SPECIFICATION FOR APPROVAL | (|) | Preliminary Specification | |----|---|----------------------------------| | 14 | ١ | Final Specification | | | 17.0" SXGA TF | T LCD | |-----|---------------|--------------------------| | DID | SUPPLIER | LG.Philips LCD Co., Ltd. | | | *MODEL | LM170E01 | | | DID | DID SUPPLIER | SUFFIX *When you obtain standard approval, please use the above model name without suffix A4 | SIGNATURE | DATE | |-----------|------| | 1 | | | | | | <i>L</i> | | | | | | T | | | | | | APPROVED BY | DATE | |---------------------|----------| | G.T. Kim / Manager | 03,02.0 | | REVIEWED BY | | | (600 | | | K.J. Kwon/ Manager | 09.00. | | PREPARED BY | | | pmuf | _ | | B.C.Song /Engineer | 83.02.4 | | 3 | | | Product Engineering | ng Dept. | # **CONTENTS** | NO. | ITEM | Page | |-----|------------------------------|------| | - | COVER | 1 | | - | CONTENTS | 2 | | - | RECORD OF REVISIONS | 3 | | 1 | GENERAL DESCRIPTION | 4 | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | 3 | ELECTRICAL SPECIFICATIONS | 6 | | 3-1 | ELECTRICAL CHARACTERISTICS | 6 | | 3-2 | INTERFACE CONNECTIONS | 8 | | 3-3 | SIGNAL TIMING SPECIFICATIONS | 12 | | 3-4 | SIGNAL TIMING WAVEFORMS | 13 | | 3-5 | COLOR INPUT DATA REFERANCE | 14 | | 3-6 | POWER SEQUENCE | 15 | | 3-7 | VCC POWER DIP CONDITION | 16 | | 4 | OPTICAL SPECIFICATIONS | 17 | | 5 | MECHANICAL CHARACTERISTICS | 21 | | 6 | RELIABILITY | 24 | | 7 | INTERNATIONAL STANDARDS | 25 | | 7-1 | SAFETY | 25 | | 7-2 | EMC | 25 | | 8 | PACKING | 26 | | 8-1 | DESIGNATION OF LOT MARK | 26 | | 8-2 | PACKING FORM | 26 | | 9 | PRECAUTIONS | 27 | # **RECORD OF REVISIONS** | Revision No | Date | Page | Description | |-------------|---------------|--------------|---| | Ver 1.0 | Feb. 14. 2003 | - | Final draft | | Ver 1.1 | Feb. 24. 2003 | 4/28
6/28 | General feature : Power consumption 3-1 Electrical characteristics Power supply input current Power consumption | | | | 18/28 | 4. Optical characteristics Gray scale | ### 1. General Description The LM170E01-A4 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has a 17.0 inch diagonal measured active display area with SXGA resolution(1024 vertical by 1280 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16.2M colors with FRC(Frame Rate Control). The LM170E01-A4 has been designed to apply the interface method that enables low power, high speed,low EMI. FPD Link or compatible must be used as a LVDS(Low Voltage Differential Signaling) chip. The LM170E01-A4 is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LM170E01-A4 characteristics provide an excellent flat panel display for office automation products such as monitors. Figure 1. Block diagram ### **General Features** | Active screen size | 17.0 inch (43.27cm) diagonal | | | | |------------------------|--|--|--|--| | Outline Dimension | 358.5(H) x 296.5(V) x 17.0(D) mm(Typ.) | | | | | Pixel Pitch | 0.264 mm x 0.264 mm | | | | | Pixel Format | 1280 horiz. by 1024 vert. Pixels. RGB stripe arrangement | | | | | Display Colors | 16.2M colors | | | | | Luminance, white | 250 cd/m ² (Typ. Center 1 point) | | | | | Power Consumption | 19.05 Watts(Typ.) | | | | | Weight | 1890g (Typ.) | | | | | Display operating mode | Transmissive mode, normally white | | | | | Surface treatments | Hard coating (3H), Anti-glare treatment of the front polarizer | | | | Ver 1.1 Feb. 24, 2003 4 / 28 ## 2. Absolute maximum ratings The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit. **Table 1. Absolute Maximum Ratings** | Doromotor | Cumbal | Values | | | Notes | | |--|---|------------------------------|---------------------------------------|------------------------------|-----------------------------|--| | Parameter | Symbol | Min. | Min. Max. | | Notes | | | Power Supply Input Voltage
Operating Temperature
Storage Temperature
Operating Ambient Humidity
Storage Humidity | V _{CC}
T _{OP}
T _{ST}
H _{OP}
H _{ST} | -0.3
0
-20
10
10 | + 5.5
+ 50
+ 60
+ 90
+ 90 | V dc
℃
℃
%RH
%RH | At 25 ℃
1
1
1
1 | | Note: 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water. Figure 2. Temperature and relative humidity Ver 1.1 Feb. 24, 2003 5 / 28 ### 3. Electrical specifications **Power Consumption** Life Time ### 3-1. Electrical characteristics The LM170E01-A4 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. Another which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD. **Values Parameter** Symbol Units **Notes** Min. Тур. Max. MODULE: 4.5 5.0 5.5 ٧/ Power Supply Input Voltage V_{CC} V V_{RF} 0.1 Permissive Power Input Ripple Power Supply Input Current 0.43 0.50 Α 1 I_{CC} Ζm ohm Differential Impedance 90 100 110 P_{C} 2.15 2.50 Watts **Power Consumption Rush Current** 2.0 3.0 Α 2 I_{RUSH} LAMP for each CCFL: Operating Voltage V_{BI} 640 650 740 V_{RMS} 3 (@7.0mA)(@6.5m)(@3.0mA) mA_RMS **Operating Current** 3.0 6.5 7.0 I_{BL} **Established Starting Voltage** V_{BS} 4 at 25 °C 1000 V_{RMS} at 0 °C 1250 **Operating Frequency** f_{BL} 40 60 70 kHz 5 Discharge Stabilization Time T_S Minutes 3 6 **Table 2. Electrical Characteristics** Note. The design of the inverter must have specifications for the lamp in LCD Assembly. P_{BL} The performance of the Lamp in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC Inverter. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter(no lighting,flicker,etc) never occurs. When you confirm it,the LCD Assembly should be operated in the same condition as installed in your instrument. 16.90 18.60 Watts Hrs 7 8 **Note.** Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape. 50,000 - 1. The specified current and power consumption are under the V_{CC} =5.0V, 25°C, f_V (frame frequency) =60Hz condition. Mosaic(black & white) pattern shown in the [Figure 3] is displayed. - 2. The duration of rush current is about 5ms. And $\rm V_{CC}$ rise time is 500us \pm 20%. - 3. Operating voltage is measured under 25 $^{\circ}$ C. The variance of the voltage is \pm 10%. - 4. The voltage above V_{BS} should be applied to the lamps for more than 1 second for start-up. Otherwise,the lamps may not be turned on. Ver 1.1 Feb. 24, 2003 6 / 28 - 5. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interference with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away as possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference. - Let's define the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%. The used lamp current is the lamp typical current. - 7. The lamp power consumption shown above does not include loss of external inverter under $25\,^{\circ}$ C. The used lamp current is the lamp typical current. - 8. The life time is determined as the time at which brightness of lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 \pm 2°C. - 9. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. - It shall help increase the lamp lifetime and reduce its leakage current. - a. The unbalance rate of the inverter waveform should be 10% below; - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$; - c. The ideal sine wave form shall be symmetric in positive and negative polarities. - * Asymmetry rate = $|I_p I_{-p}| / I_{rms}$ * 100% - * Distortion rate = I_p (or I_{-p}) / I_{rms} - 10. Inverter open voltage must be more than lamp starting voltage. - 11. The inverter which is combined with this LCM, is highly recommended to connect coupling(ballast) condenser at the high voltage output side. When you use the inverter which has not coupling(ballast) condenser, it may cause abnormal lamp lighting because of biased mercury as time goes. [Figure 3] Mosaic pattern for power consumption measurement ### 3-2. Interface Connections Interface chip must be used LVDS, part No. SN75LVDS83 (Tx, Texas Instrument) or compatible. This LCD employs a interface connection, a 30 pin connector is used for the module electronics interface. Four 2pin connectors are used for the integral backlight system. The electronics interface connector is a model IN-30-BA 10 manufactured by UJU Electronics. And mating connector is FI-X30H or compatible manufactured by JAE. The pin configuration for the connector is shown in the table 3 and the signal mapping with LVDS transmitter is shown in the table 4. Table 3. Module connector pin configuration | Pin No | Symbol | Description | | |--------|--------|--------------------------------------|-------------------| | 1 | RxO0- | LVDS Signal of Odd Channel 0(-) | | | 2 | RxO0+ | LVDS Signal of Odd Channel 0(+) | | | 3 | RxO1- | LVDS Signal of Odd Channel 1(-) | | | 4 | RxO1+ | LVDS Signal of Odd Channel 1(+) | | | 5 | RxO2- | LVDS Signal of Odd Channel 2(-) | | | 6 | RxO2+ | LVDS Signal of Odd Channel 2(+) | First Pixel Data | | 7 | GND | Ground | | | 8 | RxOC- | LVDS Signal of Odd Channel Clock(-) | | | 9 | RxOC+ | LVDS Signal of Odd Channel Clock(+) | | | 10 | RxO3- | LVDS Signal of Odd Channel 3(-) | | | 11 | RxO3+ | LVDS Signal of Odd Channel 3(+) | | | 12 | RxE0- | LVDS Signal of Even Channel 0(-) | | | 13 | RxE0+ | LVDS Signal of Even Channel 0(+) | | | 14 | GND | Ground | | | 15 | RxE1- | LVDS Signal of Even Channel 1(-) | | | 16 | RxE1+ | LVDS Signal of Even Channel 1(+) | | | 17 | GND | Ground | Second Pixel Data | | 18 | RxE2- | LVDS Signal of Even Channel 2(-) | | | 19 | RxE2+ | LVDS Signal of Even Channel 2(+) | | | 20 | RxEC- | LVDS Signal of Even Channel Clock(-) | | | 21 | RxEC+ | LVDS Signal of Even Channel Clock(+) | | | 22 | RxE3- | LVDS Signal of Even Channel 3(-) | J | | 23 | RxE3+ | LVDS Signal of Even Channel 3(+) | | | 24 | GND | Ground | | | 25 | NC | No connection | | | 26 | NC | No connection | | | 27 | NC | No connection | | | 28 | VCC | Power supply (5.0V Typ.) | | | 29 | VCC | Power supply (5.0V Typ.) | | | 30 | VCC | Power supply (5.0V Typ.) | | Ver 1.1 Feb. 24, 2003 8 / 28 Rear view of LCM ### [Figure 4] Connector diagram Notes: 1. All GND(ground) pins should be connected together and should also be connected to the LCD's metal frame. - 2. All $\ensuremath{V_{\text{CC}}}\xspace$ (power input) pins should be connected together. - 3. All NC pins should be separated from other signal or power. Ver 1.1 Feb. 24, 2003 9 / 28 Table 4. Required signal assignment for Flat Link (TI:SN75LVDS83) Transmitter | Pin | Pin Name | Require Signal | Pin | Pin Name | Require Signal | |-----|----------|----------------------------|-----|-----------|---| | 1 | VCC | Power Supply for TTL Input | 29 | GND | Ground pin for TTL | | 2 | D5 | TTL Input(R7) | 30 | D26 | TTL Input(DE) | | 3 | D6 | TTL Input(R5) | 31 | TxCLKIN | TTL Level clock Input | | 4 | D7 | TTL Input(G0) | 32 | PWR DWN | Power Down Input | | 5 | GND | Ground pin for TTL | 33 | PLL GND | Ground pin for PLL | | 6 | D8 | TTL Input(G1) | 34 | PLL VCC | Power Supply for PLL | | 7 | D9 | TTL Input(G2) | 35 | PLL GND | Ground pin for PLL | | 8 | D10 | TTL Input(G6) | 36 | LVDS GND | Ground pin for LVDS | | 9 | VCC | Power Supply for TTL Input | 37 | TxOUT3+ | Positive LVDS differential data output3 | | 10 | D11 | TTL Input(G7) | 38 | TxOUT3- | Negative LVDS differential data output3 | | 11 | D12 | TTL Input(G3) | 39 | TxCLKOUT+ | Positive LVDS differential clock output | | 12 | D13 | TTL Input(G4) | 40 | TxCLKOUT- | Negative LVDS differential clock output | | 13 | GND | Ground pin for TTL | 41 | TxOUT2+ | Positive LVDS differential data output2 | | 14 | D14 | TTL Input(G5) | 42 | TxOUT2- | Negative LVDS differential data output2 | | 15 | D15 | TTL Input(B0) | 43 | LVDS GND | Ground pin for LVDS | | 16 | D16 | TTL Input(B6) | 44 | LVDS VCC | Power Supply for LVDS | | 17 | VCC | Power Supply for TTL Input | 45 | TxOUT1+ | Positive LVDS differential data output1 | | 18 | D17 | TTL Input(B7) | 46 | TxOUT1- | Negative LVDS differential data output1 | | 19 | D18 | TTL Input(B1) | 47 | TxOUT0+ | Positive LVDS differential data output0 | | 20 | D19 | TTL Input(B2) | 48 | TxOUT0- | Negative LVDS differential data output0 | | 21 | GND | Ground pin for TTL Input | 49 | LVDS GND | Ground pin for TTL | | 22 | D20 | TTL Input(B3) | 50 | D27 | TTL Input(R6) | | 23 | D21 | TTL Input(B4) | 51 | D0 | TTL Input(R0) | | 24 | D22 | TTL Input(B5) | 52 | D1 | TTL Input(R1) | | 25 | D23 | TTL Input(RSVD) | 53 | GND | Ground pin for TTL | | 26 | VCC | Power Supply for TTL Input | 54 | D2 | TTL Input(R2) | | 27 | D24 | TTL Input(HSYNC) | 55 | D3 | TTL Input(R3) | | 28 | D25 | TTL Input(VSYNC) | 56 | D4 | TTL Input(R4) | Notes: 1. Refer to LVDS Transmitter Data Sheet for detail descriptions. 2. 7 means MSB and 0 means LSB at R,G,B pixel data Ver 1.1 Feb. 24, 2003 10 / 28 The backlight interface connector is a model BHSR-02VS-1, manufactured by JST. The mating connector part number is SM02B-BHSS-1 or equivalent. The pin configuration for the connector is shown in the table 5. Table 5. Backlight connector pin configuration | Pin | Symbol | Description | Notes | |-----|--------|-----------------------|-------| | 1 | HV | High Voltage for lamp | 1 | | 2 | LV | Low Voltage for lamp | 1,2 | Notes: 1. The high voltage side terminal is colored white or pink. The low voltage side terminal is white or black. 2. The backlight ground should be common with LCD metal frame. [Figure 5] Backlight connector view Ver 1.1 Feb. 24, 2003 11 / 28 # 3-3. Signal Timing Specifications This is the signal timing required at the input of the LVDS Transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation. Table 6. Timing table | Table 6. Tilling table | | | | | | | | | |------------------------|------------------------|------------------|-------|-------|-------|------------------|-------------------|--| | | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | | | Dclk | Period | t _{CLK} | 14.71 | 18.52 | 22.22 | ns | | | | 20 | Frequency | f _{CLK} | 45 | 54 | 68 | MHz | | | | Hsync | Period | t _{HP} | 672 | 844 | 1022 | t _{CLK} | Horizontal period | | | | Width | t_{WH} | 8 | 56 | - | CLK | should be even | | | | Period | t_{VP} | 1032 | 1066 | 1536 | t _{HP} | | | | Vsync | Width | t_{WV} | 2 | 3 | 24 | | | | | | Frequency | f_V | 50 | 60 | 75 | Hz | | | | | Horizontal Valid | t _{HV} | 640 | 640 | 640 | | | | | | Horizontal Back Porch | t _{HBP} | 8 | 124 | - | t | | | | | Horizontal Front Porch | t _{HFP} | 8 | 24 | - | t _{CLK} | | | | | - | - | - | - | - | | | | | DE | Vertical Valid | t _{vv} | 1024 | 1024 | 1024 | | | | | (Data | Vertical Back Porch | t _{VBP} | 4 | 38 | 124 | t _{HP} | | | | Enable) | Vertical Front Porch | t _{VFP} | 1 | 1 | - | YHP | | | | | | - | - | - | - | | | | | | DE setup time | t _{SI} | 4 | - | - | ns | For Dclk | | | | DE hold time | t _{HI} | 4 | - | - | 113 | 1 OI DOIN | | | Data | Data setup time | t _{SD} | 4 | - | - | | | | | Data | Data hold time | t _{HD} | 4 | - | - | ns | For Dclk | | Notes: 1. Hsync, Vsync mode operation - 2. t_{HFP} + t_{WH} + t_{HBP} < t_{HV} 3. No variation of the total number of Hsync and DE in frame is required for normal operation. Ver 1.1 12 / 28 Feb. 24, 2003 # 3-4. Signal Timing Waveforms [Figure 6] Signal timing waveforms Ver 1.1 Feb. 24, 2003 13 / 28 ## 3-5. Color Input Data Reference The brightness of each primary color(red,green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. Table 7. Color data reference | | | | | | | | | | | | | Inp | ut (| col | or d | lata | l | | | | | | | | | |-----------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------| | | Color | MS | SB | | R | ed | | L | .SB | N | 1SB | | G | eee | en | L | SB | MS | SB | | | ВІ | ue | L | SB | | | | R7 | R6 | R5 | R4 | R3 | R2 | | R0 | G7 | G6 | G5 | G4 | G3 | G2 | | | В7 | В6 | В5 | B4 | ВЗ | В2 | В1 | | | Basic
colors | Black Red(255) Green(255) Blue(255) Cyan Magenta Yellow White | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
0
1
1 | 0
1
0
0
1
1 | 0
1
0
0
1
1 | 0
1
0
0
0
1
1 | 0
0
1
0
1
0
1 0
0
0
1
1
0
1 | 0
0
1
1
1
0 | 0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | 0
0
0
1
1
1
0 | | Red | Red(000) dark
Red(001)
Red(002)
:
Red(253)
Red(254)
Red(255) bright | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0
1 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0 0 : 0 0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | Green | Green(000)dark Green(001) Green(002) : Green(253) Green(254) Green(255)bright | 0
0
0
:
0
0 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0
1 | 0
0
0
:
0
0 | Blue | Blue(000) dark Blue(001) Blue(002) : Blue(253) Blue(254) Blue(255) bright | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
:
0
0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | ## 3-6. Power Sequence [Figure 7] Power sequence Table 8. Power sequence time delay | Dawamatau | | Values | | | | | | | | | |----------------|------|--------|------|-------|--|--|--|--|--|--| | Parameter | Min. | Тур. | Max. | Units | | | | | | | | T₁ | _ | - | 10 | ms | | | | | | | | T ₂ | 0.01 | - | 50 | ms | | | | | | | | T_3^{T} | 200 | - | - | ms | | | | | | | | T_4° | 200 | - | - | ms | | | | | | | | T ₅ | 0.01 | - | 50 | ms | | | | | | | | T ₆ | 0.01 | - | 10 | ms | | | | | | | | T ₇ | 1 | - | - | s | | | | | | | Notes: 1. Please avoid floating state of interface signal at invalid period. - 2. When the interface signal is invalid, be sure to pull down the power supply for LCD $\rm V_{\rm CC}$ to 0V. - 3. Lamp power must be turn on after power supply for LCD and interface signals are valid. Ver 1.1 Feb. 24, 2003 15 / 28 # 3-7. V_{CC} Power Dip Condition [Figure 8] Power dip condition 1) Dip condition $$3.5V \le V_{CC} < 4.5V$$, $t_d \le 20ms$ 2) $$V_{CC}$$ < 3.5V $\rm V_{\rm CC}\mbox{-}dip$ conditions should also follow the Power On/Off conditions for supply voltage. Ver 1.1 Feb. 24, 2003 16 / 28 ### 4. Optical Specifications Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are measured at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °. Figure. 9 presents additional information concerning the measurement equipment and method. [Figure 9] Optical characteristic measurement equipment and method **Table 9. Optical characteristics** (Ta=25 $^{\circ}$ C, V_{CC}=5.0V, f_V=60Hz Dclk=54MHz, I_{BL}=6.5mArms) | | | | | , , | · | , PF | | | | |--------------------------------------|---|--|--|--|--|-------------------|----------------|--|--| | Paran | | Cumbal | | Values | | Units | Notes | | | | Palali | lietei | Symbol | Min. | Тур. | Max. | Units | Notes | | | | Contrast ratio | | CR | 300 | 450 | - | | 1 | | | | Surface luminance, white | | L_WH | 200 | 250 | - | cd/m ² | 2 | | | | Luminance unifo | ormity | $\triangle L_5$ | - | - | 1.3 | | 3 | | | | Response time Rise time Decay time | | Tr
Tr _R
Tr _D | -
- | 16
2
14 | 30
6
24 | ms | 4 | | | | CIE color coordi | Red
Green
Blue | XR
YR
XG
YG
XB
YB | 0.611
0.312
0.262
0.581
0.117
0.038 | 0.641
0.342
0.292
0.611
0.147
0.068 | 0.671
0.372
0.322
0.641
0.177
0.098 | | | | | | X axis,
Y axis, | White by CR ≥ 10) right(φ=0°) left (φ=180°) up (φ=90°) down (φ=270°) | XW
YW | 0.283
0.299
60
60
50
45 | 0.313
0.329
70
70
60
60 | 0.343
0.359
-
-
-
- | degree | 5 | | | | X axis,
Y axis, | by CR ≥ 5)
right(φ=0°)
left (φ=180°)
up (φ=90°)
down (φ=270°) | θr
θl
θu
θd | 70
70
60
55 | 80
80
70
70 | -
-
-
- | degree | _ | | | | Relative brightne
Luminance unifo | ess
ormity (TCO99) | | - | - | 1.7 | | 6
Figure 10 | | | Notes: 1. Contrast ratio(CR) is defined mathematically as: Surface luminance with all white pixels Contrast ratio = Surface luminance with all black pixels - Surface luminance is the center point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see [Figure 10]. When I_{BL}=6.5mA, L_{WH}=200cd/m²(Min.) 250cd/m²(Typ.) - 3. The uniformity in surface luminance , $\triangle L_5$ is determined by measuring L_{ON} at any point in test area. But the management of $\triangle L_5$ is determined by measuring Lon at each test position 1 through 5, and then dividing the maximum L_{ON} of 5 points luminance by minimum L_{ON} of 5 points luminance. For more information see [Figure 10]. $$\triangle$$ L₅= Maximum (L_{ON1},L_{ON2}, L_{ON5}) ÷ Minimum (L_{ON1},L_{ON2}, L_{ON5}) - 4. Response time is the time required for the display to transition from white to black(Rise Time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see [Figure 11]. The sampling rate is 2,500 sample/sec. - 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Figure 12. - 6. Gray scale specification Table 10. Gray scale | | <u> </u> | |------------|------------------------| | Gray level | Luminance(%)
(Typ.) | | L0 | 0.22 | | L31 | 0.76 | | L63 | 5.06 | | L95 | 12.2 | | L127 | 24.6 | | L159 | 41.3 | | L191 | 61.9 | | L223 | 86.7 | | L255 | 100 | Figure 10. Luminance measuring point <Measuring point for luminance variation> <Measuring point for surface luminance> < Luminance Uniformity - angular – dependent (L_R) > TCO '99 Certification requirements and test methods for environmental labelling of Display [Flat] report No.2 (Luminance uniformity- angular – dependent) Test pattern: 80% white pattern Test point : 2-point Test distance : 64.77cm Test method : L_R = (($L_{max.+30deg.}$ / $L_{min. +30deg.}$)) / 2 + ($L_{max. -30deg.}$ / $L_{min. -30deg.}$)) / 2 H/10 H/10 Figure 11. Response time The response time is defined as the following Figure and shall be measured by switching the input signal for "black" and "white". Figure 12. Viewing angle <Dimension of viewing angle range> ### 5. Mechanical Characteristics Table 11. provides general mechanical characteristics for the model LM170E01-A4. Please refer to Figure 15,16 regarding the detailed mechanical drawing of the LCD. **Table 11. Mechanical characteristics** | | Horizontal | 358.5 ± 0.5mm | | | | | |----------------------|--|---------------|--|--|--|--| | Outside dimensions | Vertical | 296.5 ± 0.5mm | | | | | | | Depth | 17.0 ± 0.5mm | | | | | | Donal area | Horizontal | 341.6 ± 0.5mm | | | | | | Bezel area | Vertical | 274.0 ± 0.5mm | | | | | | A ativa diaplay area | Horizontal | 337.920mm | | | | | | Active display area | Vertical | 270.336mm | | | | | | Weight(approximate) | 1890g(Typ.), | 1940g(Max.) | | | | | | Surface Treatment | Hard coating(3H) Anti-glare treatment of the front polarizer | | | | | | Ver 1.1 Feb. 24, 2003 21 / 28 Figure 15. Front view Figure 15. Rear view Tilt and partial disposition tolerance of display area 4. Depth of user hole screw insertion: Max 4.9mm. 1. Backlight: 4 Cold Cathode Fluorescent Lamps. 6. Gap between Bezel and Panel : Max 0.6mm. Bezel Open Torque of user hole : 2.5~3.5kgf-cm. - JST BHSR-02VS-1 or Equivalent. – JAE FI-X30S-HF or Equivalent. Lamp Connector Specification. (1) Y-Direction : $|A-B| \le 1.0$ (2) X-Direction : $|C-D| \le 1.0$ 2. I/F Connector Specification. 8 as following. is marked at backlight connector. 8. Lamp(CCFL) lot No. Do not wind conductive tape around the backlight wires. Unspecified tolerances to be ± 0.5 mm. 6 0. # 6. Reliability Table 12. Environment test condition | No. | Test item | Conditions | | | | | | | |-----|-----------------------------------|--|--|--|--|--|--|--| | 1 | High temperature storage test | Ta= 60°C 240h | | | | | | | | 2 | Low temperature storage test | Ta= -20°C 240h | | | | | | | | 3 | High temperature operation test | Ta= 50°C 50%RH 240h | | | | | | | | 4 | Low temperature operation test | Ta= 0°C 240h | | | | | | | | 5 | Vibration test
(non-operating) | Wave form : random Vibration level : 1.0G RMS Bandwidth : 10-500Hz Duration : X,Y,Z, 20 min. One time each direction | | | | | | | | 6 | Shock test (non-operating) | Shock level : 120G
Waveform : half sine wave, 2ms
Direction : \pm X, \pm Y, \pm Z
One time each direction | | | | | | | | 7 | Altitude
storage / shipment | 0 - 40,000 feet(12,192m) | | | | | | | [{] Result evaluation criteria } There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition. ### 7. International Standards ## 7-1. Safety - a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - c) EN 60950: 1992+A1: 1993+A2: 1993+A3: 1995+A4: 1997+A11: 1997 IEC 950: 1991+A1: 1992+A2: 1993+A3: 1995+A4: 1996 European Committee for Electrotechnical Standardization(CENELEC) European Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. ### 7-2. EMC - a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992 - b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference - c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization (CENELEC), 1998 ## 8. Packing ### 8-1. Designation of Lot Mark ### a) Lot mark | А | В | С | D | Е | F | G | Н | I | J | K | L | М | | |---|---|---|---|---|---|---|---|---|---|---|---|---|--| |---|---|---|---|---|---|---|---|---|---|---|---|---|--| A,B,C : Size D : Year E : Month F,G : Panel code H : Assembly code I,J,K,L,M : Serial No. #### Note: ### 1. Year | Year | 97 | 98 | 99 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |------|----|----|----|------|------|------|------|------|------|------|------| | Mark | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | #### 2. Month | Month | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | ### 3. Serial No. | Serial No. | 1 ~ 99999 | 100000 ~ | |------------|---------------|-----------------------------| | Mark | 00001 ~ 99999 | A0001 ~ A9999,······, Z9999 | ### b) Location of lot mark Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package quantity in one box: 9 pcs b) Box size: 494mm X 436mm X 373mm. #### 9. Precautions Please pay attention to the following when you use this TFT LCD module. ### 9-1. Mounting Precautions - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force(ex. twisted stress) is not applied to the module. - And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are determined to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. ### 9-2. Operating Precautions - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}(\text{Over and under shoot voltage})$ - (2) Response time depends on the temperature.(In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. - (7) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can not be operated its full characteristics perfectly. - (8) A screw which is fastened up the steels should be a machine screw (if not, it causes metal foreign material and deal LCM a fatal blow) Ver 1.1 Feb. 24, 2003 27 / 28 ### 9-3. Electrostatic Discharge Control Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. ### 9-4. Precautions for Strong Light Exposure Strong light exposure causes degradation of polarizer and color filter. ### 9-5. Storage When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. ## 9-6. Handling Precautions for Protection Film - (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the Bezel after the protection film is peeled off. - (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.