FEATURES

■ Quad PECL version of popular ECLinPS E111
■ Low skew

- Guaranteed skew spec
- TTL enable input
\square Selectable TTL or PECL clock input
- Single +5V supply

■ Differential internal design

- PECL I/O fully compatible with industry standard

■ Internal 75k Ω PECL input pull-down resistors
■ Available in 16-pin SOIC package

BLOCK DIAGRAM

PIN NAMES

Pin	Function
EIN, EIN	Differential PECL Input Pair
TIN	TTL Input
TEN	TTL Input Enable
Q0, $\overline{\text { Q } 0 ~-~ Q 3, ~} \overline{\text { Q }} 3$	Differential PECL Outputs
Vcc	PECL Vcc (+5.0V)
VEE	PECL Ground (0V)

DESCRIPTION

The SY100S815 is a low skew 1-to-4 PECL differential driver designed for clock distribution in new, highperformance PECL systems. It accepts either a PECL clock input or a TTL input by using the TTL enable pin TEN. When the TTL enable pin is HIGH, the TTL input is enabled and the PECL input is disabled. When the enable pin is set LOW, the TTL input is disabled and the PECL input is enabled.

The device is specifically designed and produced for low skew. The interconnect scheme and metal layout are carefully optimized for minimal gate-to-gate skew within the device. Wafer characterization and process control ensure consistent distribution of propagation delay from lot to lot. Since the S815 shares a common set of "basic" processing with the other members of the ECLinPS family, wafer characterization at the point of device personalization allows for tighter control of parameters, including propagation delay.

To ensure that the skew specification is met, it is necessary that both sides of the differential output are terminated into 50Ω, even if only one side is being used. In most applications, all nine differential pairs will be used and, therefore, terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i.e. sharing the same Vcco as the pair(s) being used on that side) in order to maintain minimum skew.

PIN CONFIGURATION

TRUTH TABLE

Ten	Ein	Tin	Q
L	L	X	L
L	H	X	H
H	X	L	L
H	X	H	H

PECL DC ELECTRICAL CHARACTERISTICS

$\mathrm{Vcc}=\mathrm{Vcco}=+5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
IIH	Input HIGH Current	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	-	-	0.5	-	-	0.5	-	-	$\mu \mathrm{A}$
VIH	Input HIGH Voltage ${ }^{(1)}$	3.835	-	4.120	3.835	-	4.120	3.835	-	4.120	V
VIL	Input LOW Voltage ${ }^{(1)}$	3.190	-	3.525	3.190	-	3.525	3.190	-	3.525	V
VOH	Output HIGH Voltage ${ }^{(2)}$	Vcc -1025	Vcc -955	Vcc -870	Vcc -1025	Vcc -955	Vcc -870	Vcc -1025	Vcc -955	Vcc -870	mV
Vol	Output LOW Voltage ${ }^{(2)}$	Vcc -1890	Vcc -1705	Vcc -1620	Vcc -1890	Vcc-1705	Vcc -1620	Vcc -1890	Vcc -1705	Vcc -1620	mV
Icc	Power Supply ${ }^{(3)}$ Current	-	53	65	-	53	65	-	60	74	mA

NOTES:

1. $\mathrm{Vcc}=\mathrm{Vcco}=5.0 \mathrm{~V}$
2. $\mathrm{VIN}=\mathrm{V}_{\mathrm{IH}}$ (Max.) or VIL (Min.) Loading with 50Ω to $\mathrm{Vcc}-2 \mathrm{~V}$.
3. All inputs and outputs open.

TTL DC ELECTRICAL CHARACTERISTICS

$\mathrm{Vcc}=\mathrm{Vcco}=+5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			TA $=+85^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
VIH	Input HIGH Voltage	2.0	-	-	2.0	-	-	2.0	-	-	V	
VIL	Input LOW Voltage	-	-	0.8	-	-	0.8	-	-	0.8	V	
IIH	Input HIGH Current ${ }^{(1),(2)}$	-	-	$\begin{gathered} 20 \\ 100 \end{gathered}$	-	-	$\begin{gathered} 20 \\ 100 \end{gathered}$	-	-	$\begin{gathered} 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	
IIL	Input LOW Current ${ }^{(3)}$	-	-	-0.6	-	-	-0.6	-	-	-0.6	mA	
VIK	Input Clamp Voltage ${ }^{(4)}$	-	-	-1.2	-	-	-1.2	-	-	-1.2	V	

NOTES:

1. $\mathrm{V} \operatorname{IN}=2.7 \mathrm{~V}$
2. $\mathrm{V} \mathrm{IN}=5.0 \mathrm{~V}$
3. $\mathrm{VIN}=0.5 \mathrm{~V}$
4. $\mathrm{I} \mathrm{I}=-18 \mathrm{~mA}$

AC ELECTRICAL CHARACTERISTICS ${ }^{(1-6)}$

$\mathrm{Vcc}=\mathrm{VccO}=+5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			$\mathrm{TA}=+85^{\circ} \mathrm{C}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Output ${ }^{(1)}$										ps
	Ein (differential) ${ }^{(2)}$	430	-	630	430	-	630	430	-	630	
	Ein (single-ended) ${ }^{(3)}$	330	-	730	330	-	730	330	-	730	
	TIN	350	-	950	350	-	950	350	-	950	
tskew	Within-Device skew ${ }^{(4)}$	-	25	50	-	25	50	-	25	50	ps
VPP	Minimum PECL ${ }^{(5)}$ Input Swing	250	-	-	250	-	-	250	-	-	mV
VCMR	PECL Common ${ }^{(6)}$ Mode Range	-1.6	-	-0.4	-1.6	-	-0.4	-1.6	-	-0.4	V
tr tf	Output Rise/Fall Times 20% to 80%	275	375	600	275	375	600	275	375	600	ps

NOTES:

1. Part-to-part skew is defined as Max. - Min. value at the given temperature.
2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.
5. VPP (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The VPP (min.) is AC limited for the S815, as a differential input as low as 50 mV will still produce full PECL levels at the output.
6. VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The VIL level must be such that the peak-to-peak voltage is less than 1.0 V and greater than or equal to VPP (min.).

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY100S815ZC	Z16-1	Commercial
SY100S815ZCTR	Z16-1	Commercial

16 LEAD SOIC .300" WIDE (Z16-1)

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA
TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 weB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

