded into the DPP control register prior to programming. This is because the CAT525's internal control circuitry discards from the programming register the new data two clock cycles after receiving it if no PROG signal is received.

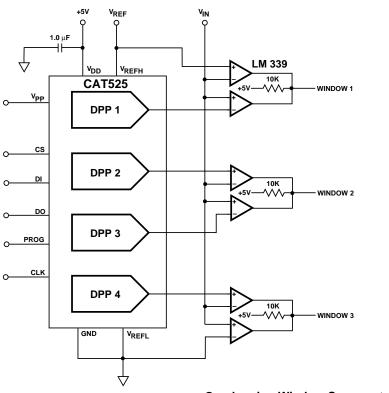
Figure 3. Temporary Change in Output

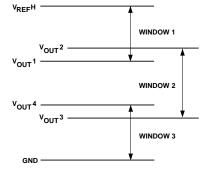



ひ

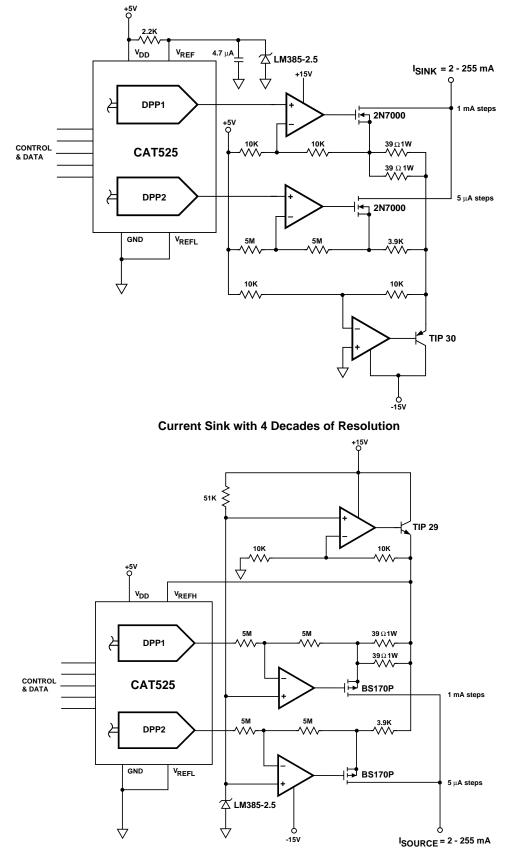

Coarse-Fine Offset Control by Averaging DPP Outputs for Single Power Supply Systems

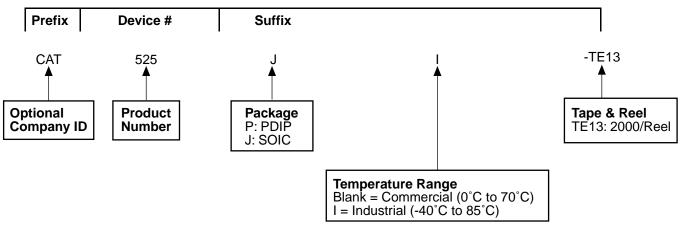

Coarse-Fine Offset Control by Averaging DPP Outputs for Dual Power Supply Systems




Digitally Trimmed Voltage Reference

Digitally Controlled Voltage Reference




WINDOW STRUCTURE

Current Source with 4 Decades of Resolution

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT525JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2001Revison:BIssue Date:3/22/02Type:Final

CAT5111

100-Tap Digitally Programmable Potentiometer (DPP™) with Buffered Wiper

APPLICATIONS

Automated product calibration

Remote control adjustments

Offset, gain and zero control

Contrast, brightness and volume controls

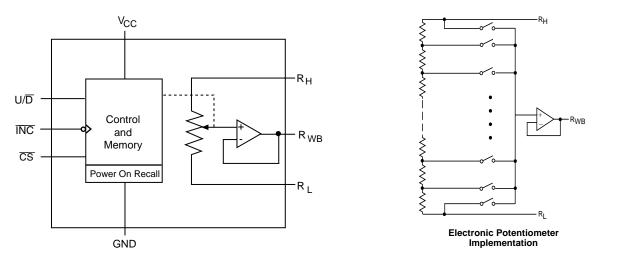
Motor controls and feedback systems

Programmable analog functions

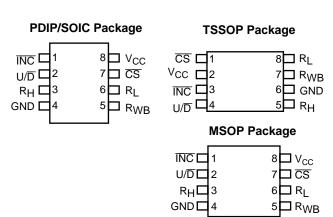
Tamper-proof calibrations

FEATURES

- 100-position linear taper potentiometer
- Non-volatile NVRAM wiper storage; buffered wiper
- Low power CMOS technology
- Single supply operation: 2.5V-6.0V
- Increment up/down serial interface
- **■** Resistance values: $10k\Omega$, $50k\Omega$ and $100k\Omega$
- Available in PDIP, SOIC, TSSOP and MSOP packages


DESCRIPTION

The CAT5111 is a single digitally programmable potentiometer (DPPTM) designed as a electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.


The CAT5111 contains a 100-tap series resistor array connected between two terminals R_H and R_L . An up/ down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_{WB} . The CAT5111 wiper is buffered by an op amp that operates rail to rail. The wiper setting, stored in non-volatile NVRAM memory, is not lost when the device is powered down and is automatically recalled when

power is returned. The wiper can be adjusted to test new system values without effecting the stored setting. Wiper-control of the CAT5111 is accomplished with three input control pins, \overline{CS} , U/\overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a broad range of applications and are used primarily to control, regulate or adjust a characteristic or parameter of an analog circuit.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

PIN FUNCTIONS

Pin Name	Function
INC	Increment Control
U/D	Up/Down Control
RH	Potentiometer High Terminal
GND	Ground
RwB	Buffered Wiper Terminal
RL	Potentiometer Low Terminal
CS	Chip Select
V _{cc}	Supply Voltage

PIN DESCRIPTIONS

INC: Increment Control Input

The $\overline{\text{INC}}$ input (on the falling edge) moves the wiper in the up or down direction determined by the condition of the U/D input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any highto-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

R_{H:} High End Potentiometer Terminal

 R_H is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the R_L terminal. Voltage applied to the R_H terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RwB: Wiper Potentiometer Terminal (Buffered)

 R_{WB} is the buffered wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, INC, U/D and CS.

RL: Low End Potentiometer Terminal

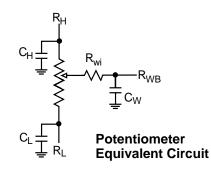
 R_L is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_H terminal. Voltage applied to the R_L terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_L and R_H are electrically interchangeable.

CS: Chip Select

The chip select input is used to activate the control input

of the CAT5111 and is active low. When in a high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION


The CAT5111 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_{WB} equivalent to the mechanical potentiometer's wiper. There are 100 available tap positions including the resistor end points, R_H and R_L . There are 99 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 100 taps and controlled by three inputs, \overline{INC} , U/\overline{D} and \overline{CS} . These inputs control a sevenbit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the \overline{INC} and \overline{CS} inputs.

With \overline{CS} set LOW the CAT5111 is selected and will respond to the U/ \overline{D} and \overline{INC} inputs. HIGH to LOW transitions on \overline{INC} wil increment or decrement the wiper (depending on the state of the U/ \overline{D} input and seven-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever \overline{CS} transitions HIGH while the \overline{INC} input is also HIGH. When the CAT5111 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the CAT5111 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATING MODES

INC	CS	U/D	Operation
High to Low	Low	High	Wiper toward R _H
High to Low	Low	Low	Wiper toward RL
High	Low to High	Х	Store Wiper Position
Low	Low to High	Х	No Store, Return to Standby
Х	High	Х	Standby

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC} to GND Inputs	-0.5V to +7V
Inputs	
CS to GND	–0.5V to V _{CC} +0.5V
INC to GND	-0.5V to V _{CC} +0.5V
U/D to GND	-0.5V to V _{CC} +0.5V
R _H to GND	-0.5V to V _{CC} +0.5V
R _L to GND	-0.5V to V _{CC} +0.5V
R _{WB} to GND	-0.5V to V _{CC} +0.5V

Operating Ambient Temperature Commercial ('C' or Blank suffix) 0°C to +70°C Industrial ('l' suffix) - 40°C to +85°C Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Soldering (10 sec max) +300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} ⁽¹⁾	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			Volts
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC Electrical Characteristics: V_{CC} = +2.5V to +6.0V unless otherwise specified

Power Supply

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	_	6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V, f = 1MHz, I_W = 0$	_	_	200	μΑ
		$V_{CC} = 6V, f = 250 \text{kHz}, I_W = 0$	_	_	100	
I _{CC2}	Supply Current (Write)	Programming, $V_{CC} = 6V$		_	1	mA
		$V_{CC} = 3V$	—	_	500	μA
ISB1 ⁽²⁾	Supply Current (Standby)	CS=V _{CC} -0.3V	_	75	150	μA
		U/D, INC=V _{CC} -0.3V or GND				

Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IIH	Input Leakage Current	$V_{IN} = V_{CC}$	_		10	μΑ
IIL	Input Leakage Current	$V_{IN} = 0V$	—		-10	μA
V _{IH1}	TTL High Level Input Voltage	$4.5V \leq V_{CC} \leq 5.5V$	2	_	Vcc	V
V _{IL1}	TTL Low Level Input Voltage		0	_	0.8	V
V _{IH2}	CMOS High Level Input Voltage	$2.5V \le V_{CC} \le 6V$	V _{CC} x 0.7		V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage		-0.3		V _{CC} x 0.2	V

NOTES: (1) This parameter is tested initially and after a design or process change that affects the parameter.

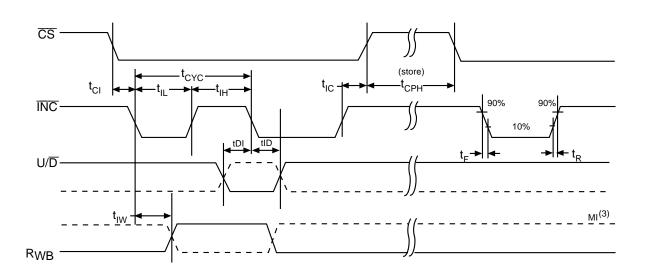
(2) Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V

(3) Iw=source or sink
(4) These parameters are periodically sampled and are not 100% tested.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance	-10 Device		10		
		-50 Device		50		kΩ
		-00 Device		100		
	Pot Resistance Tolerance				±15	%
V _{RH}	Voltage on R _H pin		0		Vcc	V
V _{RL}	Voltage on R _L pin		0		Vcc	V
	Resolution			1		%
INL	Integral Linearity Error	$I_W \le 2\mu A$		0.5	1	LSB
DNL	Differential Linearity Error	$I_W \le 2\mu A$		0.25	0.5	LSB
Rout	Buffer Output Resistance	$.05V_{CC} \le V_{WB} \le .95V_{CC}, V_{CC}=5V$			1	Ω
IOUT	Buffer Output Current	$.05V_{CC} \le V_{WB} \le .95V_{CC}, V_{CC} = 5V$			3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/ºC
TC _{RATIO}	Ratiometric TC			TBD		ppm/ºC
R _{ISO}	Isolation Resistance			TBD		Ω
C _{RH} /C _{RL} /C _{RW}	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, $10k\Omega$		1.7		MHz
V _{WB} (SWING)	Output Voltage Range	Ι _{ΟUT} ≤100μΑ, V _{CC} =5V	0.01Vcc		.99Vcc	

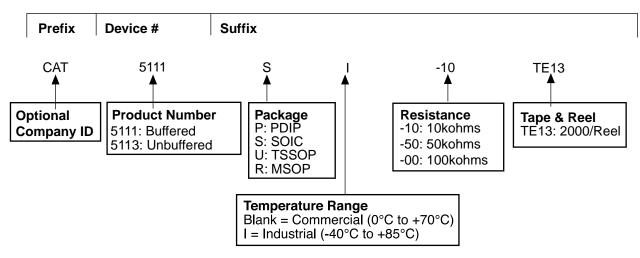
Potentiometer Parameters

AC CONDITIONS OF TEST


V _{CC} Range	$2.5V \le V_{CC} \le 6V$
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

AC OPERATING CHARACTERISTICS:

 V_{CC} = +2.5V to +6.0V, V_{H} = $V_{CC},\,V_{L}$ = 0V, unless otherwise specified


Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{CI}	CS to INC Setup	100	_		ns
t _{DI}	U/D to INC Setup	50	_		ns
t _{ID}	U/D to INC Hold	100	_	_	ns
t _{IL}	INC LOW Period	250	_		ns
t _{IH}	INC HIGH Period	250	_	_	ns
t _{IC}	INC Inactive to CS Inactive	1	_		μs
t _{CPH}	CS Deselect Time (NO STORE)	100	_	—	ns
t _{CPH}	CS Deselect Time (STORE)	10	_	_	ms
t _{IW}	INC to V _{OUT} Change	—	1	5	μs
t _{CYC}	INC Cycle Time	1	—		μs
$t_{R,} t_{F}^{(2)}$	INC Input Rise and Fall Time	—	—	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable	—	—	1	msec
t _{WR}	Store Cycle	—	5	10	ms

A. C. TIMING

(1) Typical values are for T_A=25°C and nominal supply voltage.
(2) This parameter is periodically sampled and not 100% tested.
(3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT5111 SI-10TE13 (SOIC, 10K Ohms, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2002Revison:IIssue date:04/17/02Type:Final

CAT5112

32-Tap Digitally Programmable Potentiometer (DPP™) with Buffered Wiper

APPLICATIONS

Automated product calibration

Remote control adjustments

Offset, gain and zero control

Contrast, brightness and volume controls

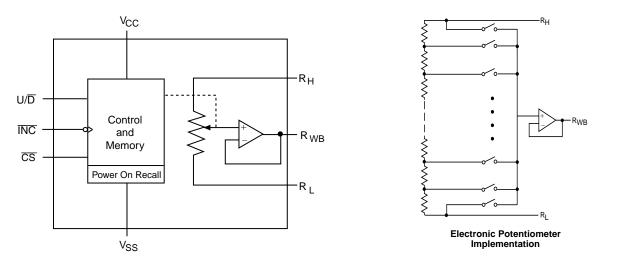
Motor controls and feedback systems

Programmable analog functions

Tamper-proof calibrations

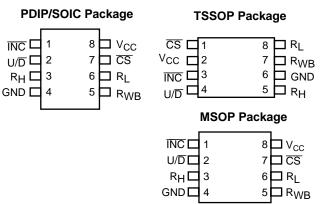
FEATURES

- 32-position linear taper potentiometer
- Non-volatile NVRAM wiper storage; buffered wiper
- Low power CMOS technology
- Single supply operation: 2.5V-6.0V
- Increment up/down serial interface
- **■** Resistance values: $10k\Omega$, $50k\Omega$ and $100k\Omega$
- Available in PDIP, SOIC, TSSOP and MSOP packages


DESCRIPTION

The CAT5112 is a single digitally programmable potentiometer (DPPTM) designed as a electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The CAT5112 contains a 32-tap series resistor array connected between two terminals R_H and R_L . An up/ down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_{WB} . The CAT5112 wiper is buffered by an op amp that operates rail to rail. The wiper setting, stored in non-volatile NVRAM memory, is not lost when the device is powered down and is automatically recalled when


power is returned. The wiper can be adjusted to test new system values without effecting the stored setting. Wiper-control of the CAT5112 is accomplished with three input control pins, \overline{CS} , U/\overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a broad range of applications and are used primarily to control, regulate or adjust a characteristic or parameter of an analog circuit.

FUNCTIONAL DIAGRAM

PIN FUNCTIONS

Pin Name	Function
INC	Increment Control
U/D	Up/Down Control
RH	Potentiometer High Terminal
GND	Ground
RwB	Buffered Wiper Terminal
RL	Potentiometer Low Terminal
CS	Chip Select
V _{cc}	Supply Voltage

PIN DESCRIPTIONS

INC: Increment Control Input

The $\overline{\text{INC}}$ input (on the falling edge) moves the wiper in the up or down direction determined by the condition of the U/D input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any highto-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

R_H: High End Potentiometer Terminal

 R_H is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the R_L terminal. Voltage applied to the R_H terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RwB: Wiper Potentiometer Terminal (Buffered)

 R_{WB} is the buffered wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/ \overline{D} and \overline{CS} .

RL: Low End Potentiometer Terminal

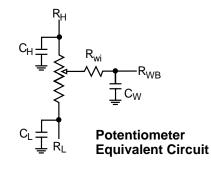
 R_L is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_H terminal. Voltage applied to the R_L terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_L and R_H are electrically interchangeable.

CS: Chip Select

The chip select input is used to activate the control input

of the CAT5112 and is active low. When in a high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION


The CAT5112 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_{WB} equivalent to the mechanical potentiometer's wiper. There are 32 available tap positions including the resistor end points, R_H and R_L . There are 31 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 32 taps and controlled by three inputs, INC, U/D and \overline{CS} . These inputs control a five-bit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the INC and \overline{CS} inputs.

With \overline{CS} set LOW the CAT5112 is selected and will respond to the U/D and \overline{INC} inputs. HIGH to LOW transitions on \overline{INC} wil increment or decrement the wiper (depending on the state of the U/D input and fivebit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever \overline{CS} transitions HIGH while the \overline{INC} input is also HIGH. When the CAT5112 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the CAT5112 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATING MODES

INC	CS	U/D	Operation
High to Low	Low	High	Wiper toward H
High to Low	Low	Low	Wiper toward L
High	Low to High	Х	Store Wiper Position
Low	Low to High	Х	No Store, Return to Standby
Х	High	Х	Standby

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC} to GND	-0.5V to +7V
Inputs	
CS to GND	-0.5V to V _{CC} +0.5V
INC to GND	-0.5V to V _{CC} +0.5V
U/D to GND	-0.5V to V _{CC} +0.5V
R _H to GND	-0.5V to V _{CC} +0.5V
R _L to GND	-0.5V to V _{CC} +0.5V
R _{WB} to GND	-0.5V to V _{CC} +0.5V

Operating Ambient Temperature Commercial ('C' or Blank suffix) 0°C to +70°C Industrial ('I' suffix) -40°C to +85°C Junction Temperature +150°C Storage Temperature -65°C to +150°C Lead Soldering (10 sec max) +300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} ⁽¹⁾	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			Volts
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC Electrical Characteristics: V_{CC} = +2.5V to +6.0V unless otherwise specified **Power Supply**

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	—	6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V, f = 1MHz, I_W = 0$			200	μA
		$V_{CC} = 6V, f = 250kHz, I_W = 0$	—	—	100	
I _{CC2}	Supply Current (Write)	Programming, $V_{CC} = 6V$	_	_	1	mA
		$V_{CC} = 3V$	—	_	500	μA
ISB1 ⁽²⁾	Supply Current (Standby)	CS=V _{CC} -0.3V	_	75	150	μΑ
		U/D, INC= V_{CC} -0.3V or GND				

Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IIH	Input Leakage Current	$V_{IN} = V_{CC}$	_		10	μΑ
IIL	Input Leakage Current	$V_{IN} = 0V$	_	—	-10	μΑ
V _{IH1}	TTL High Level Input Voltage	$4.5V \le V_{CC} \le 5.5V$	2	—	V _{CC}	V
V _{IL1}	TTL Low Level Input Voltage		0	—	0.8	V
V _{IH2}	CMOS High Level Input Voltage	$2.5V \le V_{CC} \le 6V$	V _{CC} x 0.7	_	V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage		-0.3	—	V _{CC} x 0.2	V

(1) This parameter is tested initially and after a design or process change that affects the parameter. NOTES:

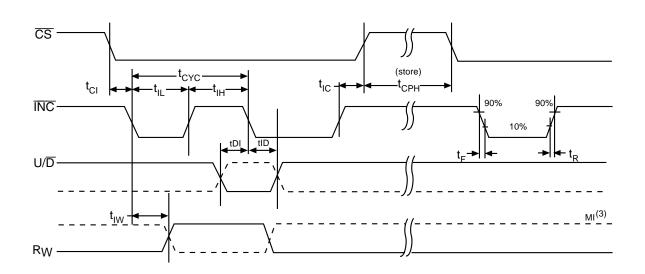
(2) Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V

(3) Iw=source or sink
(4) These parameters are periodically sampled and are not 100% tested.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{POT}	Potentiometer Resistance	-10 Device		10		
		-50 Device		50		kΩ
		-00 Device		100		
	Pot Resistance Tolerance				±15	%
V _{RH}	Voltage on R _H pin		0		Vcc	V
V _{RL}	Voltage on R _L pin		0		Vcc	V
	Resolution			1		%
INL	Integral Linearity Error	$I_W \le 2\mu A$		0.5	1	LSB
DNL	Differential Linearity Error	$I_W \le 2\mu A$		0.25	0.5	LSB
Rout	Buffer Output Resistance	$.05V_{CC} \le V_{WB} \le .95V_{CC}, V_{CC} = 5V$			1	Ω
IOUT	Buffer Output Current	$.05V_{CC} \le V_{WB} \le .95V_{CC}, V_{CC} = 5V$			3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC			TBD		ppm/°C
R _{ISO}	Isolation Resistance			TBD		Ω
C _{RH} /C _{RL} /C _{RW}	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, $10k\Omega$		1.7		MHz
V _{WB} (SWING)	Output Voltage Range	I _{OUT} ≤100μA, V _{CC} =5V	0.01V _{CC}		.99V _{CC}	

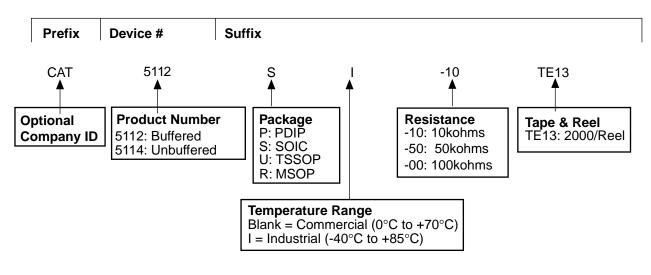
Potentiometer Parameters

AC CONDITIONS OF TEST


V _{CC} Range	$2.5V \le V_{CC} \le 6V$
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

AC OPERATING CHARACTERISTICS:

 V_{CC} = +2.5V to +6.0V, V_{H} = V_{CC} , V_{L} = 0V, unless otherwise specified


Symbol	Parameter	Min	Typ ⁽¹⁾	Мах	Units
t _{CI}	CS to INC Setup	100	_		ns
t _{DI}	U/D to INC Setup	50	—		ns
t _{ID}	U/D to INC Hold	100	_	—	ns
t _{IL}	INC LOW Period	250	—		ns
t _{IH}	INC HIGH Period	250	_	_	ns
t _{IC}	INC Inactive to CS Inactive	1	_		μs
t _{CPH}	CS Deselect Time (NO STORE)	100	—		ns
t _{CPH}	CS Deselect Time (STORE)	10	_		ms
t _{IW}	INC to V _{OUT} Change	—	1	5	μs
t _{CYC}	INC Cycle Time	1			μs
t _R , t _F ⁽²⁾	INC Input Rise and Fall Time		—	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable	_	_	1	msec
t _{WR}	Store Cycle		5	10	ms

A. C. TIMING

(1) Typical values are for T_A=25°C and nominal supply voltage.
(2) This parameter is periodically sampled and not 100% tested.
(3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT5112 SI-10TE13 (SOIC, 10K Ohms, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2002Revison:FIssue date:4/18/02Type:Final

CAT5113

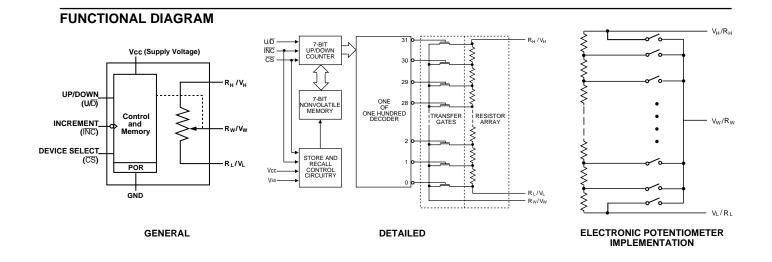
100-Tap Digitally Programmable Potentiometer (DPP™)

FEATURES

- 100-position linear taper potentiometer
- Non-volatile NVRAM wiper storage
- Low power CMOS technology
- Single supply operation: 2.5V-6.0V
- Increment Up/Down serial interface
- \blacksquare Resistance values: $\mathbf{10k}\Omega$, $\mathbf{50k}\Omega$ and $\mathbf{100k}\Omega$
- Available in PDIP, SOIC, TSSOP and MSOP packages

APPLICATIONS

- Automated product calibration
- Remote control adjustments
- Offset, gain and zero control
- Tamper-proof calibrations
- Contrast, brightness and volume controls
- Motor controls and feedback systems
- Programmable analog functions


DESCRIPTION

The CAT5113 is a single digitally programmable potentiometer (DPP[™]) designed as a electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The CAT5113 contains a 100-tap series resistor array connected between two terminals R_H and R_L . An up/ down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_W . The wiper setting, stored in nonvolatile memory, is not lost when the device is powered down and is automatically reinstated when power is returned. The wiper can be adjusted to test

new system values without effecting the stored setting. Wiper-control of the CAT5113 is accomplished with three input control pins, \overline{CS} , U/\overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing.

DIP/SOIC Package TSSOP Package 8 □ V_{CC} $\overline{CS} \square 1$ 8 🗖 Ri $7\square R_W$ U/<u>D</u> □ 2 Vcc 🗖 2 $7\square \overline{CS}$ 6 GND R_H **□**3 6 🗖 R U/D 4 5 🗖 R_H GND 🗖 4 5 🗖 R_W MSOP Package U/D 2 R_H**□**3 6 🗖 RL 4 5 🗖 R_W GND 🗖

PIN CONFIGURATION

PIN DESCRIPTIONS

INC: Increment Control Input

The \overline{INC} input moves the wiper in the up or down direction determined by the condition of the U/D input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

R_{H:} High End Potentiometer Terminal

 R_H is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the R_L terminal. Voltage applied to the R_H terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

Rw: Wiper Potentiometer Terminal

 R_W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} . Voltage applied to the R_W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RL: Low End Potentiometer Terminal

 R_L is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_H terminal. Voltage applied to the R_L terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_L and R_H are electrically interchangeable.

CS: Chip Select

The chip select input is used to activate the control input

PIN FUNCTIONS

Pin Name	Function
ĪNC	Increment Control
U/D	Up/Down Control
RH	Potentiometer High Terminal
GND	Ground
RW	Potentiometer Wiper Terminal
RL	Potentiometer Low Terminal
CS	Chip Select
V _{cc}	Supply Voltage

of the CAT5113 and is active low. When in a high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION

The CAT5113 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_W equivalent to the mechanical potentiometer's wiper. There are 100 available tap positions including the resistor end points, R_H and R_L . There are 99 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 100 taps and controlled by three inputs, \overline{INC} , U/D and \overline{CS} . These inputs control a sevenbit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the \overline{INC} and \overline{CS} inputs.

With \overline{CS} set LOW the CAT5113 is selected and will respond to the U/D and \overline{INC} inputs. HIGH to LOW transitions on \overline{INC} will increment or decrement the wiper (depending on the state of the U/D input and seven-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever \overline{CS} transitions HIGH while the \overline{INC} input is also HIGH. When the CAT5113 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the CAT5113 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATION MODES

OPERATION M	ODES			R _H
INC	CS	U/D	Operation	
High to Low	Low	High	Wiper toward H	
High to Low	Low	Low	Wiper toward L	
High	Low to High	Х	Store Wiper Position	Ş <u></u> Ţ ^C ₩
Low	Low to High	Х	No Store, Return to Standby	
X	High	Х	Standby	C _L <u>↓</u> Potentiometer ↓ R _L Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

Supply Voltage

V _{CC} to GND	–0.5V to +7V
Inputs	
CS to GND	–0.5V to V _{CC} +0.5V
INC to GND	–0.5V to V _{CC} +0.5V
U/D to GND	–0.5V to V _{CC} +0.5V
H to GND	–0.5V to V _{CC} +0.5V
L to GND	–0.5V to V _{CC} +0.5V
W to GND	–0.5V to V _{CC} +0.5V

Operating Ambient Temperature

Commercial ('C' or Blank suffix) 0°C to +70°C
Industrial ('I' suffix)	– 40°C to +85°C
Junction Temperature	+150°C
Storage Temperature	–65°C to +150°C
Lead Soldering (10 sec max)	+300°C

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} ⁽¹⁾	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			Volts
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC Electrical Characteristics: V_{CC} = +2.5V to +6.0V unless otherwise specified **Power Supply**

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	—	6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V, f = 1MHz, I_W=0$	_	_	100	μΑ
		$V_{CC} = 6V, f = 250kHz, I_W=0$	_		50	
I _{CC2}	Supply Current (Write)	Programming, $V_{CC} = 6V$	_	—	1	mA
		$V_{CC} = 3V$	_	_	500	μA
ISB1 (2)	Supply Current (Standby)	CS=V _{CC} -0.3V	_		1	μA
		U/D, INC=V _{CC} -0.3V or GND				

Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IIH	Input Leakage Current	$V_{IN} = V_{CC}$	_		10	μA
IIL	Input Leakage Current	$V_{IN} = 0V$	_	—	-10	μA
V _{IH1}	TTL High Level Input Voltage	$4.5V \le V_{CC} \le 5.5V$	2	_	V _{CC}	V
V _{IL1}	TTL Low Level Input Voltage		0	_	0.8	V
V _{IH2}	CMOS High Level Input Voltage	$2.5V \le V_{CC} \le 6V$	V _{CC} x 0.7		V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage		-0.3	_	V _{CC} x 0.2	V

NOTES:

(1) This parameter is tested initially and after a design or process change that affects the parameter. (2) Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V

(3) I_W=source or sink

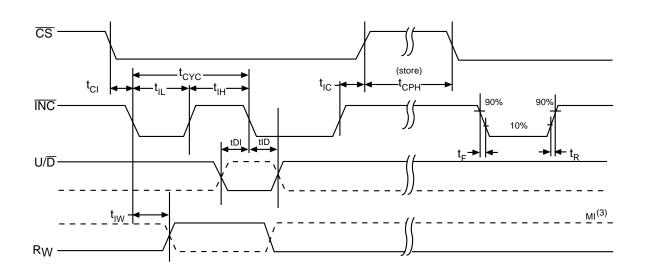
(4) These parameters are periodically sampled and are not 100% tested.

CAT5113

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Rpot	Potentiometer Resistance	-10 Device		10		
		-50 Device		50		kΩ
		-00 Device		100		
	Pot Resistance Tolerance				±15	%
V _{RH}	Voltage on R _H pin		0		Vcc	V
V _{RL}	Voltage on R _L pin		0		Vcc	V
	Resolution			1%		%
INL	Integral Linearity Error	$I_W \le 2\mu A$		0.5	1	LSB
DNL	Differential Linearity Error	I _W ≤ 2μA		0.25	0.5	LSB
Rwi	Wiper Resistance	$V_{CC} = 5V, I_W = 1mA$			400	Ω
		$V_{CC} = 2.5V, I_W = 1mA$			1	kΩ
Iw	Wiper Current				1	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/º0
TCRATIO	Ratiometric TC				20	ppm/º0
R _{ISO}	Isolation Resistance			TBD		Ω
V _N	Noise	100kHz / 1kHz		8/24		nV/√H _z
C _H /C _L /C _W	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, $10k\Omega$		1.7		MHz

Potentiometer Parameters

AC CONDITIONS OF TEST

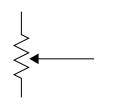

V _{CC} Range	$2.5V \le V_{CC} \le 6V$
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

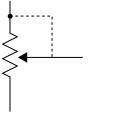
AC OPERATING CHARACTERISTICS:

 V_{CC} = +2.5V to +6.0V, V_{H} = $V_{CC}, \ V_{L}$ = 0V, unless otherwise specified

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{CI}	CS to INC Setup	100	_	_	ns
t _{DI}	U/D to INC Setup	50	_	_	ns
t _{ID}	U/D to INC Hold	100	_	_	ns
t _{IL}	INC LOW Period	250	—	—	ns
t _{IH}	INC HIGH Period	250	—	—	ns
t _{IC}	INC Inactive to CS Inactive	1	_	_	μs
t _{CPH}	CS Deselect Time (NO STORE)	100	_	—	ns
t _{CPH}	CS Deselect Time (STORE)	10	—	—	ms
t _{IW}	INC to V _{OUT} Change	_	1	5	μs
t _{CYC}	INC Cycle Time	1	—	—	μs
t _R , t _F ⁽²⁾	INC Input Rise and Fall Time	_	—	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable		—	1	msec
t _{WR}	Store Cycle	_	5	10	ms

A. C. TIMING

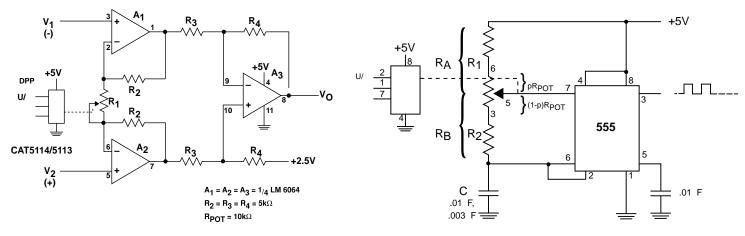

(1) Typical values are for $T_A=25^{\circ}C$ and nominal supply voltage.


(2) This parameter is periodically sampled and not 100% tested.

(3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

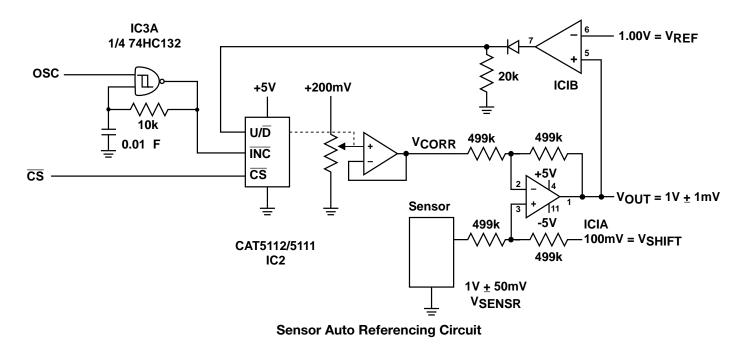
APPLICATIONS INFORMATION

Potentiometer Configurations

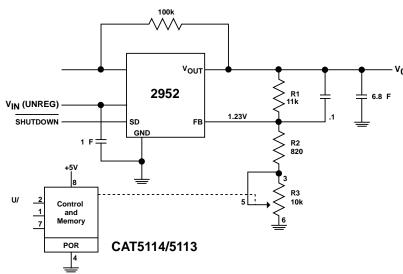


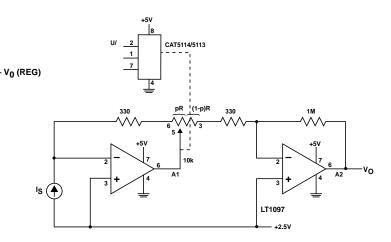
(a) resistive divider

(b) variable resistance


(c) two-port

Applications



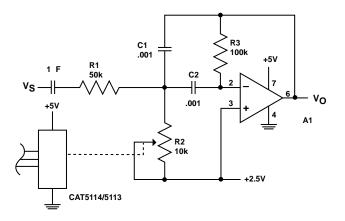

Programmable Instrumentation Amplifier

Programmable Sq. Wave Oscillator (555)

APPLICATIONS INFORMATION

R1 100k

> R 2.5k

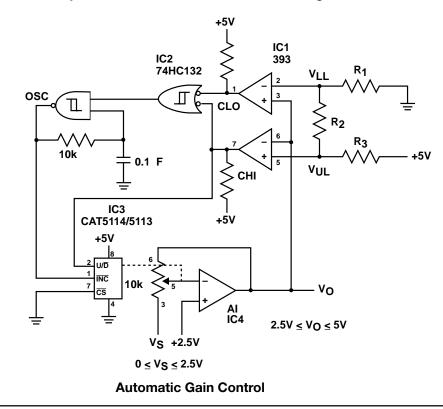

Programmable Voltage Regulator

Programmable I to V convertor

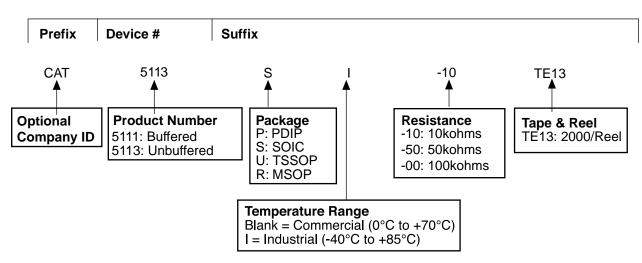
CAT5112/5111

+5V

+5V



Serial Bus +2.5V R1 +11 R1 +2.5V R1 +2.5V A1=A2=1/4 LMC6064A


R1 100

Programmable Bandpass Filter

Programmable Current Source/Sink

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT5113 SI-10TE13 (SOIC, 10K Ohms, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2009Revison:JIssue date:04/18/02Type:Final

CAT5114

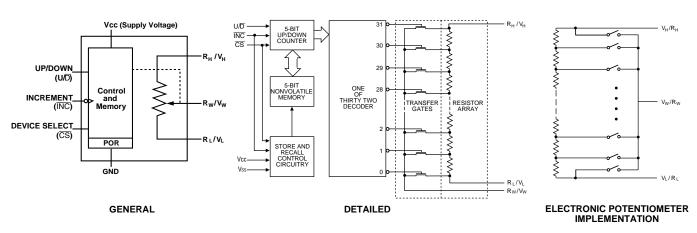
32-Tap Digitally Programmable Potentiometer (DPP[™])

FEATURES

- 32-position linear taper potentiometer
- Non-volatile NVRAM wiper storage
- Low power CMOS technology
- Single supply operation: 2.5V-6.0V
- Increment Up/Down serial interface
- **Example 10 Resistance values:** $10k\Omega$, $50k\Omega$ and $100k\Omega$
- Available in PDIP, SOIC, TSSOP and MSOP packages

APPLICATIONS

- Automated product calibration
- Remote control adjustments
- Offset, gain and zero control
- Tamper-proof calibrations
- Contrast, brightness and volume controls
- Motor controls and feedback systems
- Programmable analog functions


DESCRIPTION

The CAT5114 is a single digitally programmable potentiometer (DPP[™]) designed as a electronic replacement for mechanical potentiometers and trim pots. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The CAT5114 contains a 32-tap series resistor array connected between two terminals R_H and R_L . An up/ down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_W . The wiper setting, stored in nonvolatile memory, is not lost when the device is powered down and is automatically reinstated when power is returned. The wiper can be adjusted to test

new system values without effecting the stored setting. Wiper-control of the CAT5114 is accomplished with three input control pins, \overline{CS} , U/\overline{D} , and \overline{INC} . The \overline{INC} input increments the wiper in the direction which is determined by the logic state of the U/\overline{D} input. The \overline{CS} input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a three-terminal resistive divider or as a two-terminal variable resistor. DPPs bring variability and programmability to a wide variety of applications including control, parameter adjustments, and signal processing.

FUNCTIONAL DIAGRAM

DIP	/SOIC Pac	kage	т	SSOP Pack	age
	1 8 2 7 3 6 4 5	□ V _{CC} □ CS □ RL □ RW		2 3	8 R _L 7 R _W 6 GND 5 R _H
				MSOP Pack	age
			INC U/D R _H GND	1 8 2 7 3 6 4 5	

PIN CONFIGURATION

PIN DESCRIPTIONS

INC: Increment Control Input

The \overline{INC} input moves the wiper in the up or down direction determined by the condition of the U/D input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

RH: High End Potentiometer Terminal

 R_H is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the R_L terminal. Voltage applied to the R_H terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

Rw: Wiper Potentiometer Terminal

 R_W is the wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} . Voltage applied to the R_W terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

RL: Low End Potentiometer Terminal

 R_L is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_H terminal. Voltage applied to the R_L terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_L and R_H are electrically interchangeable.

CS: Chip Select

The chip select input is used to activate the control input

PIN FUNCTIONS

Pin Name	Function
ĪNC	Increment Control
U/D	Up/Down Control
RH	Potentiometer High Terminal
GND	Ground
Rw	Potentiometer Wiper Terminal
RL	Potentiometer Low Terminal
CS	Chip Select
V _{CC}	Supply Voltage

of the CAT5114 and is active low. When in a high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION

The CAT5114 operates like a digitally controlled potentiometer with R_H and R_L equivalent to the high and low terminals and R_W equivalent to the mechanical potentiometer's wiper. There are 32 available tap positions including the resistor end points, R_H and R_L . There are 31 resistor elements connected in series between the R_H and R_L terminals. The wiper terminal is connected to one of the 32 taps and controlled by three inputs, \overline{INC} , U/D and \overline{CS} . These inputs control a five-bit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the \overline{INC} and \overline{CS} inputs.

With \overline{CS} set LOW the CAT5114 is selected and will respond to the U/D and \overline{INC} inputs. HIGH to LOW transitions on \overline{INC} will increment or decrement the wiper (depending on the state of the U/D input and fivebit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever \overline{CS} transitions HIGH while the \overline{INC} input is also HIGH. When the CAT5114 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the CAT5114 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATION MODES

R _{wi}
Τ̈́Cw
Detentioneter
Potentiometer Equivalent Circuit
-

ABSOLUTE MAXIMUM RATINGS

Supply Voltage

V _{CC} to GND	–0.5V to +7V
Inputs	
CS to GND	–0.5V to V _{CC} +0.5V
INC to GND	–0.5V to V _{CC} +0.5V
U/D to GND	–0.5V to V _{CC} +0.5V
H to GND	–0.5V to V _{CC} +0.5V
L to GND	–0.5V to V _{CC} +0.5V
W to GND	–0.5V to V _{CC} +0.5V

Operating Ambient Temperature

Commercial ('C' or Blank suffix)	0°C to +70°C
Industrial ('l' suffix)	
Junction Temperature	
Storage Temperature	
Lead Soldering (10 sec max)	
Lead Soldering (10 sec max)	+300°C

R_H

* Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Absolute Maximum Ratings are limited values applied individually while other parameters are within specified operating conditions, and functional operation at any of these conditions is NOT implied. Device performance and reliability may be impaired by exposure to absolute rating conditions for extended periods of time.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
V _{ZAP} ⁽¹⁾	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			Volts
I _{LTH} ⁽¹⁾⁽²⁾	Latch-Up	JEDEC Standard 17	100			mA
T _{DR}	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC Electrical Characteristics: V_{CC} = +2.5V to +6.0V unless otherwise specified **Power Supply**

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	_	6.0	V
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V$, f = 1MHz, I _W =0	_	_	100	μΑ
		$V_{CC} = 6V, f = 250kHz, I_W=0$		—	50	
I _{CC2}	Supply Current (Write)	Programming, $V_{CC} = 6V$	_		1	mA
		$V_{CC} = 3V$	_		500	μA
ISB1 ⁽²⁾	Supply Current (Standby)	CS=V _{CC} -0.3V	_		1	μA
		U/D, INC=V _{CC} -0.3V or GND				

Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IIH	Input Leakage Current	$V_{IN} = V_{CC}$	_		10	μΑ
IIL	Input Leakage Current	$V_{IN} = 0V$		—	-10	μA
V _{IH1}	TTL High Level Input Voltage	$4.5V \le V_{CC} \le 5.5V$	2	_	V _{CC}	V
V _{IL1}	TTL Low Level Input Voltage		0	—	0.8	V
V _{IH2}	CMOS High Level Input Voltage	$2.5V \leq V_{CC} \leq \ 6V$	V _{CC} x 0.7		V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage		-0.3	_	V _{CC} x 0.2	V

NOTES:

This parameter is tested initially and after a design or process change that affects the parameter.
Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to V_{CC} + 1V

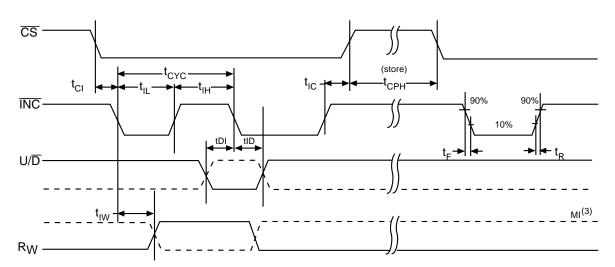
(4) Exercise protection of the state of the

CAT5114

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Rpot	Potentiometer Resistance	-10 Device		10		
		-50 Device		50		kΩ
		-00 Device		100		
	Pot Resistance Tolerance				±15	%
V _{RH}	Voltage on R _H pin		0		Vcc	V
V _{RL}	Voltage on R _L pin		0		Vcc	V
	Resolution			3.2		%
INL	Integral Linearity Error	I _W ≤ 2μA		0.5	1	LSB
DNL	Differential Linearity Error	$I_W \le 2\mu A$		0.25	0.5	LSB
Rwi	Wiper Resistance	$V_{CC} = 5V$, $I_W = 1mA$			400	Ω
		$V_{CC} = 2.5V, I_W = 1mA$			1	kΩ
Iw	Wiper Current				1	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/º0
TCRATIO	Ratiometric TC				20	ppm/º0
R _{ISO}	Isolation Resistance			TBD		Ω^{-}
V _N	Noise	100kHz / 1kHz		8/24		nV/√H _z
C _H /C _L /C _W	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, $10k\Omega$		1.7		MHz

Potentiometer Parameters

AC CONDITIONS OF TEST

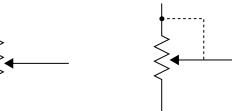

V _{CC} Range	$2.5V \le V_{CC} \le 6V$		
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$		
Input Rise and Fall Times	10ns		
Input Reference Levels	0.5V _{CC}		

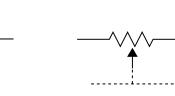
AC OPERATING CHARACTERISTICS:

 V_{CC} = +2.5V to +6.0V, V_{H} = $V_{CC},\,V_{L}$ = 0V, unless otherwise specified

Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{CI}	CS to INC Setup	100	_		ns
t _{DI}	U/D to INC Setup	50	_	_	ns
t _{ID}	U/D to INC Hold	100	_	—	ns
t _{IL}	INC LOW Period	250	_		ns
t _{IH}	INC HIGH Period	250	_	—	ns
t _{IC}	INC Inactive to CS Inactive	1	_		μs
t _{CPH}	CS Deselect Time (NO STORE)	100	_	_	ns
t _{CPH}	CS Deselect Time (STORE)	10	_	—	ms
t _{IW}	INC to V _{OUT} Change	—	1	5	μs
tcyc	INC Cycle Time	1	_	_	μs
t _R , t _F ⁽²⁾	INC Input Rise and Fall Time	_	_	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable	_	_	1	msec
t _{WR}	Store Cycle	_	5	10	ms

A. C. TIMING

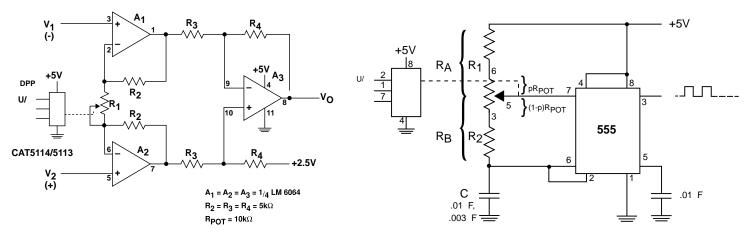



(1) Typical values are for $T_A=25$ °C and nominal supply voltage. (2) This parameter is periodically sampled and not 100% tested.

(3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

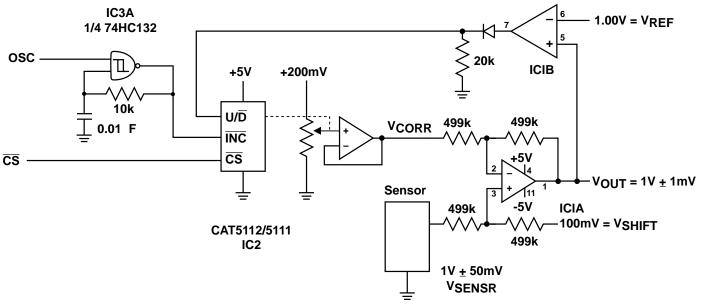
APPLICATIONS INFORMATION

Potentiometer Configurations

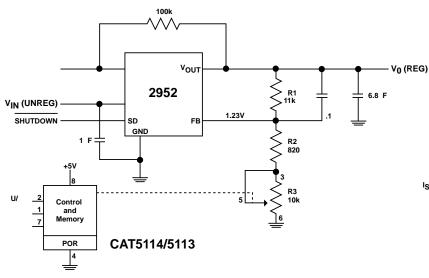


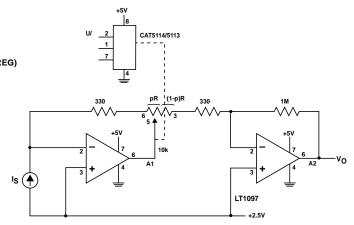
(a) resistive divider

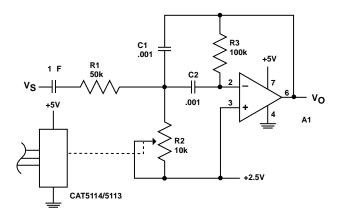
(b) variable resistance


(c) two-port

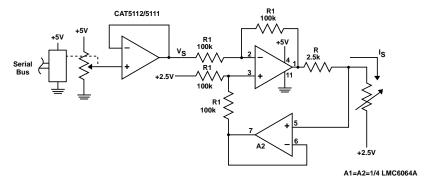
Applications


Programmable Instrumentation Amplifier

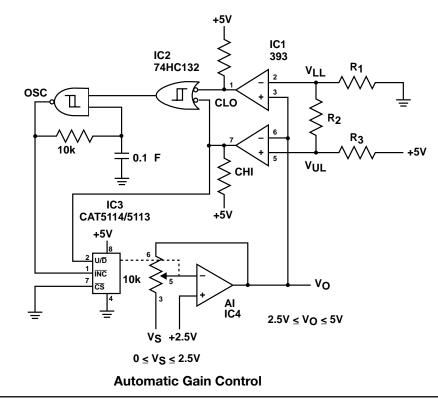

Programmable Sq. Wave Oscillator (555)


Sensor Auto Referencing Circuit

APPLICATIONS INFORMATION



Programmable Voltage Regulator



Programmable I to V convertor

Programmable Bandpass Filter

Programmable Current Source/Sink

ORDERING INFORMATION

Notes:

(1) The device used in the above example is a CAT5114 SI-10TE13 (SOIC, 10K Ohms, Industrial Temperature, Tape & Reel)

Copyrights, Trademarks and Patents

Trademarks and registered trademarks of Catalyst Semiconductor include each of the following:

DPP ™ AE² ™

Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company's corporate office at 408.542.1000.

CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.

Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Catalyst Semiconductor, Inc. Corporate Headquarters 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408.542.1000 Fax: 408.542.1200 www.catsemi.com

Publication #:2007Revison:EIssue date:4/18/02Type:Final