

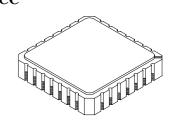
PRELIMINARY

SOLID STATE DEVICES, INC.

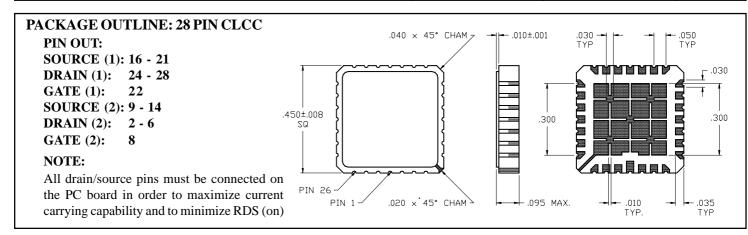
14830 Valley View Blvd * La Mirada, Ca 90638

Phone: (562) 404-7855 * Fax: (562) 404-1773

DESIGNER'S DATA SHEET


FEATURES:

- Rugged construction with poly silicon gate
- Low RDS (on) and high transconductance
- Excellent high temperature stability
- Very fast switching speed
- Fast recovery and superior dv/dt performance
- Increased reverse energy capability
- Low input transfer capacitance for easy paralleling
- Hermetically sealed surface mount package
- TX, TXV and Space Level screening available
- Replaces: 2x IRF9130 Types


SFF9130-28D

-11 AMP -100 VOLTS 0.30Ω DUAL UNCOMMITED P-CHANNEL POWER MOSFET

28 PIN CLCC

MAXIMUM RATINGS			
CHARACTERISTIC	SYMBOL	VALUE	UNIT
Drain to Source Voltage	V _{DS}	-100	Volts
Gate to Source Voltage	V _{GS}	±20	Volts
Continuous Drain Current $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _D -11 -7		Amps
Operating and Storage Temperature	Top & Tstg	-55 to +150	°C
Thermal Resistance, Junction to Case (Both)	R _{θJC}	3.5	°C/W
Total Device Dissipation $T_C = 25^{\circ}C$ $T_C = 55^{\circ}C$	PD	36 37	Watts
Single Pulse Avalange Energy	EAS	84	mJ
Repetitive Avalange Energy	E _{AR}	7.5	mJ

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: FP0035D

SFF9130-28D

PRELIMINARY

SOLID STATE DEVICES, INC.

14830 Valley View Blvd * La Mirada, Ca 90638 Phone: (562) 404-7855 * Fax: (562) 404-1773

ELECTRICAL CHARACTERISTICS @ $T_J = 25^{\circ}C$ (Unless Otherwise Specified)									
RATING		SYMBOL	MIN	ТҮР	MAX	UNIT			
Drain to Source Breakdown Voltage (VGS =0 V, ID =1mA)		BV _{DSS}	-100	-	-	v			
Temperature Coefficient of Breakdown Voltage		$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	-	0.87	-	V			
Drain to Source ON State Resistance <i>V</i> (VGS = -10 V)	$I_{D} = 7A$ $I_{D} = 11A$	R _{DS(on)}	-	-	0.30 0.35	Ω			
Gate Threshold Voltage (VDS =VGS, ID =250µA)		V _{GS(th)}	-2.0	-	-4.0	V			
Forward Transconductance (VDS > ID(on) x RDS (on) Max, IDS = 7A)		gfs	3.0	5.0	-	S (び)			
Zero Gate Voltage Drain Current (VDS = 80% rated VDS, VGS = 0 V, T _A (VDS = 80% rated VDS, VGS = 0 V, T _A	· · · · · · · · · · · · · · · · · · ·	I _{DSS}	-	-	-25 250	μΑ			
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At rated VGS	I _{GSS}	-	-	-100 100	nA			
Total Gate Charge Gate to Source Charge Gate to Drain Charge	VGS = -10 Volts 50% rated VDS ID = -11A	Qg Qgs Qgd	15 1 2	26 3 14	29 7.1 21	nC			
Turn on Delay Time Rise Time Turn off DELAY Time Fall Time	VDD = 50% of rated VDS ID = 11A RG = 7.5Ω	t _{d (on)} tr t _{d (off)} tf	- - -	15 10 30 12	60 140 140 140	nsec			
Diode Forward Voltage $(I_S = rated I_D, V_{GS} = 0V, T_J = 25^{\circ}C)$		V _{SD}	-	-	-4.7	v			
Diode Reverse Recovery Time Reverse Recovery Charge	$TJ = 25^{\circ}C$ $IF = 10A$ $di/dt = 100A/\mu sec$	t _{rr} Q _{RR}	- -	125	250 3	nsec µC			
Input Capacitance Output Capacitance Reverse Transfer Capacitance	VGS = 0 Volts $VDS = -25 Volts$ $f = 1 MHz$	Ciss Coss Crss	- - -	860 350 125	- - -	pF			

For thermal derating curves and other characteristic curves please contact SSDI Marketing Department.

NOTES:

 $\underline{1}$ / All package pins of the same terminations (Drain/Source/Gate) must be connected together to minimize $R_{DS(on)}$ and maximize current carrying capability.