

Structure : Silicon Monolithic Integrated Circuit Product Name : Power Driver for car CDs, DVDs

Device Name : BD7966EKV

**Features** 

- Single chip IC with drivers for Act (2 ch) / Loading (3 ch) / Sled (1 ch)
- Providing with 2 ports of control terminals enables controlling ON/OFF of the drivers for Act/Sled
- Built-in 3.3V regulator installed
- Employing the package: HTQFP64V equipped with a radiating metal on the mount side
- A built-in thermal shutdown circuit installed

# <Loading Part>

• The LDCTL terminal is used to specify the output voltage.

### <Sled Part>

- Supporting 2-phase stepping motors
- · Supporting linear input
- PWM driving method achieves a high efficient drive.

# <Actuator Part>

- Supporting 2-phase stepping motors
- Supporting linear input

#### O ABSOLUTE MAXIMUM RATINGS

| Parameter                                  | Symbol       | Limits     | Unit |
|--------------------------------------------|--------------|------------|------|
| POWER MOS Power Supply Voltage             | SLRNF        | 12         | V    |
| Pre-part and Pow-part Power Supply Voltage | VCC,AVM,LDVM | 12         | ٧    |
| Power Dissipation                          | Pd           | 1.9*       | W    |
| Operating Temperature Range                | Topr         | -40 to 85  | °C   |
| Storage Temperature Range                  | Tstg         | -55 to 150 | °C   |

<sup>\*</sup>ROHM standard board (size: 70×70 [mm], thickness: 1.6 [mm])

### O OPERATING CONDITIONS

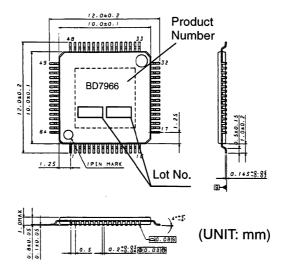
(To determine a power supply voltage, the power dissipation must be taken into consideration.)

| Parameter                                  | Symbol       | MIN | TYP | MAX | Unit |
|--------------------------------------------|--------------|-----|-----|-----|------|
| POWER MOS Power Supply Voltage             | SLRNF        | 4.5 | 8   | 10  | ٧    |
| Pre-part and Pow-part Power Supply Voltage | VCC,AVM,LDVM | 4.5 | 8   | 10  | ٧    |

<sup>\*</sup>VCC ≥ LDVM

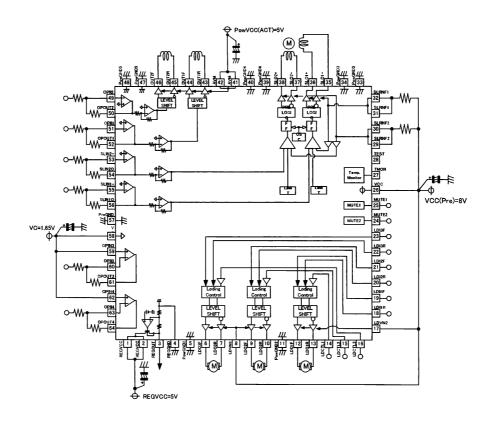
This product has not been checked for the strategic materials (or service) defined in the Foreign Exchange and Foreign Trade Control Low of Japan so that a verification work is required before exporting it.

Not designed for radiation resistance.




# O ELECTRIC CHARACTERISTICS

\_(Ta=25°C, VCC=POWVCC(LD,SL)=8V, AVM=5V, VC=1.65V, SLRNF=0.5Ω, unless otherwise noted.)


| Parameter                          | Symbol  | MIN. | TYP.          | MAX.    | Unit         | Condition                   |
|------------------------------------|---------|------|---------------|---------|--------------|-----------------------------|
| Circuit Current                    |         |      |               |         |              |                             |
| Quiescent Circuit Current 1        | IQ1     | -    | 26.5          | 38.4    | mA           | When VCC=REGVOC=PowVCC=8[V] |
| MUTE Circuit Current 1             | IST1    | •    | 19.5          | 28.3    | mA           | When VCC=REGVOC=PowVCC=8[V] |
| Feed Motor Driver Part             |         |      |               |         |              |                             |
| Input Dead Band Width (one side)   | VDZSL   | 5    | 30            | 55      | MV           |                             |
| Input/Output Gain                  | gmSL    | 0.77 | 1.0<br>(0.5)  | 1.23    | A/V<br>(V/V) | SLRNF=0.5Ω                  |
| Output ON Resistance (top side)    | RONUSL  | -    | 2.4           | 3.6     | Ω            | IL=500mA                    |
| Output ON Resistance (bottom side) | RONLSL  |      | 0.7           | 1.1     | Ω            | IL=500mA                    |
| Output Limit Current               | ILIMSL  | 0.76 | 0.9<br>(0.45) | 1.04    | A<br>(V)     | SLRNF=0.5Ω                  |
| PWM Frequency                      | fosc    | •    | 100           | •       | kHz          |                             |
| Actuator Driver Part               |         | •    |               | 1       | -            |                             |
| Output Offset Voltage              | VOFFT   | -50  | 0             | 50      | mV           |                             |
| Output Saturation Voltage H        | VOHFT   |      | 0.45          | 0.8     | V            | IL=500mV                    |
| Output Saturation Voltage L        | VOLFT   | -    | 0.45          | 0.8     | V            | IL=500mV                    |
| Voltage Gain                       | GVFT    | 10.0 | 11.5          | 13.0    | dB           |                             |
| Bias Terminal Inflow Current       | IBIAS   | -    | 75            | 120     | μА           | VBIAS=2.5V                  |
| Operational Amplifier Part         |         |      |               |         |              |                             |
| Input Offset Voltage               | VOPOF   | -5   | 0             | +5      | mV           |                             |
| Input Bias Current                 | IOPIB   |      |               | 300     | nA           |                             |
| Common Mode Input Voltage Range    | VOPICM  | 0.3  | -             | VCC-1.2 | V            |                             |
| Maximum Output Source Current      | ISOURCE | 500  | 800           | •       | μА           |                             |
| Maximum Output Sink Current        | ISINK   | 2    |               | -       | mV           |                             |
| Slew Rate                          | SR      |      | 0.8           |         | V/µs         |                             |
| Loading Driver Part                |         |      |               |         |              |                             |
| Input Terminal Inflow Current      | IINL    |      | 87            | 130     | μА           | LDIN=5V                     |
| LDCTL Terminal Outflow Current     | ILDC1   |      |               | 0.5     | mA           | LDCTL=5V                    |
| Output Offset Voltage              | VOFLD   | -    | 0             | -       | mV           |                             |
| Output Saturation Voltage H        | VOHLD   | •    | 1.1           | 1.4     | V            | IL=500mA                    |
| Output Saturation Voltage H        | VOLLD   | -    | 0.45          | 0.8     | V            | IL=-500mA                   |
| Voltage Gain                       | GVLD    | 7.5  | 9.0           | 10.5    | dB           | LDCTL=1V                    |
| Regulator                          |         | •    |               |         |              |                             |
| REG Output Voltage                 | VPEG    | 3.13 | 3.3           | 3.47    | V            | IL=200mA                    |
| MUTE                               |         |      |               |         |              |                             |
| Input High-level Voltage           | VIH     | 2.0  |               | -       | V            |                             |
| Input Low-level Voltage            | VIL     |      |               | 0.5     | V            |                             |
| Input High-level Current           | IIH     |      | 180           | 270     | uA           | VIMUTE=5V                   |
| Input Low-level Current            | IIL     | -10  | 0             | 10      | uA           | VIMUTE=0V                   |

# O OUTLINE DIMENSIONS, SYMBOLS





# O APPLICATION CIRCUIT DIAGRAM



# O PIN Description

| No. | Symbol  | Description                                      | No. | Symbol  | Description                                       |  |
|-----|---------|--------------------------------------------------|-----|---------|---------------------------------------------------|--|
| 1   | REGVCC  | Power supply for regulator part PowNMOS          | 64  | OPOUT4  | OP output 4                                       |  |
| 2   | REGVCC  | Power supply for regulator part PowNMOS          | 63  | OPII4   | OP inverted output terminal 4                     |  |
| 3   | REGOUT  | Regulator output                                 | 62  | OPIN4   | OP non-inverted output terminal 4                 |  |
| 4   | REGGND  | Regulator part GND                               | 61  | OPOUT3  | OP output 3                                       |  |
| 5   | PowGND1 | Loading part power GND1                          | 60  | OPII3   | OP inverted output terminal 3                     |  |
| 6   | LDO3F   | Loading part Ch3 forward output terminal         | 59  | OPIN3   | OP non-inverted output terminal 3                 |  |
| 7   | LDO3R   | Loading part Ch3 reverse output terminal         | 58  | VC      | Bias input terminal                               |  |
| 8   | LDVM1   | Loading part power supply 1                      | 57  | PreGND  | Pre part GND                                      |  |
| 9   | LDO2F   | Loading part Ch2 forward output terminal         | 56  | SLIN10  | SLIN1 pre-stage OP output                         |  |
| 10  | LDO2R   | Loading part Ch2 reverse output terminal         | 55  | SLIN1-  | SLIN1 pre-stage OP inverted input terminal        |  |
| 11  | PowGND2 | Loading part power GND 2                         | 54  | SLIN2O  | SLIN2 pre-stage OP output                         |  |
| 12  | LDO1F   | Loading part Ch1 forward output terminal         | 53  | SLIN2-  | SLIN2 pre-stage OP inverted input terminal        |  |
| 13  | LDO1R   | Loading part Ch1 reverse output terminal         | 52  | OPOUT1  | BTL part Ch1 pre-stage OP output                  |  |
| 14  | LDCTL1  | Loading part output voltage setting terminal CH1 | 51  | OPII1   | BTL part Ch1 pre-stage OP inverted input terminal |  |
| 15  | LDCTL2  | Loading part output voltage setting terminal CH2 | 50  | OPOUT2  | BTL part Ch2 pre-stage OP output                  |  |
| 16  | LDCTL3  | Loading part output voltage setting terminal CH3 | 49  | OPII2   | BTL part Ch2 pre-stage OP inverted input terminal |  |
| 17  | LDVM2   | Loading part power supply 2                      | 48  | PowGND5 | Actuator part power GND5                          |  |
| 18  | LDI1R   | Loading part Ch1 reverse input terminal          | 47  | PowGND5 | Actuator part power GND5                          |  |
| 19  | LDI1F   | Loading part Ch1 forward input terminal          | 46  | OUT2F   | BTL part Ch2 non-inverted output terminal         |  |
| 20  | LDI2R   | Loading part Ch2 reverse input terminal          | 45  | OUT2R   | BTL part Ch2 inverted output terminal             |  |
| 21  | LDI2F   | Loading part Ch2 forward input terminal          | 44  | OUT1F   | BTL part Ch1 non-inverted output terminal         |  |
| 22  | LDI3R   | Loading part Ch3 reverse input terminal          | 43  | OUT1R   | BTL part Ch1 inverted output terminal             |  |
| 23  | LDI3F   | Loading part Ch3 forward input terminal          | 42  | AVM     | Actuator part power supply                        |  |
| 24  | MUTE2   | MUTE terminal 2                                  | 41  | AVM     | Actuator part power supply                        |  |
| 25  | MUTE1   | MUTE terminal 1                                  | 40  | PowGND  | Actuator part power GND4                          |  |
| 26  | VCC     | Pre part power supply                            | 39  | PowGND  | Actuator part power GND4                          |  |
| 27  | TMON    | Temperature monitor                              | 38  | SLO2+   | Feed part Ch2 positive output terminal            |  |
| 28  | TEST    | TEST                                             | 37  | SLO2-   | Feed part Ch2 negative output terminal            |  |
| 29  | SLRNF2  | Feed part current detection terminal 2           | 36  | SLO1+   | Feed part Ch1 positive output terminal            |  |
| 30  | SLRNF2  | Feed part current detection terminal 2           | 35  | SLO1-   | Feed part Ch1 negative output terminal            |  |
| 31  | SLRNF1  | Feed part current detection terminal 1           | 34  | PowGND3 | Feed part power GND3                              |  |
| 32  | SLRNF1  | Feed part current detection terminal 1           | 33  | PowGND3 | Feed part power GND3                              |  |

Rev. A



### O CAUTIONS ON USE

(1) Bypass Capacitor

Between the power supplies, connect a bypass capacitor  $(0.1\mu F)$  closely to the IC pins. At the position close to the power part power supply terminal, the capacitor having a large capacitance and a small ESR (approx.  $10\mu F$ ) should be attached in order to reduce the impedance of the power supply.

- (2) Short-circuit between output-power supply, output-GND, or output terminals Short-circuits between output pin-VCC, output pin-GND, or output terminals (load short) must be avoided. Make sure that the ICs are installed on the board in proper directions. Mounting the ICs in improper directions may damage them or produce smoke.
- (3) TEST terminal

The TEST terminal is pulled down inside the IC, so that it should be set open or shorted to GND for use.

(4) About absolute maximum ratings

Exceeding the absolute maximum ratings, such as the applied voltage or the operating temperature range, may cause permanent device damage. As these cases cannot be limited to the broken short mode or the open mode, if a special mode where the absolute maximum ratings may be exceeded is assumed, it is recommended to take mechanical safety measures such as attaching fuses.

(5) About power supply lines

As a measure against the back current regenerated by a counter electromotive force of the motor, a capacitor to be used as a regenerated-current path can be installed between the power supply and GND and its capacitance value should be determined after careful check that any problems, for example, a leak capacitance of the electrolytic capacitor at low temperature, are not found in various characteristics.

(6) About GND potential

The electric potential of the GND terminal must be kept lowest in the circuitry at any operation states.

(7) About thermal design

With consideration of the power dissipation (Pd) under conditions of actual use, a thermal design provided with an enough margin should be done.

(8) About operations in a strong electric field

When used in a strong electric field, note that a malfunction may occur.

(9) ASO

When using this IC, the output Tr must be set not to exceed the values specified in the absolute maximum ratings and ASO.

(10) Thermal shutdown circuit (Thermal shutdown: TSD)

This IC incorporates a thermal shutdown circuit (TSD circuit). When the chip temperature reaches the value shown below, the coil output to the motor will be set to open.

The thermal shutdown circuit is designed only to shut off the IC from a thermal runaway and not intended to protect or guarantee the entire IC functions.

Therefore, users cannot assume that the TSD circuit once activated can be used continuously in the subsequent operations.

| TSD ON Temperature [°C] (typ.) | Hysteresis Temperature [°C] (typ.) |
|--------------------------------|------------------------------------|
| 175                            | 25                                 |

## (11) About earth wiring patterns

When a small signal GND and a large current GND are provided, it is recommended that the large current GND pattern and the small signal GND pattern should be separated and grounded at a single point of the reference point of the set in order to prevent the voltage of the small signal GND from being affected by a voltage change caused by the resistance of the pattern wiring and the large current. Make sure that the GND wiring patterns of the external components will not change, too.

(12) This IC is a monolithic IC which has a P<sup>+</sup> isolations and P substrate to isolate elements each other. This P layer and an N layer in each element form a PN junction to construct various parasitic elements. Due to the IC structure, the parasitic elements are inevitably created by the potential relationship. Activation of the parasitic elements can cause interference between circuits and may result in a malfunction or, consequently, a fatal damage. Therefore, make sure that the IC must not be used under conditions that may activate the parasitic elements, for example, applying the lower voltage than



the ground level (GND, P substrate) to the input terminals.

In addition, do not apply the voltage to input terminals without applying the power supply voltage to the IC. Also while applying the power supply voltage, the voltage of each input terminal must not be over the power supply voltage, or within the guaranteed values in the electric characteristics.

#### **Notes**

- No technical content pages of this document may be reproduced in any form or transmitted by any
  means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
  product described in this document are for reference only. Upon actual use, therefore, please request
  that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
  use and operation. Please pay careful attention to the peripheral conditions when designing circuits
  and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
  otherwise dispose of the same, no express or implied right or license to practice or commercially
  exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

#### About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.





Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

### Please contact our sales offices for details;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                        TEL: +852(2)740-6262
                                                 FAX: +852(2)375-8971
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

# Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271