

(Single Output 8th Brick)

ALO25F24 Single Output 8th Brick: Open-Frame Module

The ALO25F24 is Astec's 8th Brick industry standard offering. Operating from an input voltage range of 18V to 36V. It delivers up to 25A max current at 3.3V output voltage. It provides tight regulation and exhibits clean and monotonic output start up characteristics. This model comes with industry standard features such as Input UVLO; Enable On/Off, OCP, OVP and OTP; Output Trim; Differential Remote Sense pins. Open frame construction is available with TH and SMT termination. With its wide operating temperature range of -40°C to 85°C ambient, the converter is deployable into almost any environment.

Special Features

- Industry Standard 8th Brick Footprint
- Open frame construction
- Low Ripple and Noise
- Regulation to zero load
- High Capacitive Load Start-up
- Fixed Switching Frequency
- Industry standard features: Input UVLO; Enable; OVP, OCP and OTP; Output Trim, Remote Sense
- Meets Basic Insulation

Environmental Specifications

- -40°C to 85°C Operating Temperature
- -40°C to 125°C Storage Temperature
- MTBF > 1 million hours

Electrical Parameters

Input

Input Range 18-36 VDC Input Surge 50V / 100ms

Control

Enable TTL compatible (Positive or Negative Logic Enable Options)

Output

Load Current 3.3V @ 25A max ($P_0 = 82.5W$)

 $\begin{array}{ll} Line/Load \ Regulation & <1\% \ V_O \\ Ripple \ and \ Noise & 75mV_{P-P} \end{array}$

Output Voltage

Adjust Range ±10% V₀

Transient Response 5% Typical deviation

50% to 75% Load Change 100µs settling time (Typ)

Remote Sense +10%V_O Over Current 120% (Typ)

Protection

Over Voltage 130% (Typ)

Protection

Over Temperature 103°C

Protection

Safety

UL + cUL 60950, Recognized EN60950 through TUV-PS

Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings can cause permanent damage to the converter. Functional operation of the device is converter is not implied at these or any other conditions in excess of those given in the operational section of the specs. Exposure to absolute maximum ratings for extended period can adversely affect device reliability.

Parameter	Device	Symbol	Min	Typical	Max	Unit
Input Voltage						
Continuous	All	Vin	-	-	36	Vdc
Transient (100ms)		Vin trans	-	-	50	
I/O Isolation						
(Conditions 50µA for 5 sec, slew						
rate of 1500V/10sec)						
Input-to-Output	All	-	-	-	1500	Vdc
Operating Temperature	All	T_{A}	-40	ı	85	°C
Storage Temperature	All	T_{STG}	-40	ı	125	°C
Operating Humidity	All	-	10	-	85	%
Max Voltage at Enable Pin	All		-	-	25	Vdc
Max Output Power	All	$P_{O,MAX}$	-	-	82.5	W

INPUT SPECIFICATIONS

Parameter	Device	Symbol	Min	Typical	Max	Unit
Operating Input Voltage Range	All	$V_{\rm IN}$	18	24	36	Vdc
Input Under-Voltage Lock-out	All					
T_ON Threshold			17.2	-	17.95	Vdc
T_OFF Threshold			15.8	-	16.50	
Input Line Drop Out Time (25°C)						
- within overshoot spec	All	$V_{\rm IN}$	5	-	-	ms
- within 450mV overshoot	All	$ m V_{IN}$	1	-	-	
Max Input Current ¹	All	Iin _{max}	-	-	6.0	A
$(V_{IN} = V_{IN, Min}; I_O = I_{O, Max})$						
$Max P_{diss} @ I_O = 0A$	All		-	-	4.6	W
$(V_{IN} = V_{IN, Nom})$						
Temperature: $T_A = 25^{\circ}C$						
Input Ripple Current ²	All	I_{I1}	-	6	-	mAp-p
5Hz to 20MHz						
Input Voltage Rise Time	All		-	-	1.7	V/ms
10% to 90% of Vout						
Inrush Current	All		-	-	5	A_{pk}
dI _{IN} /dt						1

Electrical Specifications (continued)

OUTPUT SPECIFICATIONS

Parameter	Device	Symbol	Min	Typical	Max	Unit	
Output Voltage Set point	All	$V_{O, SET}$	3.24	3.30	3.35	Vdc	
$V_{IN} = V_{IN, Min}$ to $V_{IN, Max}$							
$I_{O} = I_{O, Max}$							
Output Regulation							
Line	All	-	-	-	± 0.20	%	
$V_{IN} = V_{IN, Min}$ to $V_{IN, Max}$							
Load		-	-	-	± 0.20		
$I_{O} = I_{O, \text{ Min}}$ to $I_{O, \text{ Max}}$							
Temperature:		-	-	-	± 1.00		
$T_A = -40$ °C to 85°C							
Output Ripple and Noise ³	All	-	-	40	75	mVp-p	
Peak-to-Peak: (5Hz to 20MHz)							
External Load Capacitance	All	-	-	-	15,000	μF	
Capacitor ESR			15	_	-	mΩ	
Output Current ⁴	All	I_{O}	0	-	25	A	
Output Current-limit Inception	All	I_0	26.5	_	35	A	
$V_{OUT} = 90\% V_{O, Set};$	1	-0	20.0			1.2	
$T_A = 25$ °C							
Output Over Voltage Protection	All	Vo	3.9	4.1	4.9	V	
Over Temperature Protection	All		103	-	117	°C	
(AVG. PCB TEMP)	7 111		103		11,		
Efficiency	All	η	87	88	-	%	
$V_{IN} = V_{IN, Nom}$; $I_O = I_{O, Max}$		'					
$T_A = 25^{\circ}C$							
Turn On Response Time	All	-	-	-	15	ms	
$V_{IN} = V_{IN, Min} to V_{IN, Max}$							
Enable to Output Turn-On Delay	All	-	-	-	15	ms	
$V_{IN} = V_{IN, Min} to V_{IN, Max}$							
$I_{O} = I_{O, Min}$ to $I_{O, Max}$							
+ V _{IN} to Output Turn-On Delay	All	-	-	-	15	ms	
Enable Pin: Active							
$V_{IN} = V_{IN, Nom}$							
$I_{O} = I_{O, Max}$							
Switching Frequency	All	-	580	660	740	kHz	
Output Voltage Remote Sensing	All	-	-	-	10	$%V_{O}$	
Output Voltage Trim Range ⁵	All		90		110	%V _O	
Output Enable ON/OFF 6							
Enable Signal Slew Rate	All	-	0.01	-	-	V/ms	
Negative Enable ("N" suffix)							
Enable Pin Voltage: Mod-ON		-	0	-	0.8	V	
Mod-OFF		-	2.95	-	20	V	
Positive Enable (No suffix)							
Enable Pin Voltage: Mod-ON		-	2.95	-	20	V	
Mod-OFF		-	0	-	0.8	V	

Electrical Specifications (continued)

OUTPUT SPECIFICATIONS

Parameter	Device	Symbol	Min	Typical	Max	Unit
Dynamic Response						
$C_{O} = 0\mu F$	$\Delta I_{O}/\Delta t$	-	-	0.1	-	A/µs
Peak Deviation	All	-	-	5		%V _O
Load Change from $I_0 = 50\%$ to		-	-			
75% of I _{O, Max} :				100	300	μs
Settling Time to V _{O, Set} Tolerance						'
Peak Deviation	All	-	-	5		%V _O
Load Change from $I_0 = 50\%$ to		-	-			
25% of I _{O, Max} :		-	-	100	300	μs
Settling Time to V _{O, Set} Tolerance	All	-	-	-		'
Output Overshoot	All	-	-	-	3	%V _O
At T-on / t-off						
Passive Resistive Full Load						
T < 0°C		-	-	-	4	$%V_{O}$

Note: 1. The converter is not internally fused. An input line fuse such as Littlefuse 3AB type must be used.

- 2. Refer to Figure 1 for the external input capacitance required.
- 3. Refer to Figure 2 for output ripple and noise test measurement setup.
- 4. Output power derating applies at elevated temperature. Refer to Figure 11.
- 5. Refer to the output trim equations provided (Equations 1 and 2).
- 6. For temperature greater than -20°C, minimum pin disable time is 100ms. For temperature less than -20°C, minimum pin disable time is 1s.

SAFETY AGENCY / MATERIAL RATING / ISOLATION

Parameter	Device							
Safety Approval	All	UL/cUL 60950, 3rd Edition – Recognized						
		EN 6095	50 through TU	J V				
Material Flammability Rating	All	UL94V-0						
Parameter	Device	Symbol	Min	Typical	Max	Unit		
Input to Output Capacitance	All		-	1000	-	pF		
Input to Output Resistance	All		-	TBD	-	Ohms		
Input to Output Insulation Type	All	- Basic						

MODEL: ALO25F24 AUGUST 23, 2005 - REVISION H

Electrical Specifications (continued)

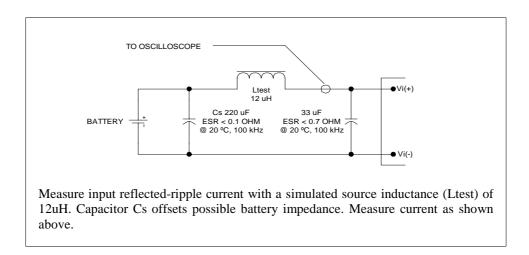
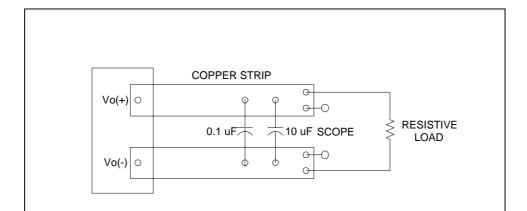



Figure 1. Input Reflected Ripple Current Measurement Setup.

Use a $0.1\mu F$ @50V X7R ceramic capacitor (connected an inch away from the output terminals of the UUT) and a $10\mu F$ @ 25V tantalum capacitor (2 inches away from the output terminals of the UUT). Scope measurement should be made using a BNC socket, positioned 3 inches away from output terminals of the converter.

Figure 2. Peak to Peak Output Noise Measurement Setup.

(Single Output 8th Brick)

Basic Operation and Features

INPUT UNDER VOLTAGE LOCKOUT

To prevent any instability to the converter, which may affect the end system, the converter have been designed to turn-on once $V_{\rm IN}$ is in the voltage range of 17.2-17.95 VDC. Likewise, it has also been programmed to turn-off when $V_{\rm IN}$ drops down to 15.8-16.5 VDC.

OUTPUT VOLTAGE ADJUST/TRIM

The converter comes with a TRIM pin (PIN 6), which is used to adjust the output by as much as 90% to 110% of its set point. This is achieved by connecting an external resistor as described below.

To INCREASE the output, external $R_{\text{adj_up}}$ resistor should be connected between TRIM PIN (Pin6) and +SENSE PIN (Pin 7). Please refer to Equation (1) for the required external resistance and output adjust relationship.

Equation (1a):

$$R_{adj_up} = \left[\frac{5.1 \times Vo_{set} \times (100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{510}{\Delta\%} - 10.2 \right] K\Omega$$

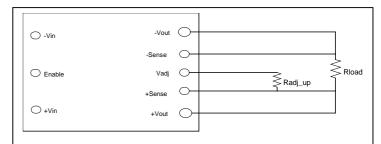


Figure 3. Trim UP test configuration (Pin Side Up).

To DECREASE the output, external R_{adj_down} resistor should be connected between TRIM pin (Pin 6) and -SENSE PIN (Pin 5). Please refer to Equation (2) for the required external resistance and output adjust relationship.

Equation (2):

Radj_down =
$$\left(\frac{510}{\Delta\%} - 10.2\right) \cdot k\Omega$$

Where: $\Delta\%$ = percent change in output voltage

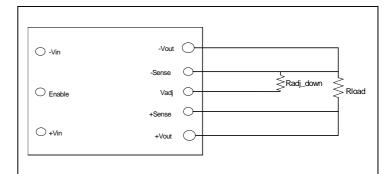


Figure 4. Trim DOWN test configuration (Pin Side Up).

Basic Operation and Features (continued)

OUTPUT ENABLE

The converter comes with an Enable pin (PIN 2), which is primarily used to turn ON/OFF the converter. Both a Positive (no "N" suffix required) and a Negative (suffix "N" required) Enable Logic options are being offered.

For Positive Enable, the converter is turned on when the Enable pin is at logic HIGH or left open. The unit turns off when the Enable pin is at logic LOW or directly connected to $-V_{IN}$. On the other hand, the Negative Enable version turns unit on when the Enable pin is at logic LOW or directly connected to $-V_{IN}$. The unit turns off when the Enable pin is at Logic HIGH.

OVER CURRENT PROTECTION (OCP)

The Over Current Protection is latching with auto-restart. The converter shuts down once the output current reaches the OCP range. The converter will attempt to restart until the fault is removed. Latching OCP mode is available as an option (no model part number assigned). This feature is only for module protection and no intention to customer application.

OUTPUT OVER VOLTAGE PROTECTION (OVP)

The Over Voltage Protection circuit is latching with auto-restart. The converter will latch-off and attempt to restart until the fault is removed. Latching OVP mode is available as an option (no model part number assigned).

OVER TEMPERATURE PROTECTION (OTP)

The Over Temperature Protection circuit will shutdown the converter once the average PCB temperature reaches the OTP range. This feature prevents the unit from overheating and consequently going into thermal runaway, which may further damage the converter and the end system. Such overheating may be an effect of operation outside the given power thermal derating conditions. Restart is possible once the temperature of the sensed location drops to less than 103°C.

REMOTE SENSE

The remote sense pins can be used to compensate for any voltage drops (per indicated max limits) that may occur along the connection between the output pins to the load. Pin 7 (+Sense) and Pin 5 (-Sense) should be connected to Pin 8 (+Vout) and Pin 4 (Return) respectively at the point where regulation is desired. The combination of remote sense and trim adjust cannot exceed 110% of $V_{\rm O}$. When output voltage is trimmed up (through remote sensing and/or trim pin), output current must be derated and maximum output power must not be exceeded.

(Single Output 8th Brick)

Performance Curves

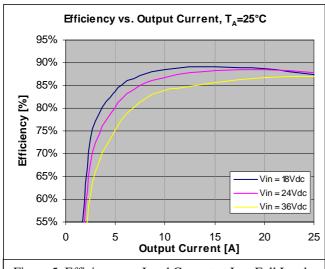


Figure 5. Efficiency vs. Load Current at I_O = Full Load, T_A = 25°C (ambient temperature).

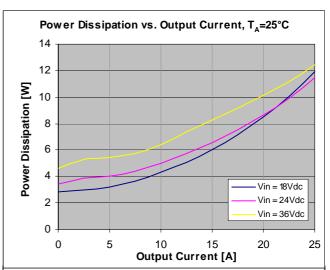


Figure 6. Power Dissipation vs. Load Current at $I_O = Full\ Load,\ T_A = 25^{\circ}C$ (ambient temperature).

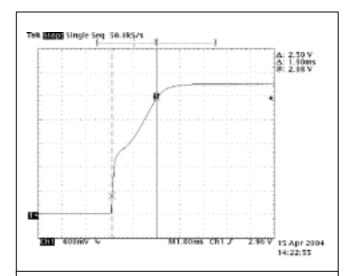


Figure 7. Output Turn On Response Time at $V_{IN}=24V,\ I_O=Full\ Load\ T_A=25^{\circ}C.$

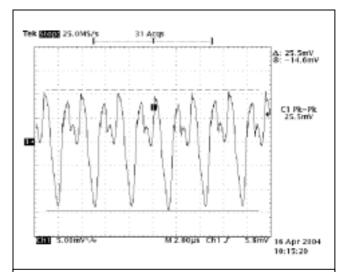


Figure 8. Output Ripple Waveform at V_{IN} = 24Vdc, I_{O} = Full Load, T_{A} = 25°C.

(Single Output 8th Brick)

Performance Curves

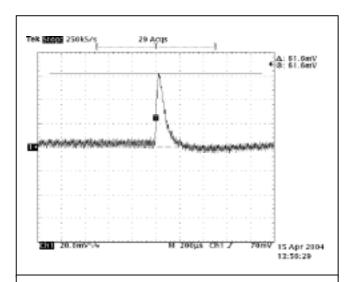


Figure 9. Output Transient Response at $T_A = 25$ °C; Peak Deviation (Hi - Lo).

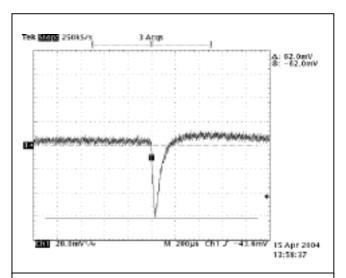


Figure 10. Output Transient Response at $T_A = 25$ °C; Peak Deviation (Lo - Hi).

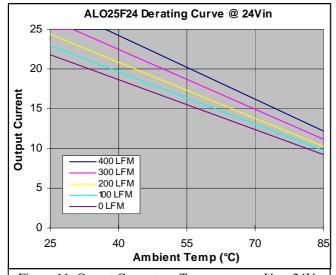


Figure 11. Output Current vs. Temperature at V_{IN}=24V, I_O = Full Load, T_A = 25°C.

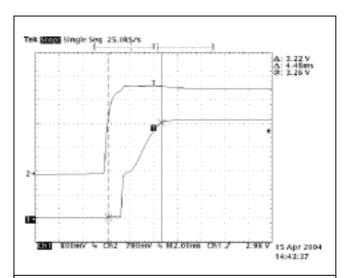


Figure 12. Enable to Output Turn On Time at $V_{IN} = 24V$, $I_O = Full Load, T_A = 25$ °C.

Input Filter for FCC Class B Conducted Noise

A reference design for an input filter that can provide FCC Class B conducted noise levels is shown below (See Figure 13). Two common mode connected inductors are used in the circuit along with balanced bypass capacitors to shunt common mode currents into the ground plane. Shunting noise current back to the converter reduces the amount of energy reaching the input LISN for measurement.

The application circuit shown has an earth ground (frame ground) connected to the converter output (-) terminal. Such a configuration is common practice to accommodate safety agency requirements. Grounding an output terminal results in much higher conducted emissions as measured at the input LISN because a hard path for common mode current back to the LISN is created by the frame ground. "Floating" loads generally result in much lower measured emissions. The electrical equivalent of a floating load, for EMI measurement purposes, can be created by grounding the converter output (load) through a suitably sized inductor(s) while maintaining the necessary safety bonding.

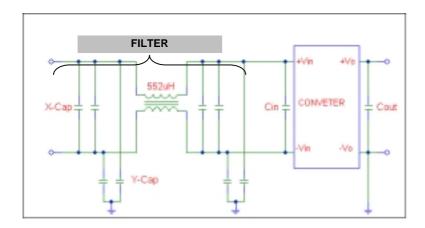


Figure 13: Class B Filter Circuit

PARTS LIST

CKT CODE	DESCRIPTION
Common Mode Choke	CTX01-15091 Cooper Electronic Technologies
X-Cap	0.47 μF X 4pcs
Y-Cap	22 nF X 4 pcs
Cin	220µF X 1pc

Mechanical Specifications

Parameter	Device	Symbol	Min	Тур	Max	Unit
Dimension	All	L	=-	2.30 [58.42]	-	in [mm]
		W		0.80 [20.32]	-	in [mm]
		Н	-	-	0.32 [8.13]	in [mm]
Weight	All		-	24 [0.85]	-	g [oz]
PIN ASSIGNMENT						
1		$+V_{IN}$		5	-SENSE	
2	Е	NABLE		6 TRI		M
3		$-V_{IN}$		7 +SE		ISE
4		-Vo		8 +V		0

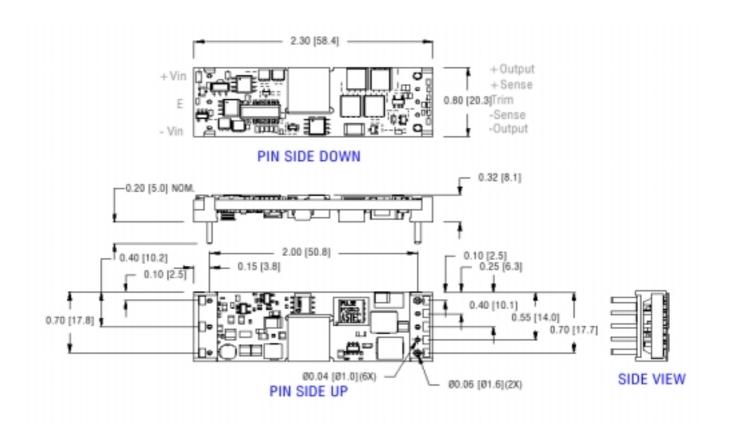


Figure 14A. Mechanical Outline (Pin Version)

(Single Output 8th Brick)

Mechanical Specifications (continued)

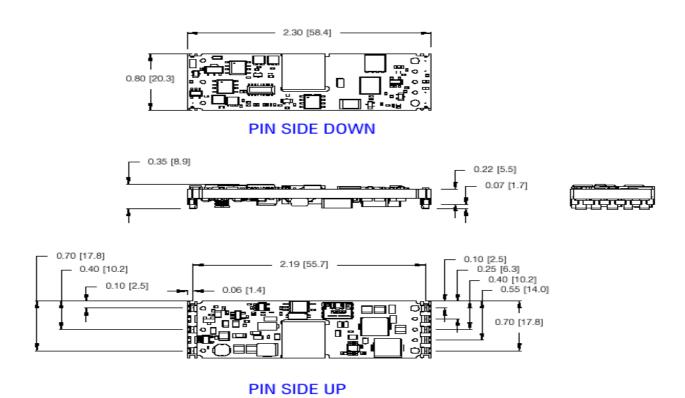


Figure 14B. Mechanical Outline (Surface Mount)

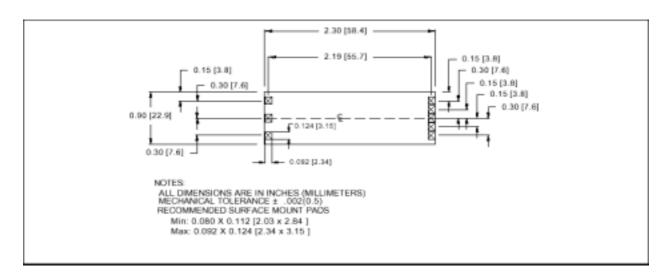


Figure 15. Recommended Pad layout for SMT (Suffix "S") version.

(Single Output 8th Brick)

SOLDERING CONSIDERATIONS

The ALO25F24 converter is compatible with standard wave soldering techniques. When wave soldering, the converter pins should be preheated for 20-30 seconds at 110°C and wave soldered at 260°C for less than 10 seconds.

When hand soldering, the iron temperature should be maintained at 425°C and applied to the converter pins for less than 5 seconds. Longer exposure can cause internal damage to the converter. Cleaning can be performed with cleaning solvent IPA or with water.

For SMT terminated modules, refer to Figure 16 for the recommended reflow profile.

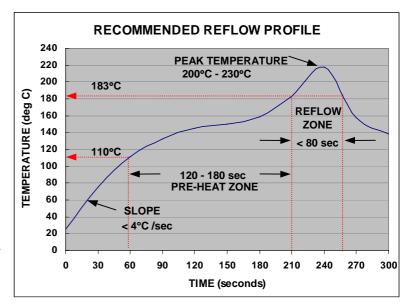


Figure 16. Recommended reflow profile for SMT modules.

PART NUMBERING SCHEME

	CONSTRUCTION		O/P CURRENT	O/P VOLTAGE	Vin	Enable		PIN LENGTH	TERMINATION
Α	w	0	xx	у	24	N	•	6	S
	L = Open frame		25 = 25A	F = 3.3V		N = Negative No suffix "N" = Positive default		6 = 3.7mm No suffix "-6" = 5mm default	S = SMT Termination No suffix "-S" = TH termination

Note: 1) For Through Hole (TH) termination: - Std pin length is 5mm nominal (min: 0.189 [4.8]; max: 0.205 [5.2] / in [mm])

- "-6" option is 3.7mm nominal (min: 0.137 [3.5]; max: 0.152 [3.9] / in [mm])

- Pins 4 & 8 diameter: $\emptyset = 0.062$ [1.57], others: $\emptyset = 0.04$ [1.0] (6X)

Please call 1-888-41-ASTEC for further inquiries or visit us at www.astecpower.com