

Precision Micropower Shunt Voltage Reference SOT23 and TO92 Package

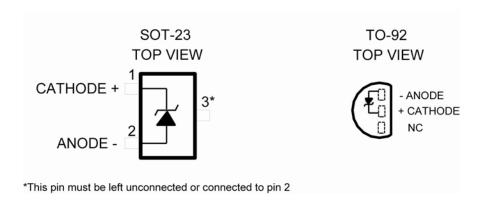
Product Specification

Revision 1.2

February 08, 2008

General Description

The LDS4041P is a precision voltage reference offered in the very small SOT23 package for applications where power and space are critical. Its precision reference is trimmed during wafer sort to insure accuracy and tight distributions centered at 1.225V. The minimum operating current is less than 40 µA to keep power consumption at a minimum. The bandgap reference has curvature correction and low dynamic impedance to ensure stable accuracy over a wide range of operating currents and temperatures


Applications

- Power supplies
- Low TC low voltage reference
- Portable, Battery-Powered Equipment
- Instrumentation

Features

- Offered in small SOT23-3 package
- 40uA to 12mA operation
- Low TC voltage reference 100ppm/°C
- Stable with no load capacitance
- RoHS compliant

Pin Configuration

Pin Descriptions

Pin Name	Function			
CATH	+ Input, nominally 1.225V in normal operation.			
Anode	- Ground			
NC	This pin must be left floating or connect to Anode			

Absolute Maximum Ratings

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any conditions beyond those indicated under recommended Operating Conditions is not implied. Exposure to "Absolute Maximum Rating" for extended periods may affect device reliability. Use of standard ESD handling precautions is required.

Parameter	Value	Units
ANODE Forward Current	+50	mA
ANODE Reverse Current	-50	mA
Operating Junction Temperature	150	°C
Lead Temperature (soldering 10 seconds)	260	°C
Storage Temperature Range	-65 to +150	°C
ESD (Human Body Model)	2	KV

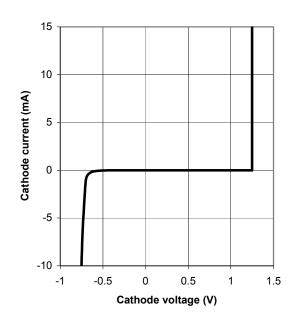
Electrical Specifications

Electrical characteristics are guaranteed at 25°C unless otherwise stated. Ambient temperature must be de-rated based upon power dissipation and package thermal characteristics.

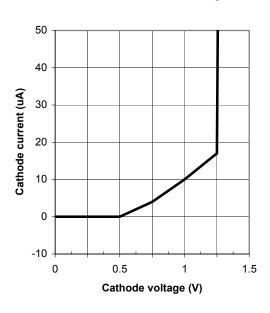
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V_R	Reverse Breakdown Voltage	I _R =100μA	0.5% option	1.219	1.225	1.231	V
VR.	Treverse Breakdown voltage		-40°C <tj<85°c< td=""><td>1.211</td><td></td><td>1.239</td><td>V</td></tj<85°c<>	1.211		1.239	V
V_R	Reverse Breakdown Voltage	L =100A	1.0% option	1.213	1.225	1.237	V
v _R	Reverse Breakdown voltage	1 _R = 100μΑ	I _R =100μA			1.249	V
ΔV_R	V _R Temperature deviation	–40°C <tj<85°c.< td=""><td></td><td>50</td><td>100</td><td>ppm/°C</td></tj<85°c.<>			50	100	ppm/°C
I _{R(min)}	Minimum Operating Current				18	40	μΑ
$\Delta V_{R}/\Delta I_{R}$	V _R deviation with I _R	$I_{R(min)} \le I_R \le 12 \text{ mA}$			2	6	mV
		-40°C <tj<85°c< td=""><td></td><td>2</td><td>8</td><td>mV</td></tj<85°c<>			2	8	mV
ZR	Dynamic Output Impedance	I_R =1mA, IAC = 0.1 I_R , f = 120Hz			0.1	1.5	Ω
θΝ	Wideband Noise	I_R =1mA, 10Hz \leq f \leq 10 kHz			20		μV_{rms}
ΔV_R	Long term stability	T =1000 hrs,		120		ppm	

1.210

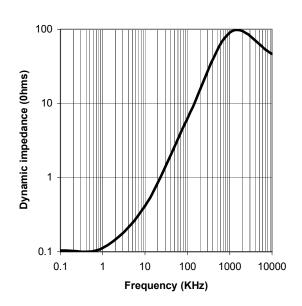
Typical performance curves


1.240
1.235
1.230
1.225
1.220
1.215

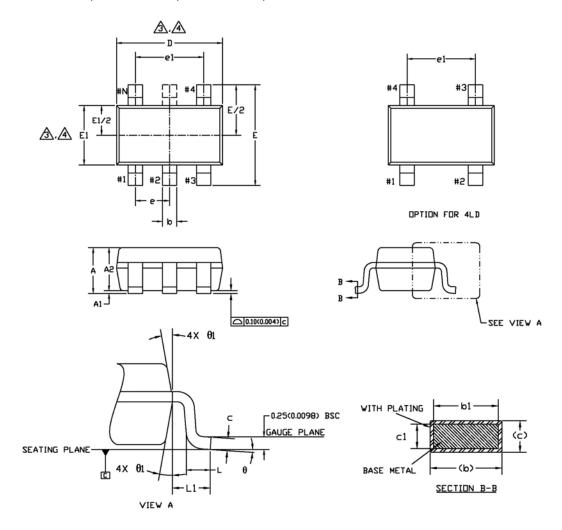
-40 -20 0 20 40 60 80 100 120


Junction temperature (degrees C)

Reference voltage


Cathode current vs Cathode voltage

Cathode current vs Cathode voltage

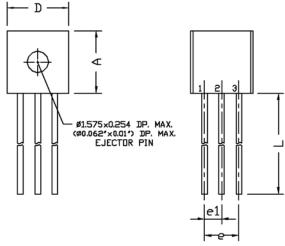


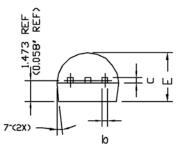
Dynamic impedance vs frequency

Package Dimensions

SOT23-3, SOT23-4, SOT23-5, SOT23-6

S	COMMON						
B	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
Ľ	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	1.20	1.30	1.40	0.047	0.051	0.055	
A1	0.05	-	0.15	0.002	-	0.006	
A2	0.90	1.15	1.30	0.035	0.045	0.051	
b	0.35	-	0.50	0.013	-	0.020	
b1	0.35	35 0.40 0.45			0.015	0.017	
С	0.08	-	0.22	0.003	-	0.008	
c1	0.08	0.13	0.20	0.003	0.005	0.007	
ם	2.90 BSC			0.114 BSC			
Ε	2.80 B2C			0.110 BSC			
E1		1.60 BSC			0.062 BSC		
6		0.95 BSC			0.037 BSC		
e1	1.90 BSC		0.074 BSC				
L	0.35	0.45	0.55	0.013	0.017	0.021	
L1	0.60 REF.			0.023 REF.			
θ	0*	4*	8*	0.	4*	8*	
61		10° TYP			10° TY		


NOTE :


Dimensioning and tolerancing per ASME Y 14.5 M - 1994. Dimensions are in millimeters. Converted inch dimension are not necessarily exact. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 0.15 mm per side. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. Top package may be smaller than the bottom package Dimension D and E1 are determine at the outermost extremes of the plastic body exclusive of mold flash gate burrs and interlead flash.

gate burrs and interlead flash. Terminal numbers are shown for reference only. Die is facing up for molding. Die is facing down for

Package Dimensions

TO92-2, TO92-3

Ş	COMMON						
38 D L	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
Ľ	MIN. NOM. MAX. MIN.		MIN.	NDM.	MAX.		
Α	4,472	4,572	4.672	0.176	0.180	0.184	
b	0.381	0.406	0.431	0.015	0.016	0.017	
c	0.356	0.406	0.456	0.014	0.014 0.016		
D	4.472	4.572	4.672	0.176 0.180		0.184	
Ε	3.456	3.556	3.656	0.136	0.140	0.144	
6	2.413	2.540	2.667	0.095	0.100	0.105	
e1	1.143	1.270	1.397	0.045	0.050	0.055	
L	13.87	13.97	14.07	0.546	0.550	0.554	

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER. CONVERTED INCH DIMENSION ARE NOT NECESSARILY EXACT.
 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.
- 3. FOR 2 LEAD PACKAGE CENTER LEAD IS CLIPPED

Ordering Information

Device	Operating Tj	%Tol	PKG Type	Vout	Wrap	Ordering Number
LDS4041P	-40C° ≤ 85C°	0.5	SOT-23-3	1.225V	T&R	LDS4041EZ-M3-12-TL
LDS4041P	-40C° ≤ 85C°	1.0	SOT-23-3	1.225V	T&R	LDS4041EY-M3-12-TL
LDS4041P	-40C° ≤ 85C°	0.5	TO92-3	1.225V	T&R	LDS4041EZ-N3-12-TL
LDS4041P	-40C° ≤ 85C°	1.0	TO92-3	1.225V	T&R	LDS4041EY-N3-12-TL

Note: Lead Free and RoHS compliant.

Warranty and Use

LEADIS TECHNOLOGY MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

Leadis Technology products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Leadis Technology product could create a situation where personal injury or death may occur.

Leadis Technology reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

Leadis Technology advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

Leadis Technology 800 W. California Ave, Suite 200 Sunnyvale, CA 94086

Phone: 408.331.8600 Fax: 408.331.8601 http://www.leadis.com

Document No: 4041LDS Revision: 1.2 Issue date: 2/08/08