=
2
2

ay

IREE]

woan

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Notation

3. DSP16/DSP16A INSTRUCTION SET

All DSP16/DSP16A instructions are 16 bits wide and have a C‘Iﬂit‘: syntax. Pipcllim'ng of the ‘

instructions is necessary to achieve the real-time pcrformnnc_c f!!!]l.!lmd by many ﬂgnal-proccs_smg

applications. To facilitate programming, the degree anipclmung in the DSPI&ID.SPlﬁA device

has been reduced and the latency effects present in previous generation DSPs have been

eliminated. The instructions fall into one of five possible categories:

-] iply instructions are the primary instructions used to implement si gnal-pmcess_ing
;::g“l'lnir’:lim'fl:l'tlcjse instructions perfofm multiply/accumulate, logiczfl. and'mhc!' ALU functions
and also transfer data between memory and registers in the data arithmetic unit.

« Special Function instructions are used to perform such operations as mum?ing_, ncgaii_cm. and
logical left shifts and arithmetic right shifts of accumulators. Special function instructions may
be conditionally executed on the basis of the state of internal flags.

. Control instructions are used to control program flow. The call, goto, and _relurn instructions
are provided and may be conditionally executed on the basis of the state of internal flags.

. Data Move instructions are used to transfer data between registers, memory, and accumulators.
Immediate loads of certain registers are also possible.

. Cache instructions allow the implementation of low overhead loops by Ioading‘ asct of)
multiply/ALU and special function instructions into a cache memory and repetitively executing
them (up to 127 times).

The following sections deseribe in detail the notation used in the instruction set, the addressing
modes supported, the internal flags used by conditional instructions, and the five groups of
instructions.

Note: Only multiply/ALU and special function instructions set DAU flags.

3.1 NOTATION

The following operators are used to describe the instruction set:

Operator Meaning
= 16 x 16 — 32-bit multiplication
(Denotes register-indirect addressing
when used as a prefix 1o an address register)

+ 36-bit addition

- 36-bit subtraction

++ Register postincrement
- Register postdecrement
>> Arithmetic right shift
<< Logical left shift

3-1

DSP16/DSP16A INSTRUCTION SET

Indirect Addressing
& 32-bit bitwise AND
| 32-bit bitwise OR
S 32-bit bitwise EXCLUSIVE OR
: Compound addressing

For all instructions listed in this chapter, the following are true:

+ Brackets, [], are not part of the instruction syntax, but indicate that the enclosed item is
optional.

- Parentheses, (), and braces, { }, are pan of the instruction syntax and must appear where
shown in the instruction.

The valid instruction groups for the DSP16/DSP16A device are represented in Tables 3-3 1o 3-12.
The items in Tables 3-3 to 3-12 and 3-14 10 3-23 that are written in lower-case letters are proper
statements and must appear where shown in the instruction. The items with capital letters are not
proper statements and are replaced with immediate data, a register name, or a condition.

3.2 ADDRESSING MODES

The DSP16/DSP16A Digital Signal Processor allows immediate, indirect, and compound
addressing modes. Instructions using indirect and compound addressing are typically used to
encode real-time, signal-processing algorithms and, hence, require less program memory and
execute faster than immediate addressing.

3.2.1 Immediate Addressing

In immediate addressing, the operand is supplied in the instruction. This situation is useful when
initializing registers and is provided at the expense of one additional ROM location and one
instruction cycle of execution time. A short immediate addressing mode is supplied to set the
YAAU registers, r0—r3, j, k, rb, and re which are 9 bits wide on the DSP16. The DSP16A
YAAU registers are 16 bits wide, so short immediate addressing may only be used when loading
values that are 9 bits long or less. Short immediate instructions execute in one cycle, use one
ROM location, and are cacheable.

3.2.2 Indirect Addressing
Indirect addressing allows a register 1o be used as a pointer 1o another location. The terms X and

Y specify the source of data from memory to registers or the destination of data from registers to
memory:

X=*pt++ or *pl++i
Y = one of: *tM, *tM++, *rM——, *iM++j

Note: M=oncof: 0,1,2,3

The term X represenis the ROM data to be copied into the x register. The term Y represents the
RAM data to be copied into the specified register or the data written to RAM from a register. The

3-2

WO MF13YSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Compound Addressing

mnemonics for X and Y indicate register indirect addressing with 2 postmodification of the
address pointer. The asterisk preceding the RAM or ROM address register stands for "the data
pointed 1o by the address in the register.” The mnemonics have the following meaning:

*rM. This example means “the data pointed 1o by the address in the register.” The contents of
the register are not altered by the operation. o)

*rAf++, pt++. The "++" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add 1 to the
contents of the register after the operation is complete.”

#rM—. The "—" following the address register indicates a postdecrement of the address
register. This example means "the data pointed to by the address of the register: subtract 1
from the contents of the register after the operation is complete.”

. *rAf++j. The "++" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add the \-_'alue
of register j to the contents of the address register after the operation is complete.” Negative
values of j yicld a postdecrement.) . _
#pt+=i. The "++i" following the address register indicates a postincrement of the address
register. This example means "the data pointed to by the address in the register; add the \faiue
of 1 register i to the contents of the address register after the operation is complete.” Negative
values of i vield a postdecrement.

Modulo (virtual shift) addressing uses indirect addressing to form the equivalent of a cyclic shift
register within the RAM. Addresses loaded into registers rband_rc define the first andl:_tst)
physical addresses of the modulo, respectively. When a register is used as a memory pointer, its
value is compared with re. 1fits value is equal to the contents of e and the postincrement is _+i.
then the value in rb is copied into the register after the memory access is complete. See Section
423,

3.2.3 Compound Addressing

Compound addressing is 2 memory read/write operation using only one pointer nagister._ The
term Z specifies a source and a destination for a compound RAM read followed by awhle
sequence. The mnemonics for Z are a shorthand notation for Lhe compourlfi a_ddr::r;smg functions
explained below and shown in Table 3-1. The wem remp used in the descriptions is a
hypothetical register used for illustration only.

3-3

DSP16/DSP16A INSTRUCTION SET

Processor Flags
Table 3-1. Compound Addressing Instructions

Instruction Operations

Z:R Step 1 Step 2 Step 3
*rMzp:R temp=R: R=*rM: *™M++=temp;
*™Mpz:R temp=R; R=*rM++; *r™M=temp;
*rMm2:R temp=R; R=*rM—; *™M++2=temp;
*Mik:R temp=R; R=*rM++ii *rM++k=temp;

Notes:

Mcanbe 0,1,2,3.

Rcanbeoncof x, y. yl. 0, el 22, 3, propr i, j. ko 0. cloc2 rhy re,
psw, auc, sioc, sna, sdx, wdms, pioc, a0, 201, al, all.

R and tM must not be the same register (ie., rlpzrl).

As with other instructions that use the v, 20, and al registers, the following rules apply when
using the compound addressing mode:

« If clearing of the low half of the register is enabled (according to the CLR field of the auc
register), the low half of the register is cleared when the high half is loaded.

+ If satwration on overflow is cnabled (according to the SAT field of the auc register), the value
in the accumulator is limited. See Section 2.5.1.

Virtual shift addressing may be used with compound addressing. The contents of the address
register are compared with the contents of register re during both the read and write cycles. If the
contents of the address register are equal to the contents of re during the read cycle and the
"*rMpz" mode is specified, r is loaded with the contents of rb. If the contents of the address
register are equal to the contents of re during the write cycle and the "*rMzp” mode is specificd,
rM is loaded with the contents of rb. See Section 4.2.3.

3.3 PROCESSOR FLAGS

Control and special function instructions may be conditionally executed on the basis of intemnal
flags set by the previous ALU operation, the condition of one of the counters, or the value of a
randomly set bit in the device. Multiply/ALU function statements and special function
instructions affect the flags: loading an accumulator with a multiply/ALU transfer statement or a
data move instruction does not affect the flags. The processor flags and their meanings are:

LMI Logical Minus — A logical minus is determined by the state of bit 35 of the last DAU
operation result. If bit 35=1, the result is a negative number and LMI is true.

LEQ Logical Equal — A logical equal is determined by the sum of bits 35—0 of the last DAU
operation result. If the sum of the bils equals zero, the result is zero and LEQ is true.

LLV Logical Overflow (36-Bit Overflow) — LLV is true if the sign of the result of an
operation cannot be represented in a 36-bit accumulator.

3-4

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Processor Flags

LMV Mathematical Overflow (32-Bit Overflow) — LMV is true if the overflow bits (35—31)
of the accumulator used in the last DAU operation are not identical. This indicates a
number not representable in 32 bits.

Table 3-2 shows the mnemonics that are used in conditional instructions and their meanings. The
state of the internal flags that causes the condition to be true is enclosed in parenthesces after the
description. For example, when lesting the condition le, the result is true if cither the logical
minus (LMT) or logical equal (LEQ) flags are true.

Table 3-2. Conditional Mnemonics
Test Meaning Test Meaning
pl Result is nonnegative (not mi Result is negative (LMI).
LMI).
cq Result is equal to zero (LEQ). ne Result is not equal to zero (not
LEQ).
gt Result is greater than zero (not le Result is less than or equal to
LMI and not LEQ). zero (LM or LEQ).
lvs Logical overflow set (LLV). Ive Logical overflow clear (not
LLV).
mvs Mathematical overflow set mvc Mathematical overflow clear
(LMV). (not LMV).
c0ge* Counter 0 greater than or equal cOlt* | Counter O less than zero.
10 ZEr0.
clge* Counter 1 greater than or equal cilt* | Counter 1 less than zero.
10 zero.
heads? | Pscudorandom sequence bit set. || tailsi | Pseudorandom seguence bit
clear.
true The conditon is always false | The condition is never satisfied
satisfied in an if instruction. in an if instruction.

* Testing each of these conditions increments the respective counter being tested.

T The heads or tails condition is determined by a randomly set or cleared bit, respectively. The bit is randomly set
with probability of 0.5. The random bit is generated by a 10-state pseudorandom sequence generator that is
updated after cither & heads or wils test. The pseudorandom sequence may be reset by writing any value to the pi
register. Writing to the pi register does not affect the contents of the pi register except while in an intarrupt service
routine. A random rounding function can be implemented by using either of these two conditions,

DSP16/DSP16A INSTRUCTION SET
Multiply/ALU Group

3.4 MULTIPLY/ALU GROUP

The multiply/ALU instructions are the primary instructions used to implement signal-processing
programs. Stalements from this group can be combined to generate multiply/accumulate, logical,
and other ALU functions and to transfer data between memory and registers in the data arithmetic
unit. In the examples presented, the statements should be read from right 1o left, top to bottom.
Statements within a multiply/ALU instruction are executed essentially in parallel. The
multiply/ALU instructions usually consist of more than one part. Each part of an instruction is
called a statement. The general rule is that valid instructions can be formed by choosing one
statement from each statement column in Table 3-3. If either statement is not required, then a
single statement from either column also constitutes a valid instruction. Conversely, valid
instructions can be decomposed into separate statements, with each coming from a different
column in the Table 3-3.

The multiply/ALU instructions consist of two parts: a function and a transfer (see Table 3-3).

The statements in the function column can be separated into two types: those involving the
multiplier and those involving only the ALU in the data arithmetic unit. The multiply/accumulate
instructions typically used in signal-processing applications arc assembled from statements from
the function column that include the multiplication of the data in x and y[31—16]. Ina
multiply/accumulate instruction, the x and y registers are loaded with the operands, the product of
the previous operands is generated, and the previous product is accumulated in 20 or al.

The following example shows how a typical multiply/accumulate sequence is implemented.

Example:
Instruction #
(N =Y x=X
2 p=x*y
(3) aD=aS+p

In the example presented, the data in the X source is copied into the x register and the data in the
Y source into bits 31—16 of the y registerinline 1. In line 2, the product of the data in x and
¥[31—16] is generated and stored in p. In line 3 the data in the source accumulator, aS, and the
data in p are added and the result loaded into the destination accumulator. Note that lines 2 and 3
could also have specified memory transfer operations for later instructions.

3-6

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Multiply/ALU Group

The ALU instructions perform one of the following:
- The logical operations of AND, OR, or XOR between an accumulator and the data in the y
register.
- The addition or subtraction of the data in the y register from an accumulator.

+ The load of an accumnulator with the data in the y register.
The y register must be loaded prior to the ALU operation.
The following example shows how a typical logical operation is implemented.

(1 y=Y
(2) aD=aS&y

In this example, the data in the Y source is copied into the y registerin line 1. In line 2, the
logical AND of the data in the source accumulator, a8, and the datain y as a result of linc 1 are
calculated and the result is loaded into the destination accumulator.

All multiply/ALU instructions require 1 word of memory. The number of instruction cycles
required to execute an instruction in the multiply/ALU group is a function of the statement
selected from the transfer column in Table 3-3. Instructions with statements in the transfer
column involving a write to RAM are executed in two instruction cycles whether the instruction
is in or out of the cache. Instructions with statements in the transfer column involving a read
from the RAM and the ROM simultaneously are executed in two instruction cycles if not in the
cache and one instruction cycle if in the cache. An instruction with no transfer statement executes
in one instruction cycle cither in or out of the cache. The remaining instructions are executed in
one instruction cycle cither in or out of the cache. Table 3-3 gives the number of instruction
cycles for each case. The multiply/ALU instructions use one ROM location.

The no operation (nop) instruction is a special-case encoding of a multiply/ALU instruction and

is executed in one instruction cycle. The assembly-language notation representation of a no
operation instruction is either nop or a single semicolon (3).

37

DSP16/DSP16A INSTRUCTION SET
Multipl¥/ALU Group

Note that the function statements and transfer statements in Table 3-3 are chosen independently.

Any function statement may be combined with any transfer statement to form a valid

multiply/ALU instruction.

Table 3-3. Multiply/ALU Instructions
Transfer
Function Cycles
Statements Statements Out/In Cache

p=x*y | y=Y x=X 271
aD=p p=x*y | y=aT x=X 1
aD=aS+p p=x*y | y{l}=Y 1/1
aD=aS—p p=x»y | aT[l}=Y 171
aD=p x=Y 71
aD=aS+p Y /1
aD=aS—p Y=y(1] 22
aD=y Y=aT[l] 22
aD=aS+y Zy x=X 22
aD=aS—y Z: ¥} 22
aD=aS&y Z: aT(l] 22
aD=aSly
aD=aS*y
aS-y
aS&y

Table 3-4. Replacement Table for Multiply/ALU Instructions

*™M—, *rM++j

Replace Value Meaning
aD, a8, aT | a0, al One of two DAU accumulators.
X *pl++.*pla+i ROM location pointed to by pt.
pt is postmedified by +1 and i,
respectively.
Y *™, *tM++, RAM location pointed to by tM.

M=0,1,2,3).
™ is postmodified by 0,+1,~1, and j,
respectively.

Z *rMzp, *rMpz,
*rtMm?2, *rMjk

Read/write compound addressing.

™ (M=0, 1,2, 3) is used twice.

First, postmodified

by 0, +1,—1, and j respectively and
second, postmodified by +1, 0,+ 2, and k,
respectively.

3-8

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Function Statements

On the basis of the information given in Table 3-4, apply the following information 1o the
function and transfer statements in Table 3-3:

- Loads of a0, al, and y clear the lower half of the selected register when the appropriate CLR
field bits in the auc register ane zeroed.

- Loads of 201, all, and 1 do not change the data in the high half of the selected register.

- The y and p operands are sign-extended to match the width of the accumulators.

3.4.1 Function Statements

In the execution of these statements, the width of the number is extended to 36 bits, which is the
size of the accumulators. This extension is accomplished by extending the sign bit in the p
regisier 10 retain the correct 2's complement value. The multiplier performs 2 2's complement
multiply, using x and the high half of y (bits 31—16).

The statements must be written in the exact format shown. 1f the statements are wrillen in any
other way, for example, aD=p+a$ instead of aD=aS+p, the assembler produces an error message.

p=x*y. The contents of the x and the y (bits 31—16) registers are multiplied and the result is
placed in the p register.

+ aD=p p=x*y. The contents of the p register are copied into the destination accumulator, aD.
The contents of the x and the y (bits 31—16) registers are multiplied and the result is placed in
the p register. The bit alignment of the p register is 2 function of the ALIGN ficld of the auc
register.

aD=aS+p p=x=y. The contents of the source accumulator, 28, are added to the contents of the
p register and the result is placed in the destination accumulator, aD. The bit alignment of the
p register is a function of the ALIGN field of the auc register. The contents of the x and the y
(bits 31—16) registers are multiplied and the result is placed in the p register.

aD=aS-p p=x*y. The contents of the p register are subtracted from the contents of the source
accumulator, aS, and the result is placed in the destination accumulator, aD. The bit alignment
of the p register is a function of the ALIGN ficld of the auc register. The contents of the x and
the y (bits 31—16) registers are multiplied and the result is placed in the p register.

aD=p. The contents of the p register are copied into the destination accumulator, aD. The bit
alignment of the p register is a function of the ALIGN field of the auc register.

aD=aS+p. The contents of the source accumulator, aS, arc added to the contents of the p
register, and the result is placed in the destination accumulator, aD. The bit alignment of the p
register is a function of the ALIGN field of the auc register.

aD=aS—p. The contents of the p register are subtracted from the contents of the source
accumulator, aS, and the result is placed in the destination accumulator, aD. The bit alignment
of the p register is a function of the ALIGN field of the auc register.

aD=y. The contents of the y register are copied into the destination accumulator, aD.

aD=aS+y. The contents of the source accumulator, a$, arc added to the contents of the ¥
register and the result is placed in the destination accumulator, aD.

. aD=aS—y. The contents of the y register are subtracted from the contents of the source

DSP16/DSP16A INSTRUCTION SET
Transfer Statements

accumulator, 28, and the result is placed in the destination accumulator, aD.

. aD?aS&y. The contents of the source accumulator, a8, are ANDed with the contents of the y
register, and the result is placed in the destination accumulator, aD.

aD=aS|y. The contents of the source accumulator, a$, zre ORed with the contents of the v
register, and the result is placed in the destination accumulator, aD.

- aD=aS"y. The contents of the source accumulator, aS, are XORed with the contents of the y
register, and the result is placed in the destination accumulator, aD.

- aS-y. The contents of the y register are subtracted from the contents of the source
accumulator, aS. The result is not placed in the destination accumulator, aD; however, the
ALU flags are affected by the results of the subtraction.

+ aS&y. The contents of the source accumulator, aS, arc ANDed 1o the contenis of the y
register. The result is not placed in the destination accumulator, aD; however, the ALU flags
are affected by the results of the AND function.

3.4.2 Transfer Statements

The transfer statements allow the user to transfer data from memory to the x and y registers and
the accumulators, or from the y register and the accumulators (o memory.

+ ¥=Y x=X. The data from the specified Y source is loaded into the high half (bits 31—16) of
the y register. The data from the specified X source is loaded into the x register. If clearing of
ylis enabled (according to the CLR ficld of the auc register), then vl is cleared (0) when the
high half is loaded.

y=aT x=X. The data in the high half (bits 31—16) of the specified accumulator is loaded into
the high half (bits 31—16) of the y register. The data from the specified X source is loaded
into the x register. If clearing of yl is enabled (according to the CLR field of the auc register),
then yl is clearced (0) when the high half is loaded.

¥=Y. The data from the specified Y source is loaded into the high half of the v register (bits
31—16). Ifclearing of yl is enabled (according to the CLR ficld of the auc register), then vlis
cleared (0) when the high half is loaded.

¥I=Y. The data from the specified Y source is loaded into the low half of the v register (bits
15—0). The data in the high half of y is not altered.

aT=Y. The data from the specified Y source is loaded into the high half (bits 31—16) of the
specified accumulator. The guard bits (35—32) are loaded with the value of bit 31. If clearing
of aTl is cnabled (according to the CLR field of the auc register), the low half of the
accumulator is cleared (0) when the high half is loaded.

3-10

WO 1Y SEIR 0 Mk

-

DSP16/DSP16A INSTRUCTION SET

Transfer Statements

aTI=Y. The data from the specified Y source is loaded into the low half (bits 15—0) of the
specified accumulator. The data in the high half of the accumulator is not altered.

x=Y. The data from the specified Y source is loaded into the x register.

Y. No data is transferred. This transfer statement is used to modify the address register
specified.

Y=y. The data in the high half of the y register (bits 31—16) is loaded into the specified Y
destination.

Y=yl. The data in the low half of the y register (bits 15—0) is loaded into the specified Y
destination.

Y=aT. The data in the high half (bits 31—16) of the specified accumulator is written into the
specified Y destinaton. If saturation on overflow is selected (according to the SAT ficld of the
auc register), the accumulator value is limited. See Section 2.5.1.

Y=aTl. The data in the low half (bits 15—0) of the specified accumulator is written into the
specified Y destination. If saturation on overflow is selected (according to the SAT field of the
auc register), the accurnulator value is limited. See Section 2.5.1.

Z:y x=X. The data from the specified X source is loaded into the x register. The data from
the specified Z source is loaded into the high half (bits 31—16) of the y register, and the old
data from the high half of the y register is loaded into the Z destination. If clearing of y1 is
enabled (according to the CLR field of the auc register), then yl is cleared (0) when the high
half is loaded.

Z:y. The data from the specified Z source is loaded into the high half (bits 31—16) of the y
register and the old data from the high half of the y register is loaded into the Z destination. If
clearing of vl is enabled (according to the CLR field of the auc register), then y1 is cleared (0)
when the high half is loaded.

Z:yl. The data from the specified Z source is loaded into the low half (bits 15—0) of the y
register and the old data of the low half of the y register is loaded into the Z destination. Data
in the high half of the y register is not altered.

Z:aT. The data from the specified Z source is loaded into the high half (bits 31—16) of the
specified accumulator. If clearing of aTl is enabled (according to the CLR field of the auc
register), the low half of the accumulator is cleared (0) when the high half is loaded. The guard
bits (35—32) are loaded with the value of bit 31. The old data from the high half of the
accumulator is 1oaded into the Z destination. If saturation on overflow is enabled (according to
the SAT field of the auc register). the accumulator value is limited. See Section 2.5.1.

Z:aTl. The data from the specified Z source is loaded into the low half (bits 15—0) of the
specified accumulator and the old data from the high half of the accumulator is loaded into the
Z destination. The data in the high half of the accumulator is not altered. If saturation on
overflow is enabled (according to the SAT ficld of the auc register), the accumulator value is
limited. See Section 2.5.1.

3-11

DSP/DSP16A INSTRUCTION SET
Special Function Group

3.4.3 No Operation

- nop. Single cycle no operation. N = nop (i.c., 4 * nop) may be used to perform N no
operation instructions.

- 5. The semicolon is an optional no operation mnemonic. N # ; may also be used to perform N
no operation instructions.

3.5 SPECIAL FUNCTION GROUP

Instructions from the special function group are always executed in one instruction cycle. They
require one word of program memory. Using the special function instructions, the
DSP16/DSP16A device can be used to implement a number of algorithms, which include the
following nonlinear functions: absolute value, signum, minimum and maximum value finder, A-
law and p-law conversions, division, half-wave and full-wave rectification, and rounding.
Special function instructions are executed cither conditionally or unconditionally. Both the
condition and its complement are available for use in special function instructions. A special
function instruction uses cne ROM location. Instructions from this group can be used in the
cache.

The special function instructions can be conditioned on the basis of the results of previous
multiply/ALU and special function instructions, the value of onc of the counters (¢, c1), or the
value of a randomly set bit in the DSP16 device. The result of the most recent accumulator
operation prior to the special funciion instruction establishes the state of the flags for the
conditions associated with logical or mathematical functions.

The special functions given in Table 2-5 can be conditionally cxecuted as if CON instruction and
with an event counter as ifc CON instruction, meaning that:

if CON is true then
cl=cl+1
instruction
c2=cl

clse
cl=cl+1

Note: When using the event couniter (ifc instruction), if CON is cOlt or ¢Ogt. then ¢0 is not
incremented; if CON s cllt or clgt, then ¢! is incremented once.

3-12

WO M F1aYSEIRd Mk

DSP/DSP16A INSTRUCTION SET
Special Function Statements

Table 3-5. Special Function Instructions
Instruction Description
aD=aS>>1
aD=aS>>4 Arithmetic right shift (sign preserved) of
aD=aS>>8 36-bit accumulators.
aD=as>>16
aD=aS
aD=-a$
aD=md(aS) | Round upper 20 bits of accumulator:
aDh=aSh+1 | Increment high half of accumulator (lower half cleared).
aD=aS+1 Increment accumulator.
aD=y
aD=p
aD=aS<<l
aD=aS<<4d Logical left shift (sign-extended from bit 31) of the
aD=aS<<§ least significant 32 bits of the 36-bit accumulators.

aD=aS<<16
Table 3-6. Replacement Table for
Special Function Instructions

Replace Value Meaning
aD.aS a0.al One of two DAU accumulators.
CON mi, pl, eg, ne, gt, le, Ivs, See Table 3-2 for definitions

mvs, mvc, c0ge, cOlt, clge, | of processor flags.

c1lt, heads, tails, true, false

3.5.1 Special Function Statements
The statements must be written in the exact format shown. If the statements are written in any
other way, for example, aD=1+a8 instead of aD=aS+1, the assembler produces an error message.

+ aD=aS8>>1. The contents of the source accumulator, a8, are divided by 2 and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

+ aD=aS>>4. The contents of the source accumulator, aS, are divided by 2* and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

+ aD=aS$>>8. The contents of the source accumulator, aS, are divided by 2* and the result is
placed in the destination accumulator, aD. The sign bit is preserved.

« aD=aS>>16. The contents of the source accumulator, a8, are divided by 2' and the result is
placed in the destination accumulator, 2D, The sign bit is preserved.

- aD=aS<<1. The contents of the source accumnulator, a8, are logically shifted one bit left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

DSP/DSP16A INSTRUCTION SET
Control Group

aD=aS<<4. The contents of the source accumulator, a$, are logically shifted four bits left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

aD=aS<<8. The contents of the source accumulator, a$, are logically shifted eight bits left and
the result is placed in the destination accumulator, aD. The sign bit is extended from bit 31.

aD=aS<<16. The contents of the source accumulator, a8, are logically shifted sixteen bits Ieft
and the result is placed in the destination accumulator, aD. The sign bit is extended from bit
31

.

aD=a$S. The contents of the source accumulator, a$, are placed in the destination accumulator,
aD.

aD=-aS. The 2's complement of the contents of the source accumulator, a8, is placed in the
destination accumulator, aD.

aD=rnd(aS). The contents of the source accumulator, aS, are rounded to 16 bits, and the
sign-extended result is placed in aD[35 — 16] with zeros in aD[15 —0].

aDh=aSh+1. The value 0x000010000 is added to the contents of the source accumulator, a8S,
and the result is placed in the destination accumulator, aD. This statement increments by onc
the data in the high half of the source accumulator. The low half of aD is cleared.

aD=aS+1. The value 0x000000001 is added to the contents of the source accumulator, a8, and
the result is placed in the destination accumulator, aD. This statement increments by one the
data in the source accumulator.

aD=y. The contenis of the y register are written to the destination accumulator, aD.

.

aD=p. The contents of the p register are written to the destination accumulator, aD. The bit
alignment of the p register is a function of the ALIGN ficld of the auc register,

3.6 CONTROL GROUP

The control instructions allow the user to implement goto, call, and return commands. There is
no latency when branching, i.c., the instruction executed following the control instruction has the
address specified in the pc register after execution of the control instruction. Control instructions
are executed either conditionally or unconditionally. Both the condition and its complement are
available for use in control instructions. A control instruction uses one ROM location;
conditional control instructions require two ROM locations. The excecution time for an
unconditional control instruction is two instruction cycles, and the execution time for conditional
control instructions is three instruction cycles. The icall instruction exccutes in three cycles.
Control instructions may not be executed in the cache.

The control instructions can be conditioned on the basis of the results of previous multiply/ALU
and special function instructions, the value of one of the counters (c0, c1), or the value of a
randomly set bit in the DSP16/DSP16A device. The result of the most recent accumulator
operation prior to the control instruction establishes the state of the flags for the conditions
associated with logical or mathematical functions.

3-14

WO MF1aYSEIR 0 Mtk

DSP/DSP16A INSTRUCTION SET

Control Statements

An example of a control instruction conditionally executed is if CON goto JA.

Control Instructions*

goto JA || icall¥

goto pt retum (goto pr)
call J4 irctumt (goto pi)
call pt

* Control instructions cannot be used in the cache.
1 icall and ireturn can not be conditicnally executed.

Table 3-7. Replacement Table for
Control Function Instructions

Replace Value Meaning

CON mi, pl. eq, ne, gt, le, lvs, Sec Table 3-2 for definitions
mvs, mvc, clge, cOlt, clge, | of processor flags.

c1lt, heads, tails, true, false

JA 12-bit value

Least significant 12 bits of an
absolute address within the same
4 Kword memory section.

3.6.1 Control Statements

- goto JA. The goto JA instruction moves the immediate value JA into the lower 12 bits of the
program counter (pc) register, when goto JA is executed. The upper4 bits of pc remain
unchanged. The instruction with address JA is the next instruction executed. The goto JA
instruction does not affect the program retum (pr) register, and can be used in a subroutine
without losing the retum address of the subroutine.

call JA. The call JA instruction moves the contents of the program counter (pc) register into
the program retum (pr) register and the immediate data JA into the lower 12 bits of the pe
register. The upper 4 bits of pc remain unchanged. The prregister holds the retumn address of
the subroutine (the address of the instruction following call JA) i.e., if call JA is located at
address i, then the pr register is loaded with address i+1. The instruction with address N is the
next instruction executed.

- goto pt. The goto pt instruction moves the contents of pt into the program counter (pc)
register, when goto pt is executed. The instruction with address equal to the contents of pt is
the next instruction executed. Since ptis a 16-bit register, goto pt allows branches to any
location in the 64 Kword program space. The goto pt instruction does not affect the program
retum register.

DSP/DSP16A INSTRUCTION SET
Data Move Instructions

- call pt. The call pt instruction moves the contents of the program counter (pc) register into the
program retumn (pr) register and the data in pt into the pc register. The prregister holds the
retum address of the subroutine (the address of the instruction following call pt); i.e., if the call
pt is located at address i, then the pr register is loaded with the value i+1. The instruction with
address equal to the contents of pt is the next instruction executed.

icall. The icall instruction moves the contents of the program counter (pc) register into the
program interrupt (pi) register and the address 2 into the pe register. The pi register holds the
return address of the interrupt routine (the address following the icall instruction); i.e., if the
icall instruction is located at address i, then the pi register is loaded with the value i+1. The
icall instruction is used by the DSP16/DSP16A Development Systems for breakpointing and is,
therefore, reserved for that purpose when development system breakpoints are used.

return /goto pr. The retum instruction moves the contents of the program retum (pr) register
into the program counter (pc) register. The pr register holds the retumn address of the
subroutine. Exccution of the instruction with address cqual to the contents of pr follows the
execution of the retumn instruction. The goto pr instruction works identically to the retumn
instruction.

ireturn /goto pi. The iretum instruction moves the contents of the program interrupt (pi)
register into the program counter (pe) register. The pi register holds the interrupt return
address. When an interrupt occurs, the value of the pe register is written into the pi register.
Execution of the instruction with address equal to the contents of pi follows the exccution of
the iretum instruction. The goto pi instruction works identically to the iretum instruction.

3.7 DATA MOVE INSTRUCTIONS

Data move instructions transfer from a RAM location to a register, from a register to a RAM
location, from an accumulator to a register, from a register to an accumulator; and load immediate
data to a register. Data move instructions involving immediate data loaded into YAAU registers
use one ROM location and execute in one instruction cycle if the data can be encoded in the
instruction itself (R = M, M < 9 bits) or two ROM locations if the data is not contained in the
instruction (R = N). All other data move instructions use one ROM location. Data move
instructions are executed in two instruction cycles except for those instructions in which the
immediate data is encoded in the instruction which are executed in one instruction cycle as noted
above (R = M). All data move instructions, with the exception of two-word immediate moves,
may be executed inside the cache.

Data Move Instructions
R =N aT=R

R =M || Y=R
R=Y || Z:R

R =aS

3-16

WO MF1aYSEIRd Mk

DSP/DSP16A INSTRUCTIONSET
Data Move Instructions

Table 3-8. Replacement Table for Data Move Instructions

Replace Value Meaning

R x DAU register — signed, 16 bits.
y DAU register — signed, 16 bits.!
¥l DAU register — unsigned, 16 bits.
auc DAU control register — unsigned, 7 bits.
c0 DAU counter 0 — signed, 8 bits.
cl DAU counter 1 — signed, 8 bils.
c2 DAU counter 2 — signed, 8 bits.
)] YAAU ptr. reg. — unsigned, 9 bits (16 bits in DSP16A).
rl YAAU ptr. reg. — unsigned, 9 bits (16 bits in DSP16A).
2 YAAU pr. reg. — unsigned, 9 bits (16 bits in DSP16A).
3 YAAU ptr. reg. — unsigned, 9 bits (16 bits in DSP16A).
1o YAAU mod. addr. reg. — unsigned, 9 bits (16 bits in DSP16A).
e YAAU mod. addr. reg. — unsigned, 9 bits (16 bits in DSP16A).
j YAAU inc. reg. — signed, 9 bits (16 bits in DSP16A).
k YAALU inc. reg. — signed, 9 bits (16 bits in DSP16A).
pt XAAU pointer register — unsigned, 16 bits.
Pr XAAU program return register — unsigned, 16 bits.
pi XAAU program interrupt register — unsigned, 16 bits.?
i XAAU increment register — signed, 12 bits.
psw Processor status word.
sioc Serial 1O control :cgisu:r.:’
sdx Serial O data register.
tdms Serial /O dms control t't:,g;isu:r;3
sa Serial receive/transmit address.”
picc Parallel 1/O control register.
pdx0 Paralle] 1/0 data register with PSEL = 0 (pin 72).
pdxl Paralicl /O data register with PSEL = 1 (pin 72).

aD,aS | a0,al High half of accumulator.!

Y *IM.P M4+, Same as in multiply/ALU instructions.
=M — M

v *rMzp,*rMpz, Same as in multiply/ALU instructions.
*rMm2. rMjk

N 16-bit value Immediate data.

M 9-bit value Immediate data for YAAU registers.

Notes:

DSP/DSP16A INSTRUCTION SET
Data Move Instruction Statements

3.7.1 Data Move Instruction Statements

The data move instruction statements must be written in the exact format shown. If the
stalements are written in any other way, for example, R: Z instead of Z:R, the assembler gencrates
incorrect code and produces an ermor message. Data move instructions execute in two instruction
cycles and require 1 word of program memory (immediate loads, R = N, require two words of
program memory). Short immediate data move instructions require one word of program
memory and execute in one cycle.

R=N loads the immediate data value, N, into the specified destination register, R. This form of
the data move instructions may not be cxecuted in the cache.

R=M loads a 9-bit immediate data value, M, into one of the YAAU registers (rb, re, 10, rl, 12,
orr3). This special case immediate instruction is often referred to as 2 "shornt immediate” or
“register set” instruction. Shon immediate instructions require one word of program memory,
execute in one cycle, and may be executed inside the cache.

R=Y loads the data contained in the specified Y source into the specified destination register,
R.

R=aS$ loads the data contained in bits 31—16 of the specified transfer accumulator, a$, into the
specified destination register, R. If satration on overflow is enabled (according to the SAT
field of the auc register), then the accumulator is limited. (See Section 2.5.1.)

Y=R loads the data contained in the specified source register, R, into the specified Y
destination.

aT=R loads the data contained in the specified source register, R, into bits 31—16 of the
specified accumulator. If clearing of aTl is enabled (according o the CLR ficld of the auc
register), then aTl is cleared (0) when the high half is loaded. The guard bits arc loaded with
the value of bit 31.

Z: R writes data from the specified Z source to the specificd R destination register and writes
the old data in the source register, R, to the Z destination (see Scction 3.2.4 for an explanation
of this data transfer mode).

3.8 CACHE INSTRUCTIONS

The cache instructions allow the implementation of low overhead loops 1o conserve program

When reading signed registers less than 16 bits wide, their conients are sign-extended to 16 bits. When reading
unsigned registers less than 16 bits wide, their contents are zero-cxtended w0 16 bits. When short immediate addressing
is used to write to YAAL registers in the DSPI6A, unsigned registers are 2¢to-extended from @ 1o 16 bits. Signed
registers (jk) are sign-extended from 9 1o 16 bits.

'Data moves 1o ¥, 20, or al load the high half (bits 31—16) of the register. If clearing of the destination is enabled
(2ccording w the CLR feld of the aue register), the low half of the destination register is cleared (0) when the high
half is Joaded.

“The pi regisier acts as a “shadow™ of the pc register. Each time the pe changes. its value is also'loaded into pi.
"Shadowing” is disabled when executing an interrupt service routine, therefore, pi contains the contents of pe prior to
the interrupt. Writes to pi do not alter its contents, except during inlerrupt service routines.

“sioc, tdms, and srta registers are not readable.

3-17

memory. When used, the cache instruction treats the specified NI instructions as a loop to be
executed K times. Both cache instructions use one ROM lecation. The do instruction executes in
one instruction cycle, while the redo instruction executes in two instruction cycles.

3-18

WO MF1aYSEIRd Mk

DSP/DSP16A INSTRUCTION SET
Cache Statements

Cache Instructions
do K { redo K
instructionl
instruction2

instructionNI

}

Table 3-9. Replacement Table
for Cache Instructions

Replace Value Meaning

K 2<K <127 | Numberof times the
instructions are to be
exccuted.
NI 1<NI<1S | 1to 15 instructions may
be included.

3.8.1 Cache Statements

When the cache is used to repeat a block of NI instructions, the cycle timings of the instructions
are as follows:

1.

(3%

[

The "first pass” does not affect cycle timings except for the last instruction in the block of
Nlinstructions. This instruction executes in two cycles.

During pass 2 through pass K+1, each instruction is executed "in the cache”
(see Table 3-3).

During the last (Kth) pass, the block of instructions executes "inside the cache,” except for
the last instruction, which executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo command
without the need to reload the cache.

- redo k. When the redo k instruction is used, the DSP executes the NI instructions currently in
the cache's memory k times. On the last iteration, the last instruction is executed outside the
cache.

Note: Control group instructions and two-word data move instructions may not be executed from
the cache.

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

3.9 INSTRUCTION SET SUMMARY

This section explains, in detail, the instruction st for the DSP16/DSP16A. Refer to Appendix A
for instruction set formats and field encodings.

goto JA (branch direct)

Bit

Field

(PC) « (PC bits 15—12)(JA)

Program control jumps to location JA (within the same 4 Kword page). The lower 12
bits of the PC are wiitten with the 12-bit immediate value of JA. The upper 4 bits of the
PC remain unchanged (the goto pt instruction is used for branches outside the current 4
Kword page).

15 12 11 0

0 0 0 0 JA '

Words: 1
Cycles: 2
Group: Control
Addressing: Immediate
Flags affected: None

Interruptible: No
Cacheable: No

Format: 4

WO MF1aYSEIRd Mk

goto B (branch direet)
(pc) « (B)

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Program control jumps to the location pointed to by the register encoded in the B field.
The pc is written with the 16-bit valuce of the register. The following branch destinations

are specified in the B field:

B Field |

Action

000
001
010
011
Ixx

return (same as goto pr)
iretum (same as goto pi)
goto pt

call pt=

Reserved

* For this instruction, note that the cumrent

pc is also saved in the prregister before the jump.

Bit | 15 11 10 8§ |7 0
Field 1 0 0 o 0 0 0 0
Words: 1
Cycles: 2

Group: Control
Addressing: Register
Flags affected: None
Interruptible:. No
Cacheable: No
Format: 5
3.21

DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary

if CON
goto/call/return

test CONdition;

if true, execute the following control statement

(conditional branch qualifier)

The condition CON is tested (encoded in the CON field). If the condition is true, the next
instruction (which must be a control instruction) is executed. If false, the control
instruction is not executed. The CON feld is encoded as:

CON Flag CON Flag

00000 | mi(negative result) 01001 | tails (random bit clear)®
00001 | pl (positive result) 01010 | cOge (counter0 2 0)*
00010 | eq (result=0) 01011 | cDlt (counter0 < 0)*
00011 | ne (result=0) 01100 | clge(counterl 20)*
00100 | lvs (logical overflow set) 01101 | ¢llt (counter] < 0)*
00101 | Ivc (logical overflow ¢clear) || 01110 | true (always)

00110 | mvs (math. overflow set) 01111 | false (never)

00111 | mve (math. overflow clear) || 10000 | gt (result>0)

01000 | heads (random bit set) 10001 | le (result <0)

* Using the cOge or o0t conditions also causes the value of
the c0 counter 1o be postincremented.
Using the clge or cllt conditions also causes the value of
the 1 counter to be postincremented,

+ The random bit is updated afier each test of heads or tails.

The ensuing control opcode can be any of the following:

gotoJA gotopt «callJA callpt retum (goto pr)

Note that ireturn and icall are the only control instructions that cannot be conditionally

executed.
Bit 15 514 0
word1ff 1 1T O 1 O O O 0 0 0 CON
Field
word 2 CONTROL OPCODE
Words: 1
Cycles: 3 (including the branch/call/return)
Group: Control
Addressing: Noene
Flags affected: None
Interruptible: No
Cacheable: No
Format: 6
322

DSP16/DSP16A INSTRUCTION SET

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Instruction Set Summary

WO MF1aYSEIRd Mk

call JA (call subroutine direct)

icall (software interrupt)
(pr) e (pc+1) (p)e—(pc+ 1)
(pe) « (pe bits 15—12)(JA) (pe) 2
IACK
The subroutine at address JA (within the same 4 Kword page) is called. First the retum !
address (the address of the first instruction following the call) is placed into the pr The interrupt handler is called, just as it would be by an external interrupt. The interrupt
register. Then the lower 12 bits of the pc are written with the 12-bit immediate value of return register is set to next pc+ 1, and the pe is set to 2, to start execution at the interrupt
JA. The upper 4 bits of pc remain unchanged (the call pt instruction is used for calling handler. Note that external interrupts vector to location 1, and icall vectors to location 2.
subroutines out of the current 4 Kword page). The interrupt acknowledge pin (TACK) is set just as it would be by an extemal interrupt.
Bit | 15 2 | n 0 Bit | 15 0
Field | 1 0 0 O IA Field [1 1 0 1 © 1 0O 0 ©0 0 ¢ 0 1 1 1 @

Words: 1 Words: 1

Cycles: 2 Cycles: 3

Group: Control Group: Control

Addressing: Immediate Addressing: None
Flags afl t'cc.ied: X;onc Flags affected: None
Interruptible: No Interruptible: No
Cacheable: No Cacheable: No
Format: 4 Format: 6
3-23

324

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

do K {
instrl

. (loop in cache; cache loaded with new contents)
i}nstrNI

execute the next NI instructions K times

The next NI instructions are loaded into the cache concurrent with their execution. They
are then executed within the cache K-1 more times, at (potentially) higher speed.

The iteration count K can be between 2 and 127, inclusive, and the number of instructions
NI must be between 1 and 15, inclusive.

Notes on cache performance:

The do instruction executes in one cycle. When the cache is used 1o repeat a block of NI
instructions, the cycle timings of the instructions are as follows:

1. The "first pass” docs not affect cycle timings except for the last instruction in the
block of NI instructions. This instruction exccuies in two cycles.

(]

During pass 2 through pass K+1, each instruction is exccuted "in the cache” (see
Table 3-3).

3. During the last (Kth) pass, the block of instructions executes "inside the cache”
except for the last instruction, which executes outside the cache.

The instructions remain in the cache memory and may be re-executed using the redo
command without the need to reload the cache.

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

redo K (loop in cache; cache contents unaffected)
execute the current contents of the cache K times

The current contents of the cache (loaded with a previous do instruction) are executed
within the cache K additional times. The iteration count K can be between 2 and 127,
inclusive.

Notes on cache performance:

The redo instruction executes in two cycles. All instructions require the in-cache time 1o
execute, except the last instruction of the last iteration, which requires the out-of-cache
time to execute. Thereafter, instructions (fetched from ROM) require their normal out-
of-cache time 10 execute.

Bit | 15 11 10 716 0
Field 0 1 1 1 0 NI K
Words: 1
Cycles: 1
Group: Cache
Addressing: Immediate
Flags affected: None

Interruptible: No

Cacheable: No

Formar: 10

325

Bit | 15 11 10 716 0
Field 0 1 1 1 0 0 0o 0 0O K
Words: 1
Cycles: 2
Group: Cache
Addressing: Immediate
Flags affected: None
Interruptible: No
Cacheable: No
Format: 10
3-26

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

The contents of register R are replaced with the 9-bit immediate value of M. The value of

Registerl R || Register | R

R=M (short immediate load)
(R) & (M)
R can be any of the following:
i | 000
k | 001
o | 010
re | 011

0 | 100
rl 101
2 | 110
3| 111

For the DSP16, these registers are all 9 bits wide. For the DSP16A, these registers are 16
bits wide and the j and k registers are sign-extended (2's complement). The others are

zero-extended.
Bit i5 12 11 918 0
Field 0 0 0 1 R M
Words: 1
Cycles: 1
Group: Data Move
Addressing: Immediate
Flags affected: None
Interruptibie: Yes
Cacheable: Yes
Format: 9

Notes:

1) In Appendix A, this instruction is encoded using a 2-bit I field that corresponds 1o the two
LSBs of the R field shown above. The most significant bit of R is the least significant bit of
the T ficld used in the instruction set encodings in Appendix A.

2) When a DSP16A program is encoded, if the immediate value M is greater than 9 bits orif a
label is used for M, the assembler defaults to a two-word, two-cycle data move encoding. The
short immediate encoding can be forced by using the optional mnemonic ser (if the value of
M is greater than 9 bits, it is truncated to 9 bits). For example:

setr3 =varl

forces a short immediate encoding.

327

DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary

R=N
R) & (N)

The contents of register R are replaced with the 16-bit immediate value of N. The value

of R can be any of the following:

(16-bit immediate load)

Register | R Field || Register | R Field
0 (u) | 000000 yl | 010010
rl (u) | 000001 auc (u) | 010011
2 (u) | 000010 psw | 010100
r3(uw) | 000011 cO(s) | 010101

j(s) | 000100 cl(s) | 010110
k(s) | 000101 c2(s) | 010111
b (u) | 000110 sioc | 011000
refu) | 000111 sna | 011001
pt | 001000 sdx | 011010
pr | 001001 tdms | 011011
pi | 001010 pioc | 011100
i(s) | 001011 pdx0 | 011101
x | 010000 pdx1 011110

vy | 010001

Register sources j, k, i, €0, ¢1, and ¢2 are less than 16 bits and are sign-extended (s).
Register sources 10, r1, 12, r3, b, re, and auc are less than 16 bits and are zero-extended
(u). Forthe DSP16A, registers 10, rl, 12,13, j, k, rb, and re are 16 bits wide and need no

sign- or zero-extension.

Note: writing the psw also writes the 20 and al guard bits.

Bit 15 0|9 4
word 1 0 1 0 1 0 0 R
Field
word 2 Immediate Value (N)
Words: 2
Cycles: 2
Group: Data Move
Addressing: Immediate
Flags affected: None
Inmterruptible: Yes
Cacheable: No
Format: 8
3-28

DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

aT =R
(aT) « (R)

R =aS
(R) « (a8)

The contents of register R are replaced with the current contents of bits 31—16 of
accumulator aS. Registers which are less than 16 bits load from the low-order bits of
aS[31—16].

(load register from accumulator) (load accumulator from register)

The contents of bits 31—16 of accumulator aT are replaced with the current contents of

register R, zero- or sign-extended to 16 bits (if necessary). If clearing aTl is enabled

(with the CLR field of the auc register), bits 15—0 of accumulator aT will be cleared.

Bits 35—32 (the guard bits) will be loaded with copies of bit 31.

The value of S can be 0 to select accumulator a0 or 1 to select accumulator al. Sce ye
Appendix A for the possible values of R. The value of 2T can be 0 to select al, or 1 to select 20. (2T is encoded as 3T in the

Note: Writing the psw also writes the the a0 and al guard bits. instruction encodings in Appendix A.) The value of R can be any of the following:

WO MF1aYSEIRd Mk

Register | R Field || Register | R Field
Bit | 15 10| 1 413 0 0 (u) | 000000 ¥l | 010010
rl (u) | OD0OO1 auc (u) | 010011
Field | 0 1 0 s 1 0 R 0o 0 0 © 12 (u) | 000010 psw | 010100
r3(u) | 000011 c0(s) | 010101
j(s) | 000100 cl(s) | 010110
k(s) | 000101 c2(s) | 010111
ro(u) | 000110 sioc | 011000
Words: 1 re(u) | 000111 sra | 011001
Cycles: 2 pt | 001000 sdx | 011010
Group: Data Move pr | 001001 tdms | 011011
Addressing: Register pi | 001010 pioc | 011100
Flags affected: None i(s) | 001011 pdx0 | 011101
Interruptible: Yes x | 010000 pdxl | 011110
Cacheable: Yes y | 010001
Fomat: 7
Register sources j, k, i, ¢0, c1, and c2 are less than 16 bits and are sign-extended (s).
Register sources 10, rl, 12, r3, rb, re, and auc are less than 16 bits and are zero-extended
(u). For the DSP16A, registers 10, r1, 2, r3, j, k, rb, and re are 16 bits wide and need no
sign- or zero-extension.
3-29 3-30

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

R=Y (load register from internal RAM)

perform (R) « (*rN); then
modify IN

The contents of register R are replaced with the current contents of the internal RAM
location pointed 1o by rN, where N is specified by the two most significant bits of the Y
field.

00 -0 01-r1 10-12 11-13

The value of N is then postmodified, where the postmodification is specified by the two
least significant bits of the Y field.

Bit | 15 11 | 10 |9 4|3 0
Field | O 1 0 0 0 |ar R o 0 0 0
Words: 1
Cycles: 2

Group: Data Move
Addressing: Register
Flags affected: None
Interruptible: Yes
Cacheable: Yes

Format: 7a

2LSBs
ol Y Action Symbol
00 no action *N
01 postincrement “IN++
10 postdecrement *IN=-=—
11 postincrement by (j) | *rN++j

Coede 11, in this case, means add the current value of the j register to N (after accessing

=pN).

See Appendix A for the possible values of destination register R. Registers which are

Note: If y is used as the register R, the assembler forces a special function encoding. The
resulting instruction moves all 32 bits (sign extended to 36 bits) of y into aT. All DAU flags are
affected, and the execution requires only one cycle. If a two-cycle data move is desired, the

less than 16 bits load from the low-order bits of the memory location. Note: writing the
psw also writes the a0 and al guard bits.

optional mnemonic move may be used. Only the upper 16 bits of y are transferred and no flags

are affected. Example:

moveal =y

3-31

Bit | 15 10 |9 4|3 0
Field 0 1 1 1 1 0 R Y
Words: 1
Cycles: 2
Group: Data Move
Addressing: Register, Register Indinect
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 7

Note: If y, ¥, or x is the destination register, R, the assembler assembles this instruction as a
single-cycle multiply/ALU instruction. If a two-cycle move enceding is necessary, the optional
mnemonic move may be used. For example:

move y = *rl

forces a move encoding.

3.32

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Y=R (store register to RAM memory)

Bit

Field

(*rN) « (R); then
modify IN

The contenis of the RAM memory location pointed to by TN are replaced with the current
ceontents of register R, zero- or sign-extended to 16 bits (if necessary). N is specified the
two most significant bits of the Y feld:

00-10 01-r1 10-12 11-13

e value of rN is then postmodified, where the postmodification is specified by the two
Icast significant bits of the Y field.

2 LSBs
of ¥ Action Symbol
00 no action *N
01 postincrement *IN++
10 postdecrement *N——
11 postincrement by (j) | *rN++j

Coda 11, in this case, means add the current value of the j register to N (after accessing
*IN).

Sec Appendix A for possible values of R. Register sources j, k, 1. ¢0, c1, and ¢2 are less
than 16 bits and are sign-extended. Register sources 10, r1, r2, 13, 1b, re, and auc are less
than 16 bits and are zero-extended. For the DSP16A, registers 10, r1, 12, r3, j, k, rb, and
re are 16 bits and need no sign- or zero-exiending.

15 11 0|9 413 0
0 1 1 0 0 X R Y

Words: 1

Cycles: 2

Group: Data Move
Addressing: Register, Register Indirect
Flags affected: 'None
Interruptible: Yes
Cacheable: Ycs
Format: 7

3-33

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Z:R (exchange register with RAM memory)

3-34

temp « (R): then

(R) « (*N); then

modify N (first action); then
(*rN) < temp; then

modify rN (second action)

The contents of the RAM memory location(s) pointed to by rN are exchanged with the
current contents of register R, which is sign- or zero-extended 10 16 bits (if necessary).
The pointer rN is modified after cach of the two memory accesses according to the M
field. N is specified by the two most significant bits of the Z field:

00-10 01-r1 10-12 11-73

The available options for the postmodification are specified by the two least significant
bits of the Z ficld as follows:

2LSBs
Symbaol of Z First Action Second Action
*Nzp 00 no action postincrement
*rNpz 01 postincrement no action
*Nm2 10 postdecrement postincrement by 2
*Njk 11 postincrement by (j) | postincrement by (k)

Cu’ic 11, in this case, means add the current value of the j register to N after reading
*IN, then add the current value of the k register to TN afier writing *rN,

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary Instruction Set Summary
See Appendix A for possible values of R. Register sources j, k, i, ¢0, ¢l, and ¢2 are less if CON F2 (If CONdition is true, then perform
than 16 bits and are sign-cxtended. Register sources 10, rl, 12, 13, b, re, and auc are less special function instruction)
than 16 bits and are zero-exiended. For the DSP16A, registers 10, rl, 12, 3, j, k. rb, and .
re are 16 bits and need no sign- or zero-extension. Note: writing the psw also writes the test CONdition;

a0 and al guard bits. if true, then perform F2

The specified condition is tested. If it is true, the special function operation F2 is

pic; | 55 i 0|9 4|3 0 performed. See Appendix A for the conditions that ¢an be tested (encoded in the CON
field).
Field | O 1 1 0 1 3 R z - - .
1 The F2 functions (special function group) that can be conditionally performed (encoded
in the F2 ficld) are as follows:
F2 Operation
Words: 1 0000 | aD=aS>>1
Cycles: 2 0001 | aD=aS<< 1

0010 | aD=aS>>4
0011 | aD=aS<<4
0100 | aD=aS>>8
0101 | aD=aS<<§
0110 | aD=2aS>> 16
0111 | aD=aS<< 16
1000 | aD=p

1001 aDh=aSh+1
1010 | Reserved
1011 | aD =md(aS)

Group: Datz Move
Addressing: Register, Register Indirect
Flags affected: None
Interruptible: Yes
Cacheable: Yes
Format: 7

Note: R and r™ must not be the same register (i.¢., r2pz:r2). The two logical PIO registers.pdx0
and pdx1, cannot be used in compound data moves.

1100 | aD=y

1101 | aD=aS+1

1110 | aD=2aS

1111 | ab=-a$
Bit | 15 11 0198 504 0
Field 1 o 0 1 1 D | s F2 CON

Words: 1

Cycles: 1

Group: Special Function
Addressing: Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 3

3-35 3-36

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary Instruction Set Summary
ifc CON F2 (if CONdition is true, then perform Fl1 Y (multiply/ALU operation with postmodification of pointer register)
special function instruction))
(modify counterl,2 accordingly) perform operation F1; then
access *rN; then
countercl =cl + 1 postmodify N (the contents of *rN are not written to a destination)

test CONdition; if true then {perform F2: ¢2 =cl}

This instruction performs the following three operations (effectively in se :
First, countercl is incremented. Next, the specificd condition is tested. If the condition il (§ L

is true, the special function operation F2 is performed and counter c2 is set fo the value of 1. The operation F1 is performed. The possible F1 operations are:
cl. The conditions that can be tested are encoded in the CON field (see Appendix A).

F1 Operation
The possible F2 special functions that can be conditionally performed are: 0000 | aD=p p=xsy
0001 | aD=aS+p p=xsy
F2 Operation 0010 p=x*y
0000 | aD=aS>>1 0011 | aD=aS—p p=xsy
0001 | aD=2aS<<1 0100 | aD=p
0010 | aD=2aS>>4 0101 | aD=2aS+p
0011 | aD=aS<<4 0110 | NOP
0100 | aD=aS>>8 0111 | ab=aS-p
0101 | aD=aS<<8§ 1000 | aD=aSly
0110 | aD=aS>>16 1001 | aD=aS*y
0111 | aD=aS<< 16 1010 | aS &y
1000 | aD=p 1011 | aS—y
1001 | aDh=aSh+1 1100 | aD=y
1010 | Reserved 1101 | aD=aS+y
1011 | aD=md(aS) 1110 | aD=aS &y
1100 | aD=y 1111 | aD=aS—vy
1101 | aD=aS+1
1110 | aD=as The value of S can be 0 1o select a0 or 1 to select al. The value of D canbe 010
1111 | aD=-aS select 20 or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is si _gn-cmcn'dcd
The D and S fields are used to specify aD and aS. 10 36 bits before performing the operation (this includes logical operations).
Bit 15 1 0]9e|8 514 0
Field 1 0 0 1 0 D S F2 CON
Words: 1
Cycles: 1

Group: Special Function
Addressing: Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 3

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Access the internal RAM location pointed 1o by N, where rN is specified by the F1 Y =al[l]
two most significant bits of the Y field as follows (the accessed location is not F1 Y=al [[]
wrilten 1o a destination):

ta

(multiply/ALU operation with parallel accumulator store)

write the value of aT[l] to *rN; then
modify rN; then
perform operation Fl

00 - 0 01-rl 10-12 11-13

3. Postmodify the value of IN, where the postmodification is specified by the two

least significant bits of the Y field. This instruction performs the following three operations (effectively in sequence):

2 LSBs 1. Write the (old) value of 20, al, a0l, or all to the internal RAM location pointed to
of Y Action Svmbol by rN, where N is specified by the two most significant bits of the Y field.
00 no action *IN
01 postHamaEnt rNas 00-10 01-r1 10-r2 11-13
10 postdecrement IN-— = = :
1 postingrementby () | *eN++i The X field selects y or yl:

X=0 — 2l X=1—=y%

Code 11, in this case, means add the current value of the j register to N (after
accessing *riN).

‘P-l

Postmadify the value of 1N, where the postmodification is specified by the two
least significant bits of the Y ficld.

WO MF1aYSEIRd Mk

Bit | 15 1mm|l10]9]s8 5|43 0 2LSBs
of Y Action Symbol
Field | O 0 1 1 O D|S F1 0 Y 00 no action *N
01 postincrement *N++
10 postdecrement *IN——
Words: 1 11 postincrement by (j) | *rN++j
Cycles: 1
Group: Muliiply/ALU Code 11 in this case means add the current value of the j register to N (after
Addressing: Register Indirect, Register accessing *rN).
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 1

339

3-40

WO 1Y SEIRd Mk

Bit

Field

-~

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

The operation F1 is performed. The possible operations for F1 are:

=N
F1 Operation
0000 | aD=p p=xry
0001 | aD=aS+p p=x»y
0010 p=x*y
0011 | aD=aS—p p=x*y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP
0111 | aD=aS-p
1000 | aD=aSly
1001 | aD=aS"y
1010 | aS &y
1011 | aS—vy
1100 | aD=y
1101 | aD=aS+y
1110 | aD=aS &y
1111 | aD=aS-y
The value of S can be 0to select a0 or 1 to select al. The valueof Dcanbe 010
select 20 or 1 to select al, Note: for all diadic operations involving the y register, ¥
is sign-extended 1o 36 bits before performing the operation (this includes logical
operations).
15 1|19]s8 51413
a0 || 1 1 1. 0 0|D]|S F1 X Y
alff o 0 1 0 0| D|S F1 X Y
Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing: Register Indircct, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 1

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F1

342

x=Y (multiply/ALU operation with parallel load of x register)

perform operation F1; then
copy *rN to x; then
modify IN

This instruction performs the following three operations (effectively in sequence):

. The multiply/ALU operation F1 is performed. The possible operations for Fl are

as follows:

Fl Operation
0000 | aD=p P=Xx*y
0001 | aD=aS+p p=x»y
0010 p=xey
0011 | aD=aS—p p=x*y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP
0111 | aD=aS—-p
1000 | aD=aSly
1001 | aD=aSAy
1010 | aSé&y
1011 | aS—v
1100 | aD=y
1101 | aD=aS=+y
1110 | aD=aS &y
1111 | aD=aS—y

The value of S can be O to selectal or 1 to select al. The value of D canbe 0 1o
select 20 or 1 to sclect al. Flags are modified based on the value computed by the
DAU. Note: forall diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

2. Aceess the internal RAM location pointed to by N, and write this value into the x F1 y[]=Y (multiply/ALU operation with parallel load of y register)
register. N is specified by the most significant bits of the Y field:
perform operation F1; then
00 - 10 01-r1 10-12 11-13 copy *rN to y (or yl); then
modify IN
& ?;gﬁ%f;&i‘:eo?;?Y“ﬁh;r: e postmbditieation s seegified by the o This instruction performs the following three operations (effectively in sequence):
1. The multiply/ALU cperation F1 is performed. The possible F1 operations are as
2LSBs follows:
of Y Action Symbol
00 no action =N F1 Operation
01 postincrement N4+ 0000 | aD=p p=xsy
10 postdecrement *IN—-- 0001 [aD=2aS+p p=x=y
11 postincrement by (j) | *rN++j 0010 p=x*y
0011 | aD=aS—p p=x=y
Code 11, in this case, means add the current value of the j register to N (after 0100 | aD=p
accessing *IN). 0101 | aD=aS+p
0110 | NOP
0111 | aD=aS-p
Bit | 15 i1 [10]9]8 5[4 3 0 1000 | aD=aSly
1001 | aD=aS*y
Field 1 0 1 1 0 D S F1 0 Y 1010 | aS &y
1011 | aS—y
1100 | aD=y
Words: 1 1101 | aD=aS+y
Cycles: 1 1110 | aD=aS &y
Group: Multiply/ALU 1111 | aD=aS-y
Addressing: Register Indirect, Register
Flags affected: All The valuc of S can be 0 to select a0 or 1 1o select 21. The valueof Deanbe O 1o
Interruptible: Yes select a0 or 1 to select al. Flags are modificd based on the value computed by the
Cacheable: Yes DAU. Note: for all diadic operations invelving the y register, v is sign-extended to
Format: 1 36 bits before performing the operation (this includes logical operations).
343 34

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary Instruction Set Summary
2. Access the internal RAM location pointed 1o by rN, and writc this value into the y F1 y= Y X= =“pt++[i] (multiply/ALU operation
(or yl) register. N is specified by the two most significant bits of the Y ficld: with parallel load of
x and y registers)
00 -10 01-r1 10-12 11-r3
perferm operation F1; then
The X field selects y or vz (y) & (*rN); then
modify rN; then
X=0 — ¥l X=1=y (x) & (*pt); then
3. Postmodify the value of 1N, where the postmedification is specified by the two Po=(e+ 1l eri]
least significant bits of the Y ficld: This instruction performs the following operations (effectively in sequence):
2LSBs 1. The operation F! is performed. The possible operations for F1 are:
of Y Action Symbol
00 no action *N F1 Operation
01 postincrement *IN++ 0000 | aD=p p=xsy
10 postdecrement *IN—— 0001 [aD=aS+p p=xsy
11 postincrement by (j) | *rN+4j 0010 p=x*y
0011 | aD=aS—-p p=x*y
Code 11, in this case, means add the current value of the j register to rN (after 0100 | aD=p
accessing *rN). 0101 | aD=aS+p
0110 | NOP
0111 | aD=aS-p
Bit 15 11 1009 |8 5 E 3 0 1000 | aD=aSly
1001 | aD=aS~y
Field 1 0 1 1 1 D|S F1 X Y 1010 | aS &y
1011 | aS~-y
1100 | aD=y
Words: 1 1101 | aD=aS+y
Cyeles: 1 1110 | aD=aS &y
Group: Multiply/ALU 1111 | aD=aS—y
Addressing: Register Indirect, Register
Flags affected: All The value of S canbe 010 select 20 or 1 to selectal. Thevalueof Decanbe O to
Interruptible: Yes select a0 or 1 to select al. Flags are modified based on the value computed by the
Cacheable: Yes DAU. Note: for all diadic operations involving the y register, y is sign-extended to
Formar 1 36 bits before performing the operation (this includes logical operations).

L
b
w

3-46

WO MF1aYSEIRd Mk

Bit

Field

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Access the internal RAM location pointed to by rN, and write this value into the y
register. N is specified by the two most significant bits of the Y field:

00-10 01-r1 10-12 11-13

3. Postmodify the value of rN, where the postmodification is specified by the two

least significant bits of the Y field:
2LSBs
of Y Action Symbol

00 no action *IN

01 postincrement *N++

10 postdecrement *IN——

11 postincrement by (j) | *rN++j
Code 11, in this case, means add the current value of the j register to rN (after
accessing *rN).

4. Access the ROM location pointed to by pt, and write this value into the x register.
Either internal or external ROM may be accessed, depending on the state of the
EXM pin (and the address, in the case of the DSP16A).

5. Postmodify the value of the pt register by either 1 or i, selected by the X field:

X=0 — *pt++ X=1— *pt++i
15 1111098 51413 0
1 11 1 1 D | S Fl1 X Y
Words: 1

Cycles: 2 (1 cycleif in cache)
Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 1

347

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F1
F1

3-48

=al x=*pt++[i]
y=al x=%*pt++[i]

(multiply/ALU operation
with parallel load of
x and y registers)

perform operation Fl: then
(y) « (20) or (al); then
(x) « (*pt); then
(pU)=(pt)+ [1 ori]

This instruction performs the following operations (effectively in sequence):

The operation F1 is performed. The possible operations for F1 are:

Fl1 Operation
0000 | aD=p p=x*y
0001 | aD=aS+p p=xry
0010 p=x*y
0011 | aD=aS—-p p=x#y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP

0111 | 2D=aS-p
1000 | aD=aSly
1001 | aD=aS*y

1010 | aS &y
1011 | aS-y
1100 | aD=vy

1101 | aD=aS+y
1110 | aD=aS &y
1111 | aD=aS—y¥

The value of Scanbe O to select 20 or 1 to select al. Thevalucof Dcanbe O to
select a0 or 1 to select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F1 aT[l] =Y (multiply/ALU operation with paralle] load

of accumulator register)

!-J

Copy the value in a0 or al to the y register. Note that the value copied from a0 or
al is the value before executing the F1 operation, due to pipelining.

3. Access the ROM location pointed to by pt, and write this value into the x register.
Either internal or external ROM may be accessed, depending on the state of the
EXM pin (and the address, for the DSPI6A).

perform operation F1; then
copy *rN to aT (or aTl); then
modify tN by M

4. Postmodify the valuc of the pt register by either 1 ori, selected by the X ficld: This instruction performs the following three operations (effectively in sequence):

X=0 = *pt++ X=1 — *pt++ 1. 'The operation F1 is performed. The possible operations for F1 are:
F1 Operation
0000 | aD= =x*
Bit 15 1nmjw|9|s 51413 0 0001 aD=ZS+p g:::-;
0010 p=x*y
a0 1 1 0 0 1 D|S Fl1 X|0 0 0 0 0011 | aD=aS-p p=xsy
Field 0100 | aD=p
al jl 1 1 0 1 % |DI|S F1 X|0 0 0 0O 0101 | aD=aS+p
0110 | NOP
0111 | aD=aS-p
Words: 1 1000 | aD=aSly
Cycles: 2 (1 cycle if in cache) 1001 | aD=aS"y
Group: Multiply/ALU 1010 | aS&y
Addressing: Register Indirect, Register 1011 | aS—y
Flags affecied: All 1100 | aD=y
Interruptible: Yes 1101 | aD=2aS + ¥
Cacheable: Yes 1110 | aD=aS&y
Format: 1 1111 | aD=aS-¥

WO MF1aYSEIRd Mk

The value of S can be 0 1o select a0 or 1 10 select al. The value of ST canbe O to
select al or 1 to select a0, Since aD and aT must be different accumulators, aD
will be the opposite of aT. Flags arc medified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, y is sign-extended to
36 bits before performing the operation (this includes logical operations).

WO MF1aYSEIRd Mk

Bit

Field

w

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Access the internal RAM location pointed to by rN, and write this value to the aT
(or aTl) register. 3T is defined as the opposite of D for this instruction. Therefore,
if the F1 field selects writing to aD, aD will be the opposite of aT. N is specified
by the two most significant bits of the Y field:

00-10 0l-rl1 10-12 11-13
The X field selects y or yl:

X=0 -5y X=1=y

Postmodify the value of TN, where the postmodification is specified the two least
significant bits of the Y field:

2LSBs
of Y Action Symbol
00 no action N
01 postincrement *N++
10 postdecrement =N—-—
11 postincrement by (j) | *rN++j

Code 11, in this case, means add the current value of the j registerto rN (after
accessing *rN).

15 11 |10] 9|8 5143 0]
1 0 1 1 1 ar| s F1 X Y
Words: 1
Cycles: 1

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: la

351

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F

1

Y= }’[l] (multiply/ALU operation with parallel
store of y register)

perform operation Fl;

(*rN) « (y) or (y1); then

modify N

This instruction performs the following operations (effectively in sequence):

1. The cperation F1 is performed. The possible operations for F1 are:

Fl Operation
0000 | aD=p p=x=y
D001 | aD=aS+p p=x*y
0010 p=x=y
0011 | aD=aS—p p=x=y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP

0111 | aD=aS—-p
1000 | aD=aSly
1001 | aD=aSAy

1010 | aS&y
1011 | aS-—y
1100 | aD=y

1101 | aD=aS+y
1110 | aD=aS &y
1111 | aD=aS-y

The value of S can be 010 select 20 or 1 1o select al. The valuc of Dcanbe 010
select a0 or 1 to select al. Flags arc modified based on the value computed by the
DAU. Note: for all diadic operations involving the v register, v is sign-extended to
36 bits before performing the operation (this includes logical operations).

WO MF1aYSEIRd Mk

DSP16/DSP16A INSTRUCTION SET DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary Instruction Set Summary

)

Write the value of y or ¥l to the internal RAM location pointed to by tN. where N F1 Z:y[] (multiply/ALU operation with compound data move)
is specified by the two most significant bits of the Y field:
perform operation F1; then

00-10 01-r1 10-12 11-13 temp « (y) or (y1): then
(y) or (¥1) « (*rN); then
The X ficld selects y or yl: modify rN (first action): then
(*rN) < temp; then
X=0—= X=1=2y modify N (second action)

3. Postmodify the value of N, where the postmodification is specified by the two

This instruction performs the following operations (effectively i ence):
least significant bits of the Y ficld: e P : PR SemeNE)

1. The operation F1 is performed. The possible F1 operations are:

2LSBs
of Y Action Symbol F1 Operation
00 no action *IN 0000 | aD=p p=x*y
01 postincrement fIN++ 0001 | aD=aS+p p=xsy
10 postdecrement “IN—— 0010 p=x*y
11 postincrement by (§) | *tN++j 0011 | aD=aS—p p=x=*y
0100 | aD=p
Code 11, in this case, means add the current value of the j register to N (after 0101 | aD=aS+p
accessing *rN). 0110 | NOP
0111 | aD=aS—-p
1000 | aD=aS!y
Bit | 15 1m|l10(9)]8 514 (3 0 1001 | aD=aS*y
1010 | aS& ¥
Field 1 0 1t 0 0 D | S Fl1 X Y 1011 | aS—y
1100 | aD=y
1101 | aD=aS+y
Words: 1 1110 | aD=aS &y
Cycles: 2 1111 | aD=aS—y
Group: Multiply/ALU
Addressing: Register Indirect, Register The value of § can be 0 1o select a0 or 1 to select al. Thevalueof Dcanbe 010
Flags affected: All select a0 or 1 1o select al. Flags are modified based on the value computed by the
Interruptible: Yes DAU. Note: for all diadic operations involving the y register, y is sign-extended to
Cacheable: Yes 36 bits before performing the operation (this includes logical operations).
Format: 1

3-533 3-54

WO MF1aYSEIRd Mk

Bit

Field

[

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

Save either the y or yl register into an intemal temporary location (temp). The X
field select y or yi:

X=0-yl X=1->y

3. Access the internal RAM location pointed to by rN, and write this value into the y

(or y1) register. TN is specified by the 2 most significant bits of the Z field:
00 -10 01-r1 10-12 11-13

4. Postmodify the value of rN by the first action described by the two least significant
bits of the Z ficld (described below).

5. Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

6. Postmodify the value of IN by the sccond action described by the two least
significant bits of the Z ficld. The available options for the postmodification are
specified as follows:

2LSBs
Symbol of Z First Action Second Action
*rNzp 00 no action postincrement
*Npz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*Njk i1 postincrement by (j) | postincrement by (k)
Code 11, in this case, means add the current value of the j (or) k register to IN
(after accessing *riN).
15 1|19 |s8 S| 4|3 0
1 0 1 0 1 D |S Fl X zZ
Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 2

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F1 Z:aT[l]

(multply/ALU eperation with parallel
compound accumlator move)

perform operation FI; then
temp « (aT) or (aT1); then
(aT) or (aT1) « (*rN); then
modify N (first action);
(*IN) « 1emp:

modify N (second action)

This instruction performs the following operations (effectively in sequence):

1

(5]

The operation F1 is performed. The possible operations for F1 are:

F1 Operation
0000 | aD=p p=x=y
0001 | aD=aS+p p=x*y
0010 p=x*y
0011 | aD=aS—p p=x»*y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP

0111 | aD=aS~-p
1000 | aD=aSly
1001 | aD=aS*y

1010 | aS &y
1011 | aS—y
1100 | aD=y

1101 | aD=aS+y
1110 | aD=aS &y
1111 | aD=aS-y

The value of S can be 0 to select 20 or 1 to select al. The value of aT canbe O 1o
select al or 1 to select 20, Since 2D and aT must be different accumulators, aD
will be the opposite of aT. Flags are modified based on the value computed by the
ALU. Note: for all diadic operations involving the y register, y is sign-extended lo
36 bits before performing the operation (this includes logical operations).

Save either the aT or aTl register into an intemal temporary location (temp). 3T is
defined as the opposite of D for this instruction. Therefore, if the F1 ficld selects
writing to aD, aD will be the opposite of aT since the 3T field must read/write aT,
and vice versa. Note thatif aS in the F1 operation is the same as aT, the value used
in the F1 operation will be the old value, due to pipelining. The X field sclects aT
oraTl:

X=0 = aTl X=1 - aT

WO MF1aYSEIRd Mk

Bit

Field

(9]

DSP16/DSP16A INSTRUCTION SET

Instruction Set Summary

Access the internal RAM location pointed to by rN, and write this value to the aT
(or aT1) register. N is specified by the two most significant bits of the Z field:

00-r0 01-rl1 10-12 11-13
Postmodify the value of rN by the first action described by the two least significant
bits of the Z field (described below).

Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

Postmedify the value of tN by the second action described by the two least
significant bits of the Z field. The available options for the postmodification are
specified as follows:

2LSBs
Symbol of Z First Action Second Action
*Nzp 00 no action postincrement
*Npz 01 postincrement no action
*rNm2 10 postdecrement postincrement by 2
*Njk 11 postincrement by (j) | postincrement by (k)

Code 11, in this case, means add the current value of the j (or) k register to £N
(after accessing *rN).

15 11 |110]9]8 S|4 |3 0
0O o 1 0 1 aT | S Fl1 X Z
Words: 1
Cycles: 2

Group: Multiply/ALU
Addressing: Register Indirect, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 2a

3-57

DSP16/DSP16A INSTRUCTION SET
Instruction Set Summary

F1 Z:y x=*pt++[i] (muliply/ALU operation with

3-58

compound data move and
parallel load of x register)

perform operation F1; then
temp & (y); then

(¥) & (*rN); then

modify N (first action); then
(*rN) « temp; then

modify rN (second action); then
(x) « (*pt); then

(p)=(pt)+ [l ori]

This instruction performs the following operations (effectively in sequence):

1. The operation F1 is performed. The possible operations for F1 are:

F1 Operation
0000 | aD=p p=xsy
0001 | aD=aS+p p=x*y
0010 p=x3y
0011 | aD=aS—p p=x*y
0100 | aD=p
0101 | aD=aS+p
0110 | NOP

0111 | aD=aS-p
1000 | aD=aSly
1001 | aD=aS~y

1010 | aS &y
1011 | aS—-vy
1100 | aD=y¥

1101 | aD=aS+y
1110 | aD=aS &y
1111 | aD=aS-y

The valuc of S can be 0 to select a0 or 1 to select al. Thevalueof Dcanbe Q1o
select a0 or 1 1o select al. Flags are modified based on the value computed by the
DAU. Note: for all diadic operations involving the y register, v is sign-extended to
36 bits before performing the operation (this includes logical operations).

2. Save the y register into an intemal temporary location (temp).

3. Access the internal RAM location pointed to by N, and write this value into the ¥
register. N is specified by the two most significant bits of the Z field:

00-10 01-rl 10-r2 11-3

WO MF1aYSEIRd Mk

Bit

Field

DSPI6/DSP16A INSTRUCTION SET
Instruction Set Summary

4. Postmodify the value of rN by the first action described by the two least significant
bits of the Z field (described below).

5. 'Write the value saved in the temporary register (temp) to the memory location now
pointed to by rN.

6. Postmodify the value of rN by the second action described by the two least
significant bits of the Z field. The available options for the postmodification are
specified as follows:

2LSBs

Symbol of Z First Action Second Action

*INzp 00 no action postincrement

*Npz 01 postincrement no action

*™Nm2 10 postdecrement postincrement by 2

*Njk 11 postincrement by (j) | postincrement by (k)
Code 11, in this case, means add the current value of the j (or) k registerto tN
(after accessing *rN).

7. Access the ROM location peinted to by pt, and write this value into the x register.
Either internal or extemnal ROM may be accessed, depending on the stateof the
EXM pin (and the address, for the DSP16A).

8. Postmoedify the value of the pt register by either 1 or i, selected by the X field:

X=0 — *pt++ X=1 = *pt++
15 1m|10|9]8 §14 |3 0
1 1 1 0 1 D S Fl X Z
Words: 1
Cycles: 2

Group: Muliiply/ALU
Addressing: Register Indirect, Register
Flags affected: All
Interruptible: Yes
Cacheable: Yes
Format: 2

