

Advance Product Information October 20, 2004

6.5 Watt Ku Band Power Amplifier

TGA2514- EPU-FL

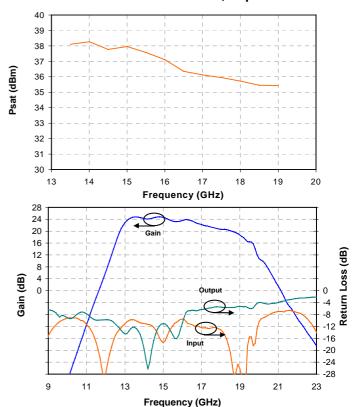
Product Description

The TGA2514-EPU-FL provides 24 dB of gain and 6.5W of output power across 13-16 GHz. The TGA2514-EPU-FL is designed using TriQuint's proven standard 0.25-µm gate pHEMT production process.

This device is ideally suited for VSAT Transmitter and Point to Point Radio applications. The flange lead package has a high thermal conductivity copper alloy base.

Evaluation Boards are available.

Key Features


- Frequency Range: 13 16 GHz
- 38 dBm Nominal Psat
- 24 dB Nominal Gain
- 14 dB Nominal Return Loss
- 0.25-um pHEMT 3MI Technology
- 10 lead flange package
- Bias Conditions: 8 V @ 2.6 A Idq
- Package dimension: 0.45 x 0.68 x 0.12 in.

Primary Applications

- Ku band VSAT Transmitter
- Point to Point Radio

Measured Data

October 20, 2004 TGA2514-EPU-FL

TABLE I MAXIMUM RATINGS

Symbol	Parameter <u>1/</u>	Value	Notes
V ⁺	Positive Supply Voltage	9 V	<u>2/</u>
V	Negative Supply Voltage Range	-5V TO -0.35V	
l ⁺	Positive Supply Current	4 A	<u>2/</u>
I _G	Gate Supply Current	113 mA	
P _{IN}	Input Continuous Wave Power	30.3 dBm	<u>2</u> /
P_D	Power Dissipation	20.8 W	<u>2</u> /, <u>3/</u>
T _{CH}	Operating Channel Temperature	150 °C	<u>4</u> /
T _M	Mounting Temperature (30 Seconds)	210 °C	
T_{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 3/ When operated at this bias condition with a base plate temperature of 70 °C, the median life is 1E+6 hours.
- 4/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

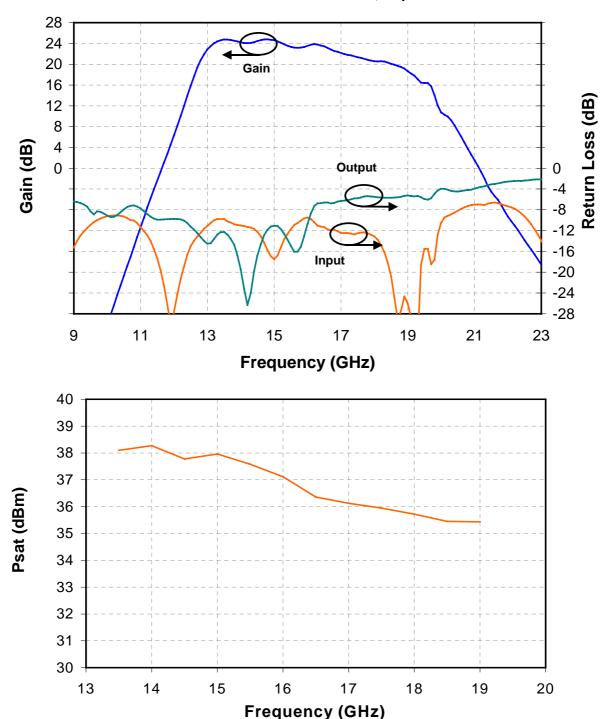
October 20, 2004 TGA2514-EPU-FL

TABLE II RF CHARACTERIZATION TABLE $(T_A = 25^{\circ}C, Nominal)$ (Vd = 8V, Id = 2.6 A)

SYMBOL	PARAMETER	TEST CONDITION	TYPICAL	UNITS
Gain	Small Signal Gain	f = 13-16 GHz	24	dB
IRL	Input Return Loss	f = 13-16 GHz	14	dB
ORL	Output Return Loss	f = 13-16 GHz	14	dB
Psat	Saturated Power	f = 13-16 GHz	38	dBm

TABLE III THERMAL INFORMATION

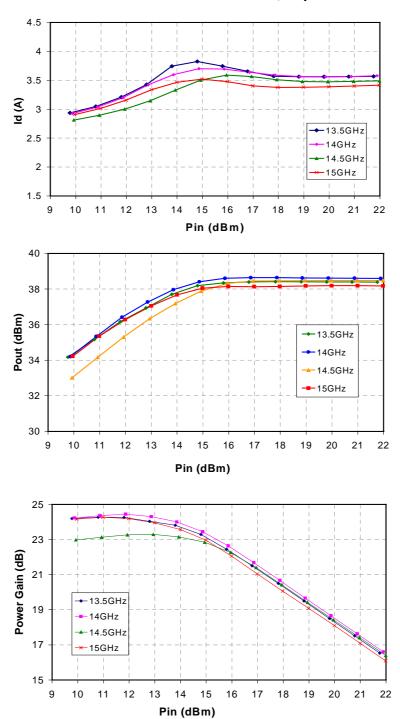
Parameter	Test Conditions	T _{cH} (°C)	R _{eJC} (°C/W)	T _м (HRS)
R _{eJC} Thermal Resistance (channel to backside of package)	Vd = 8 V $I_D = 2.6 A (Quiescent)$ Pdiss = 20.8 W	150	3.9	1 E+6


Note: Package backside SnPb soldered to carrier at 70° C baseplate temperature. At saturated output power, the DC power consumption is 28.8 W with 6.5 W RF power delivered to the load. Power dissipated is 22.3 W and the temperature rise in the channel is 87 °C. The baseplate temperature must be reduced to 63°C to remain below the 150 °C maximum channel temperature.

October 20, 2004 TGA2514-EPU-FL

Measured Fixture Data

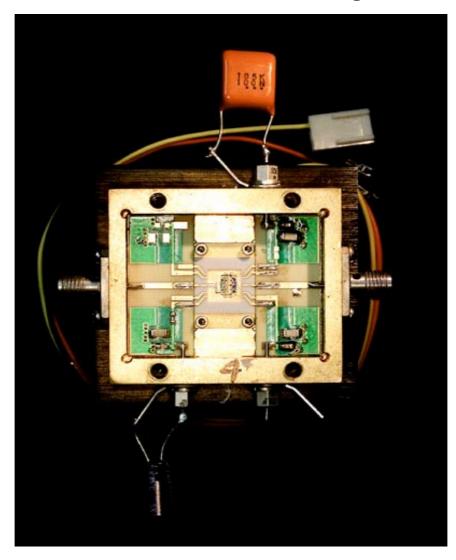
Bias Conditions: Vd = 8 V, Idq = 2.6A



October 20, 2004 TGA2514-EPU-FL

Measured Fixture Data

Bias Conditions: Vd = 8 V, Idq = 2.6A

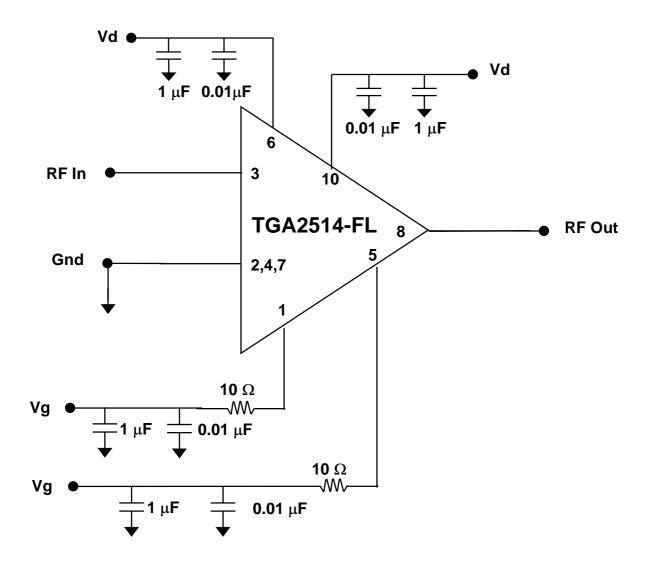


Advance Product Information October 20, 2004

TGA2514-EPU-FL

Evaluation Board Drawing

Notes

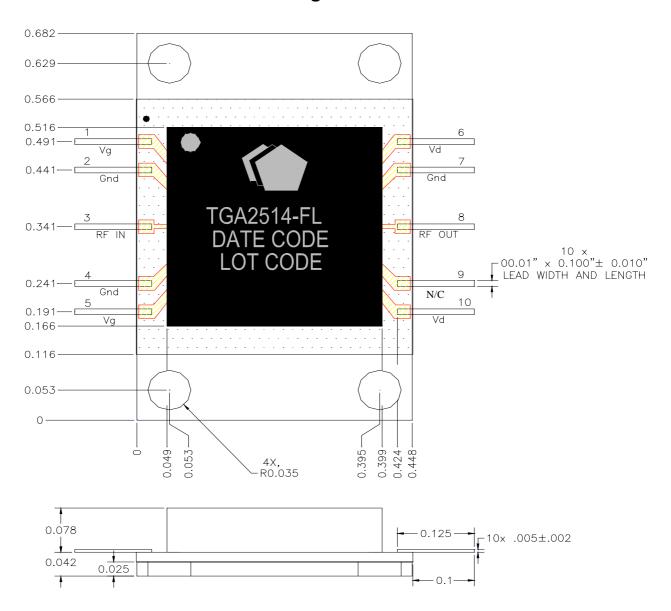

- 1. Vd must remain below 9V to comply with maximum rating value.
- 2. The drain supply must be connected to both sides of the evaluation block.
- 3. The cooling fan must be powered at all times when the device is under bias.
- 4. Connect fan supply red/black to +12V. It requires ~100mA.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

October 20, 2004 TGA2514-EPU-FL

Assembly Diagram

Note: Vg can be biased from either Pin 1 or Pin 5


GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information October 20, 2004

TGA2514-EPU-FL

Mechanical Drawing TGA2514-EPU-FL

Note: All dimensions are in inches with ±0.005 tolerance

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information October 20, 2004 TGA2514-EPU-FL

Assembly of a TGA2514-EPU-FL Surface Mount Package onto a Motherboard

- 1. Clean the motherboard or module with acetone. Rinse with alcohol and DI water. Allow the circuit to fully dry.
- 2. To improve the thermal and RF performance, we recommend a heat sink attached to the bottom of the package and apply SnPb or equivalent solder to the bottom of TGA2514.
- 3. Apply SnPb or equivalent solder to each pin of TGA2514 and to the backside of the package.
- 4 Clean the assembly with alcohol.

.

Ordering Information

Part	Package Style
TGA2514-EPU-FL	Flange (package bolted down)

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.