

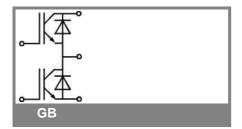
SEMITOP® 3

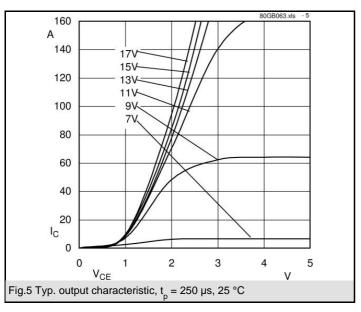
IGBT Module

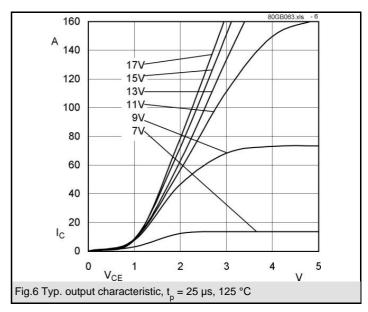
SK 80 GB 063 T

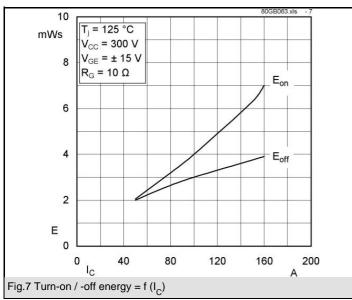
Preliminary Data

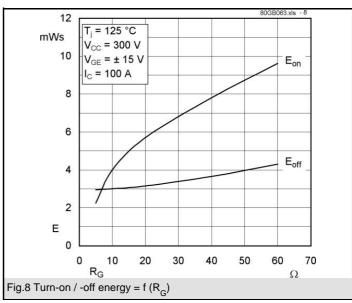
Features

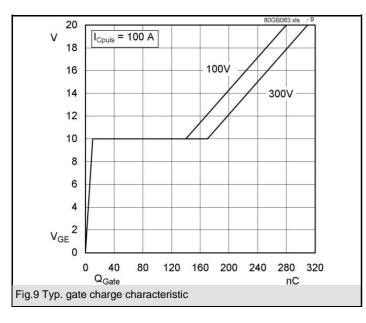

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Integrated temperature sensor

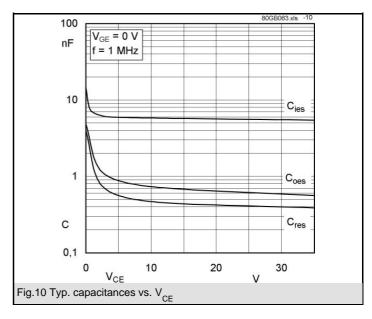

Typical Applications

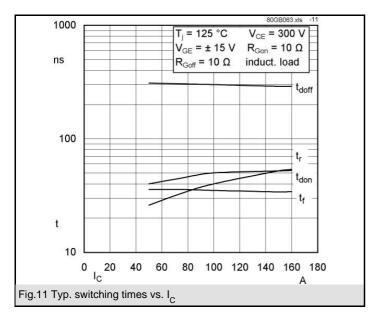

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

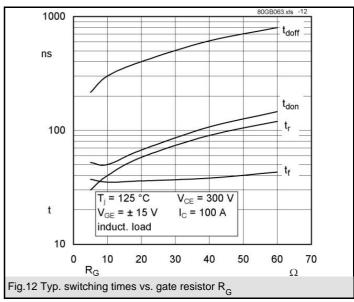

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise s	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT			'				
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	81 (57)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	162 (114)	Α				
T _j	·	- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	79 (53)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	158 (106)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

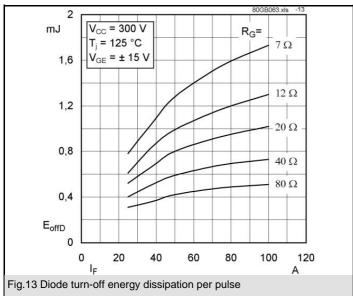

Characteristics		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
V _{CE(sat)}	I _C = 60 A, T _i = 25 (125) °C		1,8 (1,9)		V		
$V_{GE(th)}$	$V_{CE} = V_{GE}$; $I_{C} = A$	4,5	5,5	6,5	V		
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		5,6		nF		
$R_{th(j-s)}$	per IGBT			0,6	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		45		ns		
t _r	I _C = 60 A, T _j = 125 °C		30		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 10 \Omega$		300		ns		
t _f			35		ns		
$E_{on} + E_{off}$	Inductive load		4,7		mJ		
Inverse / Freewheeling CAL diode							
$V_F = V_{EC}$	$I_F = 60 \text{ A}; T_i = 25 (125) ^{\circ}\text{C}$		1,4 (1,3)		V		
V _(TO)	T _i = 125 °C		0,85	0,9	V		
r _T	T _j = 125 () °C		6,5	11	mΩ		
$R_{th(j-s)}$				0,9	K/W		
	under following conditions:						
I _{RRM}	$I_F = 60 \text{ A}; V_R = 300 \text{ V}$		90		Α		
Q_{rr}	$dI_F/dt = -3000 A/\mu s$		7		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		1,2		mJ		
Mechanical data							
M1	mounting torque			2,5	Nm		
w			29		g		
Case	SEMITOP® 3		T 38				

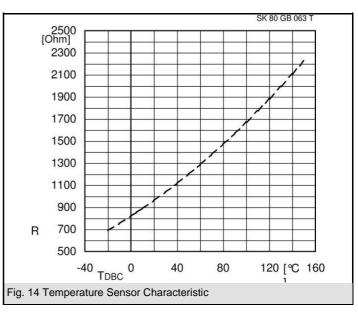


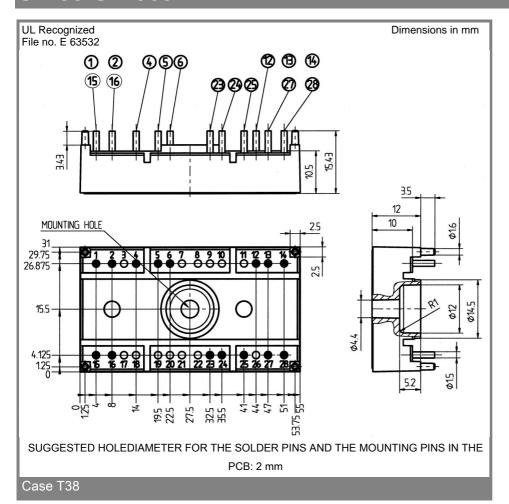


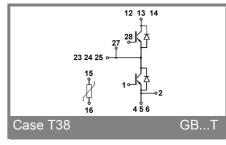












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.