
© Freescale Semiconductor, Inc., 2005. All rights reserved.

Freescale Semiconductor
Application Note

AN2635
Rev. 4, 10/2005

On-Chip FLASH Programming
Routines
For MC68HC908LB8, MC68HC908QL4, MC68HC908QB8,
MC68HC908QB4, MC68HC908QY8, and MC68HC908QY4A Series1

By: Kazue Kikuchi
MCU Applications Engineering
Austin, Texas

Introduction

This application note applies to the MC68HC908LB8, MC68HC908QL4, MC68HC908QB4/QB8/QY8,
and MC68HC908QY4A Series1 FLASH-based microcontroller units (MCUs). To program, erase, and
verify FLASH, these MCUs have on-chip FLASH support routines residing in ROM (read-only memory).
These routines may be accessed in either user mode or monitor mode and eliminate the need to develop
separate FLASH routines for applications.

This application note describes how to call each of the routines in user software, what is performed, and
what is returned as confirmation of routine execution. The software files are available as a zip file,
AN2635SW, from the Freescale Semiconductor website: www.freescale.com

NOTE
With the exception of mask set errata documents, if any other
Freescale Semiconductor document contains information that conflicts with
the information in the device data sheet, the data sheet should be
considered to have the most current and correct data.

1. MC68HC908QY4A Series includes MC68HC908QY4A, MC68HC908QY2A, MC68HC908QY1A, MC68HC908QT4A,
MC68HC908QT2A, MC68HC908QT1A

On-Chip FLASH Programming Routines, Rev. 4

2 Freescale Semiconductor

Routines Supported in ROM

FLASH Overview

The FLASH cell used on these 0.5-µ MCUs is an industry-proven split-gate cell. The cell uses channel
hot electron injection for programming and Fowler-Nordheim tunnelling for erasing. All programming
voltages are generated internally by a charge pump from a single connection to VDD.

With the quick byte-programming time and the organization of the FLASH array into 32-byte rows, the
entire 8-Kbyte memory can be programmed in less than one-half second. This type of FLASH is specified
to withstand at least 10,000 program/erase cycles and has enhanced reliability over previous technology.

Usually, split-gate FLASH is programmed on a row basis and erased on a page basis. Also, an entire
specified array can be mass erased. For the target MCUs, rows are 32 bytes and pages are 64 bytes (two
rows of 32 bytes each).

Routines Supported in ROM

In the ROM, six routines are supported. Because the ROM has a jump table, the user does not call the
routines with direct addresses. Therefore, the calling addresses will not change—even when the ROM
code is updated in the future.

This section introduces each routine briefly. Details are discussed in later sections.

GetByte

This routine is used to receive a byte serially on the general-purpose I/O PTA0. The receiving baud rate
is the same as the baud rate used in monitor mode. In the GetByte routine, the GetBit routine is called to
generate baud rates required for each MCU.

PutByte

This routine is used to send a byte serially on the general-purpose I/O PTA0. The sending baud rate is
the same as the baud rate specified in monitor mode.

RDVRRNG

This routine is used to perform one of two options. Using the send-out option, this routine reads FLASH
locations and sends the data out serially on the general-purpose I/O PTA0. Using to verify option, this
routine verifies the FLASH data against data in a specific RAM location, which is referred to as a DATA
array.

PRGRNGE

This routine is used to program a contiguous range of FLASH locations that is up to 32 bytes and in the
same row. Programming data is first loaded into the DATA array. PRGRNGE can be used when the
internal operating frequency (fop) is between 1.0 MHz and 8.4 MHz.

Variables Used in the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 3

ERARNGE

This routine is used to erase either a page (64 bytes) or the whole array of FLASH. It can be used when
the internal operating frequency (fop) is between 1.0 MHz and 8.4 MHz.

DELNUS

This routine can generate a specified delay based on the values of register X and accumulator (A) as
parameters. DELNUS is used in ERARNGE routine.

Variables Used in the Routines

The RDVRNGE, PRGRNGE, and ERARNGE routines require certain registers and/or RAM locations to
be initialized before calling the routines in the user software. Table 1 shows variables used in the routines
and their locations.

RAM

In general, RAM in Table 1 indicates the RAM start address. See Table 2 for RAM start locations for
specific MCUs. For example, the RAM start address for the MC68HC908LB8 (and each MCU currently
in the table) is $80.

CTRLBYT

The control byte (CTRLBYT) is located at RAM address RAM+$8 and is used for the ERARNGE routine.
In the case of the MC68HC908LB8, the CTRLBYT is located at $88. Bit 6 in this location is used to specify
either MASS (1) or PAGE (0) erase. The other bits must be 0. If one or more of these bits (except bit 6)
is initialized with 1, the erase operation is not executed.

Table 1. Variables and Their Locations

Location Variable Name Size (Bytes) Description

RAM – RAM+7 Reserved 8 Reserved for future use

RAM+$8 CTRLBYT 1 Control byte setting erase size

RAM+$9 CPUSPD 1
CPU speed — the nearest integer of fop (in MHz) × 4;

for example, if fop = 2.4576 MHz, CPUSPD = 10

RAM+$A,
RAM+$B

LADDR 2 Last address of a 16-bit range

RAM+$C DATA Varies
First location of DATA array;
DATA array size must match a programming or verifying range

Registers H:X — 2 Beginning address of a 16-bit range

On-Chip FLASH Programming Routines, Rev. 4

4 Freescale Semiconductor

How to Use the Routines

CPUSPD

To set up proper delays used in the PRGRNGE and ERARNGE routines, a value indicating the internal
operating frequency (fop) must be stored at CPUSPD, which is located at RAM address RAM+$9. In the
case of the MC68HC908LB8, the CPUSPD is located at $89. The CPUSPD value is the nearest integer
of fop (in MHz) times 4. For example, if fop is 4.2 MHz, the CPUSPD value is 17. If fop is 2.1 MHz, the
CPUSPD value is 8. Setting a correct CPUSPD value is very important to program or erase the FLASH
successfully.

LADDR

A range specifies the FLASH locations to be read, verified, or programmed. The 16-bit value in RAM
addresses RAM+$A and RAM+$B holds the last address of a range. The addresses RAM+$A and
RAM+$B are the high and low bytes of the last address, respectively. In the case of MC68HC908LB8, the
LADDR is located at $8A and $8B. LADDR is used for RDVRRNG and PRGRNGE routines.

DATA

DATA is the first location of the DATA array and is located at RAM address RAM+$C. For the
MC68HC908LB8, the DATA is located at $8C. The array is used for loading program or verify data. The
DATA array must be in the zero page and its size must match the size of the range to be programmed or
verified.

Registers H:X

In the RDVRRNG and PRGRNGE routines, registers H and X are initialized with a 16-bit value
representing the first address of a range. High and low bytes of the address are stored to registers H and
X, respectively. In the ERARNGE routine, registers H and X are initialized with an address which is within
the page or entire array to be erased.

How to Use the Routines

This section describes the details of each routine. Table 2 provides necessary addresses used in the
on-chip FLASH routines for each MCU type. Table 3 summarizes the six routines.

Table 2. MCU Type vs. Necessary Addresses Required for On-Chip FLASH Routines

MCU Name RAM GetByte PutByte RDVRRNG PRGRNGE ERARNGE DELNUS

MC68HC908LB8 $80 $037E $0381 $0384 $038A $0387 $038D

MC68HC908QL4 $80 $2B7E $2B81 $2B84 $2B8A $2B87 $2B8D

MC68HC908QY4A
Series(1)

NOTES:
1. MC68HC908QY4A Series includes MC68HC908QY4A, MC68HC908QY2A, MC68HC908QY1A, MC68HC908QT4A,

MC68HC908QT2A, MC68HC908QT1A

$80 $2800 $280F $2803 $2809 $2806 $280C

MC68HC908QB4/QB8,
MC68HC908QY8

$80 $2800 $280F $2803 $2809 $2806 $280C

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 5

Table 3. Summary of On-Chip FLASH Support Routines

GetByte PutByte RDVRRNG PRGRNGE ERARNGE DELNUS

Routine
Description

Get a data byte
serially through

PTA0

Send a data
byte serially

through PTA0

Read and/or
verify

a FLASH
range

Program a
FLASH range
(maximum 32
bytes in a row)

Erase a PAGE
or entire array

Generate
delay

3 × A × X + 8
(cycles)

Internal
Operating
Frequency

(fop)

— — —
1 MHz to
8.4 MHz

1 MHz to
8.4 MHz

—

Hardware
Requirement Pullup on PTA0 Pullup on PTA0

For send-out
option, pullup

on PTA0
N/A N/A N/A

Entry
Conditions

PTA0: Input
 (DDRA0 = 0)

PTA0: Input
and 0 data bit
(DDRA0 = 0,
PTA0 = 0)

A: data to be
sent

H:X: First
address of
range

LADDR: Last
address of
range

A: A = $00 for
send-out
option or
A ≠ $00 for
verify option

For send-out
option
PTA0: Input
and 0 data bit
(DDRA0 = 0,
PTA0 = 0)

For verify
option,
DATA array:
Load data to
be verified
against
FLASH read
data

H:X: First
address

 of range
LADDR: Last
 address of

range
CPUSPD: the

nearest
integer fop (in
MHz) times 4

Data array:
Load data
to be
programmed

H:X: Address
within a page
or an array to
be erased

CPUSPD: the
nearest
integer fop (in
MHz) times 4

CTRLBYT:
 $40 = MASS

erase
$00 = PAGE
erase

A: Value
between
4 and 255

X: Value
between
1 and 255

On-Chip FLASH Programming Routines, Rev. 4

6 Freescale Semiconductor

How to Use the Routines

Exit
Conditions

A: Data
received
through PTA0

C-bit: Framing
error
indicator
(error: C = 0)

A, X: No
change

PTA0: Input
and 0 data bit
(DDRA0 = 0,
PTA0 = 0)

A: Checksum
H:X: Next

FLASH
address

C-bit: Verify
result
indicator
(success:
C = 1)

DATA array:
Data
replaced with
FLASH read
data (verify
option)

H:X: Next
FLASH
address

H:X: No
change

—

I Bit — — — I bit is set I bit is set —

COP Not Serviced Not Serviced Serviced Serviced Serviced Not Serviced

Subroutines
Called GetBit —

PutByte
for send-out

option
— DELNUS —

RAM
Variable — —

LADDR
(2 bytes),
DATA array
(no size
limitation as
long as in the
zero page)

CPUSPD,
LADDR
(2 bytes),
DATA array
(maximum 32
bytes)

CTRLBYT,
CPUSPD

—

Stack Used
(Including

theRoutine’s
Call)

6 bytes 4 bytes

9 bytes for
verify

 option
11 bytes for

send-out
option

9 bytes 7 bytes 3 bytes

Table 3. Summary of On-Chip FLASH Support Routines (Continued)

GetByte PutByte RDVRRNG PRGRNGE ERARNGE DELNUS

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 7

GetByte

GetByte is a routine that receives a byte on the general-purpose I/O PTA0, and the received value is
returned to the calling routine in the accumulator (A). This routine is also used in monitor mode so that it
expects the same non-return-to-zero (NRZ) communication protocol and baud rates.

This routine detects a framing error when a STOP bit is not detected. If the carry (C) bit of the condition
control register (CCR) is cleared after returning from this routine, a framing error occurred during the data
receiving process. Therefore, the data in A is not reliable. The user software is responsible for handling
such errors.

Interrupts are not masked (the I bit is not set) and the COP is not serviced in the GetByte routine. User
software should ensure that interrupts are blocked during character reception.

To provide a specific communication baud rate, GetByte calls the GetBit subroutine. In the GetByte
routine, two different clock sources, internal clock and external clock, are supported. For example, the
MC68HC908LB8 usually has a trimmed internal bus clock of 4 MHz and an external bus clock of
2.4576 MHz. For the MCU to distinguish which clock source is currently selected, the ECGST (external
clock generator status) bit in the OSCSTAT (oscillator status register) is monitored in the GetBit
subroutine. When ECGST bit is set, the external clock is selected as a clock source. When the bit is
cleared, the internal clock is selected.

The baud rate is defined by fop divided by a constant value, which is specified in the development support
section in the device data sheet. In the case of the MC68HC908LB8, the baud rate of an internal clock
source is defined by fop divided by 417. If the internal bus clock is 4 MHz, the baud rate is
4 MHz/417 = 9592. Therefore, the closest PC baud rate is 9600. On the other hand, the baud rate of an
external clock source is fop divided by 256. When an external bus clock is 2.4576 MHz, the baud rate is
2.4576 MHz/256 = 9600.

To use this routine, some hardware setup is required. The general-purpose I/O PTA0 must be pulled up.
For more information, refer to the development support section in the device data sheet.

Entry Condition

PTA0 — This pin must be configured as an input and pulled up in hardware.

Exit Condition

A — Contains data received from PTA0.

C bit — Usually the C bit is set, indicating proper reception of the STOP bit. However, if the C bit is clear,
a framing error occurred. Therefore, the received byte in A is not reliable.

On-Chip FLASH Programming Routines, Rev. 4

8 Freescale Semiconductor

How to Use the Routines

Example 1: Receiving a Byte Serially

Example 1 shows how to receive a byte serially on PTA0:

GetByte equ $037E ;LB8 GetByte jump address

 bclr 0,DDRA0 ;Configure port A bit 0 as an input

 jsr GetByte ;Call GetByte routine
 bcc FrameError ;If C bit is clear, framing error
 ; occurred. Take a proper action

NOTE
After GetByte is called, the program will remain in this routine until a START
bit (0) is detected and a complete character is received.

PutByte

PutByte is a routine that receives a byte on the general-purpose I/O PTA0. The sent value must be loaded
into the accumulator (A) before calling this routine. This routine is also used in the monitor mode.
Therefore, it uses the same non-return-to-zero (NRZ) communication protocol. The communication baud
rates are the same as those described in GetByte.

To use this routine, some hardware setup is required. The general-purpose I/O PTA0 must be pulled up
and configured as an input and the PTA0 data bit must be initialized to 0.

Interrupts are not masked and the COP is not serviced in the PutByte routine. User software should
ensure that interrupts are blocked during character transmission.

Entry Condition

A — Contains data sent from PTA0

PTA0 — This pin must be configured as an input and pulled up in hardware and the PTA0 data bit must
be initialized to 0.

Exit Condition

A and X — are restored with entry values.

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 9

Example 2: Sending a Byte Serially

Example 2 shows how to send a byte ($55) serially on PTA0:

PutByte equ $0381 ;LB8 PutByte jump address

 bclr 0,DDRA ;Configure port A bit 0 as an input
 bclr 0,PTA ;Initialize data bit to zero PTA0=0
 lda #$55 ;Load sent data $55 to A
 jsr PutByte ;Call PutByte routine

RDVRRNG

When using the RDVRRNG routine, the user must select one of the following function options:

• Send-out option — Used to read a range of FLASH locations and to send the read data to a host
through PTA0 by using the PutByte routine.

• Verify option — Used to read a range of FLASH locations and to verify the read data against the
DATA array.

Send-Out Option

If the accumulator (A) is initialized with $00 at the routine entry, the read data will be sent out serially
through PTA0. The communication baud rate is the same as the baud rate described in the PutByte
routine. When this option is selected, the PTA0 must be pulled up and configured as an input and the
PTA0 data bit must be initialized to 0.

Verify Option

If A is initialized with a non-zero value, the read data is verified against the DATA array for each byte of
FLASH and the DATA array is replaced by the data read from FLASH. If the data does not match the
corresponding value, the data read from FLASH can be confirmed in the DATA array. All data in the DATA
array must be in the zero page, but a range can be beyond a row size or a page size.

Carry (C) Bit and Checksum

The first and last addresses of the range to be read and/or verified are specified as parameters in
registers H:X and LADDR, respectively. In the verify option, the carry (C) bit of the condition code register
(CCR) is set if the data in the specified range is verified successfully against the data in the DATA array.
However when the send-out option is selected, the status of the C bit is meaningless because this
function does not include the verify operation. Both options calculate a checksum on data read in the
range. This checksum, which is the LSB of the sum of all bytes in the entire data collection, is stored in A
upon return from the function.

Interrupts are not masked. The COP is serviced in RDVRRNG. The first COP is serviced at 23 bus cycles
after this routine is called in the user software. However, the COP timeout might still occur in the send-out
option if the COP is configured for a short timeout period.

On-Chip FLASH Programming Routines, Rev. 4

10 Freescale Semiconductor

How to Use the Routines

Entry Condition

H:X — Contains the beginning address in a range.

LADDR — Contains the last address in a range.

A — When A contains $00, read data is sent out via PTA0 (send-out option is selected). When A contains
a non-zero value, read data is verified against the DATA array (verify option is selected).

DATA array — Contains data to be verified against FLASH data. For the
send-out option, the DATA array is not used.

PTA0 — When the send-out option is selected, this pin must be configured as an input and pulled up in
hardware and PTA0 must be initialized to 0.

Exit Condition

A — Contains a checksum value.

H:X — Contains the address of the next byte immediately after the range read.

C bit — Indicates the verify result (only applies to the verify option).

 When the C bit is set, the verify succeeded.

 When the C bit is cleared, the verify failed.

DATA array — Replaced with data read from FLASH when the verify option is selected.

Example 3: Verify Option

Example 3 shows how to use the verify option:

RDVRRNG equ $0384 ;LB8 RDVRRNG jump address

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value to store in array
Data_load:
 coma
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; to verify against programmed FLASH
 aix #1 ; data (In this example verifying data
 cphx #$20 ; is $55, $AA, $55, $AA....)
 bne Data_load

 ldhx #$C01F ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$C000 ;Load beginning address of range
 ; to H:X
 lda #$55 ;Write non-zero value to A to select
 ; the verify option
 jsr RDVRRNG ;Call RDVRRNG routine
 bcc Error ;If bit C is cleared, verify failed
 ; Take a proper action
 ; A contains a checksum value

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 11

Example 4: Send-Out Option

Example 4 shows how to use the send-out option:

RDVRRNG equ $0384 ;LB8 RDVRRNG jump address

 bclr 0,DDRA ;Configure Port A bit 0 as an input
 bclr 0,PTA ;Initialize data bit to zero PTA0=0
 ldhx #$C025 ;Load last address of range to
 sthx LADDR ; LADDR
 ldhx #$C010 ;Load beginning address of range
 ; to H:X
 clra ;A=0 to select send-out option
 jsr RDVRRNG ;Call RDVRRNG routine
 ; A contains a checksum value

PRGRNGE

PRGRNGE is used to program a range of FLASH locations with data loaded into the DATA array. The
range must be less-than or equal-to 32 bytes. All bytes that will be programmed must be in the same row.
Programming data is passed to PRGRNGE in the DATA array. The size of the DATA array must match
the size of a specified programming range. This routine supports an internal operating frequency between
1.0 MHz and 8.4 MHz.

For this split-gate FLASH, the programming algorithm requires a programming time (tprog) between 30 µs
and 40 µs. (Refer to the FLASH memory section in the device data sheet.) Table 4 shows how tprog is
adjusted by a CPUSPD value in this routine. The CPUSPD value is the nearest integer of fop (in MHz)
multiplied by 4. For example, if fop is 2.4576 MHz, the CPUSPD value is 10 ($0A). If fop is 8.0 MHz, the
CPUSPD value is 32 ($20).

In PRGRNGE, the high programming voltage time is enabled for less than 125 µs when programming a
single byte at any operating bus frequency between 1.0 MHz and 8.4 MHz. Therefore, even when a row
is programmed by 32 separate single-byte programming operations, the cumulative high voltage
programming time is less than the maximum tHV (4 ms). The tHV is defined as the cumulative high voltage
programming time to the same row before the next erase. For more information, refer to the memory
characteristics in the electrical specifications section of the device data sheet.

This routine does not confirm that all bytes in the specified range are erased prior to programming. Nor
does this routine perform a verification after programming, so there is no return confirmation that
programming was successful. To program data successfully, the user software is responsible for these

Table 4. tprog vs. Bus Frequency

Operating Bus Freq. (fop) CPUSPD tprog (Cycles) tprog

Case 1 1.0 MHz ≤ fBus < 1.125 MHz 4 38 33.8 µs < tprog ≤ 38.0 µs

Case 2 1.125 MHz ≤ fBus ≤ 8.4 MHz 5 to 34 8 x CPUSPD + 5 32.1 µs ≤ tprog ≤ 40.0 µs

On-Chip FLASH Programming Routines, Rev. 4

12 Freescale Semiconductor

How to Use the Routines

verifying operations. The RDVRRNG routine can be used to verify a programmed FLASH range against
the DATA array.

Interrupts are masked and the COP is serviced in this routine. The first COP is serviced at 59 bus cycles
after this routine is called in the user software.

Entry Condition

H:X — Contains the beginning address in a range.

LADDR — Contains the last address in a range.

CPUSPD — Contains the nearest integer value of fop (in MHz) times 4.

DATA array — Contains the data values to be programmed into FLASH.

Exit Condition

H:X — Contains the address of the next byte after the range just programmed.

Example 5:
Programming a Row

Example 5 shows how to program one full 32-byte row:

PRGRNGE equ $038A ;LB8 PRGRNGE jump address

 ldhx #$0000 ;Index offset into DATA array
 lda #$AA ;Initial data value (inverted)
Data_load:
 coma ;Alternate between $55 and $AA
 sta DATA,x ;Fill DATA array, 32 bytes data,
 ; values to program into FLASH
 aix #1 ; (ie. 55, AA, 55, AA....)
 cphx #$20
 bne Data_load

 mov #$0A,CPUSPD ;fop = 2.4576MHz in this example
 ldhx #$C01F ;Load last address of the row
 sthx LADDR ; to LADDR
 ldhx #$C000 ;Load beginning address of the
 ; row to H:X
 jsr PRGRNGE ;Call PRGRNGE routine

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 13

Example 6:
Programming a Range Smaller than a Row

PRGRNGE can be used to program a range less than 32 bytes. Example 6 shows how to program $55
and $AA at location $E004 and $E005, respectively.

PRGRNGE equ $038A ;LB8 PRGRNGE jump address

 mov #$55,DATA
 mov #$AA,DATA+1

 mov #$18,CPUSPD ;fop = 6.0MHz in this example
 ldhx #$E005 ;Load last address to LADDR
 sthx LADDR
 ldhx #$E004 ;Load beginning address to H:X
 jsr PRGRNGE ;Call PRGRNGE routine

ERARNGE

ERARNGE can be called to erase a page (64 bytes) or a whole array of FLASH. Registers H and X can
be any address within the page or array to be erased. To select erase size, CTRLBYT is used. Writing
$40 to CTRLBYT selects the entire array (MASS) erase. Writing $00 to CTRLBYT selects the page erase.
When other values are written to CTRLBYT, the erase operation is not executed. This routine supports
an internal operating frequency between 1.0 MHz and 8.4 MHz.

In this routine, both PAGE erase time (tErase) and MASS erase time (tMErase) are set between 4 ms and
5.5 ms. The CPUSPD value is the nearest integer of fop (in MHz) times 4. For example if fop is 3.1 MHz,
the CPUSPD is 12 ($0C). If fop is 4.9152 MHz, the CPUSPD is 20 ($14).

Interrupts are masked and the COP is serviced in ERARNGE. The first COP is serviced on
(40+3xCPUSPD) bus cycles after this routine is called in the user software.

Entry Condition

CTRLBYT — For MASS erase, write $40. For PAGE erase, write $00.

H:X — Contains an address within a desired erase page or an array.

CPUSPD — Contains the nearest integer value of fop (in MHz) times 4.

Exit Condition

None

On-Chip FLASH Programming Routines, Rev. 4

14 Freescale Semiconductor

How to Use the Routines

Example 7: Erasing an Entire Array

Example 7 shows how to erase an entire array:

ERARNGE equ $0387 ;LB8 ERARNGE jump address

 mov #$08,CPUSPD ;fop = 2.0MHz in this example
 mov #$40,CTRLBYT ;Select Mass erase operation
 ldhx #$E000 ;Load any FLASH address to H:X
 jsr ERARNGE ;Call ERARNGE routine

Example 8: Erasing a Page

Example 8 shows how to erase a page from $E100 through $E13F:

ERARNGE equ $0387 ;LB8 ERARNGE jump address
 mov #$14,CPUSPD ;fop = 4.9152MHz in this example
 mov #$00,CTRLBYT ;Select Page erase operation
 ldhx #$E121 ;Load any address within the
 ; page to H:X
 jsr ERARNGE ;Call ERARNGE routine

If the FLASH locations that you want to erase are protected due to the value in the FLASH block protect
register (FLBPR), the erase operation will not be successful. However when a high voltage (Vtst) is
applied to the IRQ pin, the block protection is bypassed.

When the FLASH security check fails in the normal monitor mode, the FLASH can be re-accessed by
erasing the entire FLASH array. To override the FLASH security mechanism and erase the FLASH array
using this routine, registers H and X must contain the address of the FLASH block protect register
(FLBPR).

How to Use the Routines

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 15

DELNUS

DELNUS is a delay routine used in support of the ERARNGE routine. It can, however, be called
independently in the user software. DELNUS uses two parameters stored in the accumulator (A) and the
X register (X). Neither of these parameters is passed as an absolute value. The total delay (cycles)
resulting from this routine is:

 DELNUS = 3 × (A value) × (X value) + 8 cycles

where a value of A is 4 or greater and a value of X is 1 or greater. In the ERARNGE routines, the CPUSPD
value (which is a frequency parameter) is loaded into A.

Because this routine is called from a jump table, three additional cycles are included in the above
equation.

Interrupts are not masked and the COP is not serviced in DELNUS.

Initialization

A — Select A value between 4 and 255

X — Select X value between 1 and 255

Exit Condition

None

Example 9:
Generating a Delay

Initialized A = 16 and X = 8 to generate 100 µs delay at fop = 4 MHz

DELNUS equ $038D ;LB8 DELNUS jump address

 lda #$10 ;[2]A=16
 ldx #$08 ;[2]X=8
 jsr DELNUS ;[4]Call DELNUS routine

In this example, the total delay time is 8 + (3 × 16 × 8 + 8) cycles = 400 cycles (100 µs).

On-Chip FLASH Programming Routines, Rev. 4

16 Freescale Semiconductor

On-Chip Routines Flowcharts

On-Chip Routines Flowcharts

Figure 1. GetByte Routine

ROTATE A RIGHT THROUGH C BIT

C C

GetByte

PTA0 = 0
?

CALL GetBit ROUTINE
TO GET START BIT

C BIT = 1
?

A = $80

CALL GetBit ROUTINE
TO GET DATA

C BIT = 0
?

CALL GetBit ROUTINE
TO GET STOP BIT

(NOTE 1)

RTS

A

YES

NO

YES

NO

YES

NO

NextBit:

NOTES:
 1. When C bit is 0, communication has a framing error.

On-Chip Routines Flowcharts

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 17

Figure 2. GetBit Routine

()

GetBit

PUSH X TO STACK

PUSH A TO STACK

A = #OFFsetI

X = #SampPerBitI

ECGST BIT IN OSCSTAT = 1?YES

NO

(EXTERNAL CLOCK)

A = #OFFsetE

X = #SampPerBitE

READ PTA0

A = A – C

WHEN PTA0 = 1, C BIT = 1
WHEN PTA0 = 0, C BIT = 0

DECREMENTED X = 0 YESNO

?

ROTATE A LEFT THROUGH C BIT

C CA

(NOTE 1)

NOTES:
1. If rotated A is a negative value, a bit is logic 1.

PULL STACK DATA Y TO A

PULL STACK DATA X TO X

RTS

SerialE:

loopIn:

On-Chip FLASH Programming Routines, Rev. 4

18 Freescale Semiconductor

On-Chip Routines Flowcharts

Figure 3. PutByte Routine

PutByte

SAVE X TO STACK

SAVE A (TRANSMIT DATA) TO STACK

A = 10

PTA0 = 0YES

NO

?

MAKE ~2 BIT DELAY

DECREMENT X = 0NO

YES

?

X = #BitX2

C BIT = 1 (STOP BIT)

ROTATE TRANSMIT DATA (STACK)

C CTRANSMIT DATA

RIGHT THROUGH C BIT

C BIT = 0

NO

?

SET PTA0 AS INPUT
(NOTE 1)

YES

SET PTA0 AS OUTPUT

ECGST BIT IN OSCSTAT = 0?

YES

NO

(INTERNAL CLOCK)

(NOTE 2)

ADJUST BIT TIMING FOR INTERNAL CLOCK
X = BitTimeI

ADJUST BIT TIMING FOR EXTERNAL CLOCK
X = BitTimeE

DECREMENTED X = 0

YES

NO
?

ARE 10 BITS SENT?
(DECREMENTED A = 0)

RTS

RESTORE TRANSMIT DATA (STACK) TO A

RESTORE X FROM STACK

NOTES:
1. PTA0 input pulls up high.
2. PTA0 output drives low.

outHi:

outLow:

outDelay:

NO

YES

delOut:

On-Chip Routines Flowcharts

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 19

Figure 4. RDVRRNG Routine

RDVRRNG

CALCULATE TOTAL BYTE NUMBER
TO BE READ

STORE TOTAL BYTE NUMBER AT
RESULT AND BYTE COUNTER (STACK)

SERVICE COP

READ FLASH DATA AT H:X

INITIALIZED A = $00?

DECREMENT RESULT

REPLACE DATA ARRAY
WITH FLASH READ DATA

RTS

YES

NO

DATA ARRAY DATA =
FLASH READ DATA?

ACCUMULATE CHECKSUM

H:X = H:X + 1

DECREMENT BYTE
COUNTER = 0?

CALL PutByte ROUTINE
TO SEND DATA TO HOST

NO

YES

NO YES

RESULT = 0
?

CLEAR C BIT SET C BIT

A = TOTAL CHECKSUM

VERIFY
PASS

VERIFY
FAIL

NO YES

ReadData:

NoDataMatch:

Checksum:

Serial:

On-Chip FLASH Programming Routines, Rev. 4

20 Freescale Semiconductor

On-Chip Routines Flowcharts

Figure 5. PRGRNGE Routine, Part 1

SET I BIT
(MASK INTERRUPTS)

PRGRNGE

TOTAL BYTE NUMBER = 0

NO

YES

SAVE DATA AT LADDR
AND LADDR+1 TO STACK

CALCULATE TOTAL BYTE NUMBER
TO BE PROGRAMMED AND

STORE THE VALUE AT STACK

POINT TO FIRST BYTE
IN DATA ARRAY

RamPntrLo = $00

?

TOTAL BYTE NUMBER ≥ #LoopCOP
?

TOTAL BYTE NUMBER = $00TOTAL BYTE NUMBER =
TOTAL BYTE NUMBER – #LoopCOP

ByteCntr = #LoopCOP

CALL PRGstep1 ROUTINE

RTS

RESTORE ORIGINAL VALUES
AT LADDR AND LADDR+1

YES NO

ProgEnd

LoopPROG:

Program:

ByteCntr = TOTAL BYTE NUMBER

On-Chip Routines Flowcharts

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 21

Figure 6. PRGRNGE Routine, Part 2

SERVICE COP

PRGstep1

STEP 9: DECREMENTED
NO

STEP 1: SET PGM BIT

STEP 2: READ FLBPR

ByteCntr = 0?

STEP 3: WRITE ANY DATA TO A
FLASH ADDRESS (H:X)

STEP 4: DELAY tNVS

STEP 5: SET HVEN BIT

STEP 6: DELAY tPGS

READ RAM DATA POINTED

STEP 7: WRITE DATA TO A

STEP 8: DELAY tprog [BUS CYCLES]
FOR CPUSPD = 4,

PRGstep7:

BY RamPntrLo

FLASH ADDRESS (H:X)

FOR CPUSPD = 5 TO 34,
tprog = 2 x CPUSPD – 9

tprog = 38

H:X = H:X + 1

SET A NEXT RAM LOCATION
BY INCREMENTING RamPntrLo

YES

STEP 10: CLEAR PGM BIT

STEP 11: DELAY tNVH

STEP 12: CLEAR HVEN BIT

SERVICE COP

RTS

On-Chip FLASH Programming Routines, Rev. 4

22 Freescale Semiconductor

On-Chip Routines Flowcharts

Figure 7. ERARNGE Routine

STEP 7: CLEAR ERASE BIT

STEP 8: DELAY tNVHL

STEP 9: CLEAR ALL BITS IN FLCR
CALL DELNUS ROUTINE

(NOTE 1)

DECREMENTED LOOP

ERARNGE

RTS

SET I BIT

MASS BIT SETS INYES

STEP 2: READ FLBPR

STEP 3: WRITE ANY DATA TO

STEP 4: DELAY tNVS

FLASH ADDRESS (H:X)

STEP 5: SET HVEN BIT

STEP 6: SET LOOP COUNTER = 20

SERVICE COP

(MASK INTERRUPTS)

CTRLBYT?

NO

STEP 1: SET ERASE AND
MASS BITS

STEP 1: SET ERASE BIT

MASS ERASE PAGE ERASE

COUNTER = 0?
NO YES

STEP 10: DELAY tRCV

ServiceCOP:

TO MAKE ~200-µs DELAY

CTRLBYT = $00 OR $40

YES

?

NO

1. DELNUS ROUTINE IS USED
NOTE S:

On-Chip Routines Flowcharts

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 23

Figure 8. DELNUS Routine

PUSH A VALUE TO STACK

PULL A VALUE FROM STACK
(2 CYCLES)

DECREMENTED

RTS

YES

NO

DELNUS

DECREMENT A
(1 CYCLE)

(2 CYCLES)

DECREMENT A
(1 CYCLE)

DECREMENTED A
VALUE = 0?
(3 CYCLES)

X VALUE = 0?
(3 CYCLES)

(4 CYCLES)

NO

YES

LOOP:

DECREMENT A
(1 CYCLE)

On-Chip FLASH Programming Routines, Rev. 4

24 Freescale Semiconductor

On-Chip Routines Source Code

On-Chip Routines Source Code

The following source code is for the MC68HC908LB8 on-chip routines. Because other MCUs support
different communication baud rates, GetBit and PutByte routines are slightly different. However, these
routines are built in the same manner.

.pagewidth 98t
;**
;* PURPOSE: This program has the HC908LB8 FLASH program, erase, verify
;* routines and serial communication routines.
;*
;* TARGET DEVICE: HC908LB8
;*
;* ASSEMBLER: P&E Microsystems CASM08Z
;* VERSION: 3.16
;*
;* GENERAL CODING NOTES:
;* A standard equate file "908LB86vXrY.inc" is used to define all MCU
;* register and bit names. Bit names use all uppercase characters.
;* BCLR, BSET, BRCLR, and BRSET use the bit name alone while logical
;* instructions such as ORA use the bit name with a prefix of
;* lowercase "m" which is a bit position mask.
;***

;***
;* ASSEMBLER DIRECTIVES
;* (BASE, MACROS, SETS, CONDITIONS, ETC.)
;***
 base 10t ;Change default to decimal
;***
;* INCLUDED FILES
;***
$NOLIST
 include "908LB8v0r2.inc"
$LIST
;***
;* EQUATES for ROM Assigned Locations
;***
;* ROM Assigned Location
;*
JumpTable: equ $037E ;jump table start address
FlashROM: equ JumpTable+$1B ;FLASH ROM start address

;***
;* EQUATES and VARIABLES for GetBit and PutByte routines
;* Constants used in the GetBit and PutByte routines:
;* NOTE: changing the following parameters will alter the baud rate!
;* External clock (Ext) values set for 9600 baud @ 2.4576MHz bus rate
;* Internal clock (Int) values set for 9600 baud @ 4.0MHz bus rate
;***
SampPerBitE: equ 22 ;samples per bit time (Ext)
SampPerBitI: equ 38 ;(Int) used in GetBit
OffsetE: equ 15 ;~70% SampPerBit (Ext) and (Int)
OffsetI: equ 27 ; used in GetBit

On-Chip Routines Source Code

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 25

;* more than Offset samples = 1 means bit is detected as a logic 1
BitX2: equ 210 ;delay count for ~2 bit times
;* 2 bit time is not accurate
BitTimeE: equ 76 ;delay count for 1 bit time (Ext) and
BitTimeI: equ 129 ; (Int) used in PutByte
BrkTimeE: equ 232 ;delay count for 10 bit times (Ext)
BrkTimeI: equ 123 ; and (Int) used in EchoBrk

;***
;* EQUATES and VARIABLES for FLASH routines
;***

DATSTRC: equ RamStart+8 ;leave 8-byte offset from start of
 ; RAM for future requirement
MASSBIT: equ 6 ;MASS bit of CTRLBYT located in bit 6
ROWSIZE: equ 32 ;FLASH ROW size

 org DATSTRC
;* The following variables set by user
CTRLBYT: rmb 1 ;control byte for erase operation
 ; selection
CPUSPD: rmb 1 ;CPU bus speed (nearest integer of
 ; bus freq (in MHz) * 4)
LADDR: rmb 2 ;last address
DATA: rmb ROWSIZE ;allocation/use of this space depends
 ; on a device
RamPntrLo: equ LADDR ;LADDR loc. reused as RAM pointer in
 ; PRGRNGE routine
ByteCntr: equ LADDR+1 ;LADDR+1 loc. reused as Byte Count in
 ; PRGRNGE routine

;* These times are for use by ERARNGE
LoopErase: equ 20 ;total Terase time (~ 4ms)
 ; =20+(EraseLOOP*(3*CPUSPD*TERASE+26))
TERASE: equ 17 ;FLASH erase time between COP service
 ; COP is serviced every ~200 us =
 ; 3*CPUSPD*TERASE+26 (bus cycles)
TNVHL: equ 9 ;FLASH high-voltage hold time (>= 100us)
 ; = 3*SPUSPD*TNVHL+19 (bus cycles)
LoopCOP: equ 6 ;COP is serviced when LoopCOP reaches
 ; to zero

;***
;* JUMP TABLE
;***
 org JumpTable

ByteGet: jmp GetByte ;receive one byte data from a host
BytePut: jmp PutByte ;send one byte data to a host
RNGRDVR: jmp RDVRRNG ;read/verify FLASH data
RNGEERA: jmp ERARNGE ;erase FLASH
RNGEPRG: jmp PRGRNGE ;program FLASH
NUSDEL: jmp DELNUS ;generate delay

**
* ROUTINES
**

 org FlashROM

On-Chip FLASH Programming Routines, Rev. 4

26 Freescale Semiconductor

On-Chip Routines Source Code

;***
;* NAME: GetByte
;* PURPOSE:
;* Get one byte data through PTA0 serially. This routine supports
;* a baud rate 9600 bps at internal 4MHz and external 2.4576MHz bus
;* frequencies. A clock is distinguished by the state of ECGST bit
;* (bit 0) in OSCSTAT. When ECGST=1, an external clock is selected.
;* ENTRY CONDITIONS:
;* PTA0 configured as an input.
;* EXIT CONDITIONS:
;* A contains a byte received when START bit is detected
;* C-bit in CCR indicates a framing error
;* If C-bit is cleared, a framing error is indicated because
;* the STOP bit was detected as a 0 instead of a 1
;* PTA0 configured as an input
;* SUBROUTINES CALLED: GetBit
;* VARIABLES READ:
;* VARIABLES MODIFIED:
;* STACK USED: 6 (including the call to this routine)
;* SIZE: 18 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* Once called, program will remain in GetByte until a byte is
;* received. Signal to start receiving a byte is a valid
;* (low) START bit.
;* This routine does not service COP.
;* NOTE: Cycle path for each bit reception must be kept the same to
;* maintain a steady baud rate.
;* When OSCSTAT[0]=0 (internal clock is selected):
;* 9+(28+10*38)= 417 cycles @ 4.0 MHZ=104.3 us=9592 bps
;* (closest PC baud rate 9,600 bps)
;* When OSCSTAT[0]=1 (external clock is selected):
;* 9+(27+10*22) = 256 cycles @ 2.4576 MHZ = 104 us = 9,600 bps
;***
GetByte: brset 0,PTA,GetByte ;[.r...] loop till PTA0=0 (start)
 bsr GetBit ;[4+GetBit] check sense of start bit
 bcs GetByte ;[3] C-bit should be 0, else noise
 lda #$80 ;[2] Rx byte done when 1 RORs into C
NextBit: ; top of loop to get 8 bits
 bsr GetBit ;[4+GetBit] sense level of next bit
 rora ;[1] rotate into A from left
 nop ;[1] pad to tune timing
 bcc NextBit ;[3] continue 'till 1 RORs into C
stpBit: bsr GetBit ;[4+GetBit] sense level of stop bit
 rts ;[4]
;* GetByte DONE ******************

;***
;* NAME: PutByte
;* PURPOSE:
;* Send one byte data through PTA0 serially. This routine supports
;* a baud rate 9600 bps at internal 4MHz and external 2.4576MHz bus
;* frequencies. A clock is distinguished by the state of ECGST bit
;* (bit 0) in OSCSTAT. When ECGST=1, an external clock is selected.
;* ENTRY CONDITIONS:
;* PTA0 configured as an input, PTA0 data bit = 0
;* A contains data to be sent
;* EXIT CONDITIONS:

On-Chip Routines Source Code

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 27

;* A and X is restored to entry values
;* PTA0 configured as an input (PTA0=high idle line)
;* SUBROUTINES CALLED:
;* VARIABLES READ:
;* VARIABLES MODIFIED:
;* STACK USED: 4 (including the call to this routine)
;* SIZE: 46 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* After ~2 bit times delay, a character in A is sent via PTA0
;* Once called, program will remain in PutByte until PTA0=high
;* This routine does not service COP
;***
PutByte: pshx ;[2] save X
 psha ;[2] temp save Tx data
 lda #10 ;[2] start, 8 data, stop = 10 loops
 brclr 0,PTA,* ;[.r...] wait for PTA0 high (idle)
 ldx #BitX2 ;[2] load constant for Ext

;* delay ~2 bit times before transmitting data (time not critical)
;* Ext 2 bit is 25% longer and Int 2 bit is 23% shorter

delay: dbnzx delay ;[3] loop 3 cyc * BitX2I

 sec ;[1] becomes stop bit after 9 RORs
 bra outLow ;[3] Tx a low for start bit

PutLoop: ror 1,SP ;[5] LSB to C-bit, Tx that level
 bcc outLow ;[3] if C=0 Tx low, else Tx high
outHi: bclr 0,DDRA ;[4] PTA0 input pulls up to high
 bra outDelay ;[3] go to time 1 bit delay
outLow: bset 0,DDRA ;[4] PTA0 output makes pin drive low
 bra outDelay ;[3] time 1 bit delay (match time)
outDelay: ldx OSCSTAT ;[3] check for Int/Ext clk
 bne BitE ;[3] branch if Ext (OSCSTAT!=$00)
 ldx #BitTimeI ;[2] load Int bit delay
 bra delOut ;[3] skip to delOut
BitE: nop ;[1] timing adjust
 ldx #BitTimeE ;[2] load Ext bit delay
delOut: dbnzx delOut ;[3] loop 3~ * (value in X)
 nop ;[1] timing adjust
 dbnza PutLoop ;[3] repeat for start, 8 data, stop

 pula ;[2] restore Tx data
 pulx ;[2] restore X
 rts ;[4]
;* PutByte DONE ******************

;***
;* NAME: GetBit
;* PURPOSE:
;* Receive one serial bit via PTA0 and return it in C-bit
;* ENTRY CONDITIONS:
;* PTA0 configured as an input.
;* EXIT CONDITIONS:
;* A and X is restored to entry values
;* Bit level is returned to C bit in CCR
;* PTA0 configured as an input.
;* SUBROUTINES CALLED: GetBit
;* VARIABLES READ:

On-Chip FLASH Programming Routines, Rev. 4

28 Freescale Semiconductor

On-Chip Routines Source Code

;* VARIABLES MODIFIED:
;* STACK USED: 4 (including the call to this routine)
;* SIZE: 31 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* Execution cycle for Internal and external is:
;* Internal (OSCSTAT[0]=0) = 28 + (10 x SampPerBitI)
;* Extnernal (OSCSTAT[0]=1) = 27 + (10 x SampPerBitE)
;***
GetBit: pshx ;[2] preserve X
 psha ;[2] preserve A
 nop ;[1] time padding
 brset 0,OSCSTAT,SerialE ;[5] check if int or ext clk
 lda #OffsetI ;[2] # of samples to detect 1 (Int)
 ldx #SampPerBitI ;[2] # of samples per bit (Int)
 brclr 0,OSCSTAT,loopIn ;[5] time matching padding
SerialE: lda #OffsetE ;[2] # of samples to detect 1 (Ext)
 ldx #SampPerBitE ;[2] # of samples per bit (Ext)
 nop ;[1] time padding
 bra loopIn ;[3] time padding
loopIn: brclr 0,PTA,subSamp ;[5] set/clr C based on PTA0 level
subSamp: sbc #0 ;[2] subtract C from offset in A
 dbnzx loopIn ;[3] loop SampPerBitI times
 rola ;[1] copy MSB to C bit (1 if A neg)
;* A would be negative if # of 1 samples was > OffsetG_
;* C bit reflects detected sense of current serial bit
 pula ;[2] restore A
 pulx ;[2] restore X
 rts ;[4] return
;* GetBit DONE ******************

;***
;* NAME: RDVRRNG
;* PURPOSE: Read and/or verify a range of FLASH memory
;* ENTRY CONDITIONS:
;* H:X contains a start address of the FLASH address range
;* LADDR:LADDR+1 contains a last address of the FLASH address range
;* The contents of A decides if read data is transferred serially
;* via PTA0 (When A=0, PTA0 is used for serial transfer) or
;* the data is verified against the DATA array in RAM
;* DATA array contains the data to be verified
;* If A=0, PTA0 is configured as an input (DDRA0=0) and
;* data bit = 0 (PTA0=0)
;* EXIT CONDITIONS:
;* A contains checksum
;* C-bit in CCR indicates verify result when entry A is NOT zero
;* If C-bit is set, the verify is successful
;* DATA array contains read FLASH data when entry A is NOT zero
;* H:X contains a next FLASH read address
;* SUBROUTINES CALLED: PutByte
;* VARIABLES READ: LADDR:LADDR+1,DATA array
;* VARIABLES MODIFIED: DATA array
;* STACK USED: (include the call to this routine)
;* 9 bytes for Verify operation (entry A is NOT zero)
;* 11 bytes for data send out operation (entry A is zero)
;* SIZE: 67 bytes
;* DESCRIPTION: Executed out of ROM
;* The COP is serviced in this routine. The first COP is serviced on

On-Chip Routines Source Code

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 29

;* 23 bus cycles after this routine is called in the user software.
;* However, the COP timeout might still occur under the following
;* conditions:
;* 1) COP is not serviced within a proper period in user software
;* 2) COP set for short timeout and Read data is sent through PTA0
;* STACK FRAME:
;* SP+1 [G] SADDR(hi) temp storage
;* SP+2 [F] SADDR(lo) temp storage
;* SP+3 SP+1 [E] ByteCount - decrements to zero
;* SP+4 SP+2 [D] # of bad bytes - 0 on return means all were good
;* SP+5 SP+3 [C] Checksum - sum of all data values read
;* SP+6 SP+4 [B] Offset pointer into DATA array in RAM
;* SP+7 SP+5 [A] Verify/Read flag - 1=verify/0=read
;* | | |
;* | | +--reference label in square brackets
;* | +---SP offset when SADDR not on stack
;* +---------SP offset when SADDR on stack for temp storage
;***
RDVRRNG: psha ;verify(1)/Read(0) flag to Stack [A]
 clra
 psha ;offset pointer into DATA array in
 ; RAM [B] (initially 0)
 ; increments from $00 to ByteCount
 psha ;initial Checksum to Stack [C]
 ;calculate total # of bytes
 txa ;SADDR(lo) -> A
 sub LADDR+1 ;SADDR(lo) - LADDR(lo) -> A
 nega ;LADDR(lo) - SADDR(lo) -> A
 inca ;change to 1-oriented vs 0-oriented
 psha ;# of bytes to Stack [D] (# of bad)
 ; decrements to zero if all good
 psha ;ByteCount to Stack [E]
 ; counter - decrements to zero
ReadData:
 sta COPCTL ;service COP
 lda ,x ;data from a FLASH location @ 0,X
 tst 5,sp ;check Read/Verify flag [A]
 beq Serial ;0 - send data through PTA0
 ;1 - verify against DATA in RAM
 pshx ;push SADDR(lo) to Stack [F]
 pshh ;push SADDR(hi) to Stack [G]
 ldx 6,sp ;DATA array Pointer(lo) -> X
 clrh ;H:X = 0:Pointer(lo)
 cmp DATA,x ;compare FLASH data with DATA array
 bne NoDataMatch ;if not equal, skip decrement of [D]
 dec 4,sp ;data matched so decrement # of bad
NoDataMatch: sta DATA,x ;replace DATA array value with
 ; value read from FLASH
 pulh ;restore SADDR(hi) pointer from [G]
 pulx ;now H:X = SADDR, A is FLASH data
 bra Checksum ;skip serial send if in Verify mode

Serial: jsr PutByte ;read mode so send data to host

Checksum: add 3,sp ;FLASH data + checksum [C] -> A
 sta 3,sp ;update checksum [C] on stack
 inc 4,sp ;update offset into DATA array [B]

On-Chip FLASH Programming Routines, Rev. 4

30 Freescale Semiconductor

On-Chip Routines Source Code

 aix #1 ;update pointer into FLASH (H:X)
 dec 1,sp ;decrement ByteCount [E]
 bne ReadData ;loop until ByteCount=0

 pula ;deallocate [E]
 pula ;# of bad [D] -> A, and deallocate
 ;if Verify OK, A = $00
 coma ;$00 -> $FF if verify OK
 add #1 ;$FF -> $00; C=1 if verify was OK
 pula ;Checksum [C] -> A, and deallocate
 ais #2 ;deallocate [A] and [B]
 rts
;* RDVRRNG DONE ******************

;***
;* NAME: PRGRNGE
;* PURPOSE:
;* Program a FLASH address range which is maximum 32 bytes in the
;* same row. Bus frequency must be between 1.0MHz and 8.4MHz.
;* ENTRY CONDITIONS:
;* H:X contains a start address of the FLASH address range
;* LADDR:LADDR+1 contains a last address of the FLASH address range
;* DATA array contains the data to be programmed to the FLASH
;* (maximum 32 bytes)
;* CPUSPD contains a nearest integer of 4 x bus frequency (MHz)
;* EXIT CONDITIONS:
;* H:X contains a next FLASH address; I-bit set
;* SUBROUTINES CALLED:
;* VARIABLES READ: CPUSPD, LADDR:LADDR+1, DATA array
;* VARIABLES MODIFIED: LADDR(ByteCntr):LADDR+1(RamPntrLo)
;* The values are modified, but they are restored with original
;* values before exiting from this routine.
;* STACK SIZE: 9 bytes (including the call to this routine)
;* SIZE: 132 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* This routine can program the FLASH only in the same row.
;* Therefore, the total programing byte No. is maximum 32 bytes.
;* The COP is serviced in this routine. The first COP is serviced on
;* 59 bus cycles after this routine is called in the user software.
;* However, there could still be a COP time out if the COP is not
;* serviced within a proper period in user software.
;***
PRGRNGE:
 sei ;set I bit to mask interrupts
 lda LADDR
 psha ;save LADDR(hi) to stack [A]
 lda LADDR+1
 psha ;save LADDR(lo) to stack [B]
 pshx ;calculate total # of bytes
 ; to be programmed
 pula ;SLADDR (lo) -> A
 sub LADDR+1 ;SADDR(lo) - LADDR(lo) -> A
 nega ;LADDR(lo) - SADDR(lo) -> A
 inca ;change to 1-oriented vs 0-oriented
 psha ;[C] total remaining bytes to prog
 ; will decrement by LoopCOP on each
 ; pass through LoopPROG
StartProg:

On-Chip Routines Source Code

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 31

 clr RamPntrLo ;start with 1st loc. in DATA array

;* Current stack frame
;* SP+2 [C] total bytes left to program; count down to zero
;* SP+3 [B] LADDR(lo) used to restore last addr before RTS
;* SP+4 [A] LADDR(hi)

;***
;* COP is serviced before each block of LoopCOP bytes are programmed
;* LoopPROG is the top of the outer loop. BSR PRGstep1 programs up to
;* LoopCOP bytes before return (last batch may be fewer than LoopCOP)

LoopPROG: lda 1,sp ;[C] total bytes remaining to prog
 beq ProgEnd ;if zero, programing is done
 cmp #LoopCOP ;bytes remaining >= LoopCOP ?
 bge InitPROG ;if so, skip to InitPROG
 sta ByteCntr ;< so make ByteCntr = BytesRemaining
 clr 1,sp ;and clear BytesRemaining at [C]
 bra Program ;Go program last partial block

InitPROG: sub #LoopCOP ;>= so subtract LoopCOP
 sta 1,sp ;bytes remaining reduced by LoopCOP
 lda #LoopCOP ;prepare to prog LoopCOP bytes
 sta ByteCntr ;ByteCntr = LoopCOP

Program: bsr PRGstep1 ;program up to LoopCOP bytes
 bra LoopPROG ;repeat outer loop...check number of
 ;bytes remaining
ProgEnd:
 pula ;deallocate [C]
 pula
 sta LADDR+1 ;restore an original value to LADDR+1
 pula
 sta LADDR ;restore an original value to LADDR
 rts

;***
;* FLASH Programming Algorithm
;***

PRGstep1: sta COPCTL ;[4] service COP
 ;before programming ByteCntr bytes
 lda #mPGM ;[2]
 sta FLCR ;[..w.] set PGM (Prog Algo Step 1)

PRGstep2: lda FLBPR ;[4] read FLBPR (Prog Algo Step 2)

PRGstep3: sta ,x ;[2] write to Flash address [H:X]
 ; w/ any data (Prog Algo Step 3)
PRGstep4: lda CPUSPD ;[3] delay for time Tnvs
 dbnza * ;[3*CPUSPD] (Prog Algo Step 4)

PRGstep5: lda #(mPGM+mHVEN) ;sets HVEN and leaves PGM set
 sta FLCR ;[..w.] set HVEN (Prog Algo Step 5)

PRGstep6: lda CPUSPD ;[3] delay for time Tpgs
 dbnza * ;[3*CPUSPD] (Prog Algo Step 6)

On-Chip FLASH Programming Routines, Rev. 4

32 Freescale Semiconductor

On-Chip Routines Source Code

;***
;* Step 7 and Step 8 are repeated until a value in location LADDR+1
;* reaches to zero.
;***
PRGstep7: pshx ;[2] temp flash pointer (lo) [F]
 pshh ;[2] temp flash pointer (hi) [G]

;* Current stack frame
;* SP+1 [G] flash pointer (hi) temp store so H:X available
;* SP+2 [F] flash pointer (lo) temp store so H:X available
;* SP+3 [E] PCH (return addr hi)
;* SP+4 [D] PCL (return addr lo)
;* SP+5 [C] bytes remaining to prog..not counting this block
;* SP+6 [B] LADDR+1
;* SP+7 [A] LADDR

 clrh ;[1] clear upper half of H:X
 ldx RamPntrLo ;[3] get DATA array pointer (lo)
 lda DATA,x ;[3] read data from a DATA array
 pulh ;[2] restore flash pointer (hi) [G]
 pulx ;[2] restore flash pointer (lo) [F]
 sta ,x ;[.w] write data to Flash addr
 ; (Prog Algo Step 7)
;***
;* Compute Tprog based on bus speed
;* For slowest bus speeds (CPUSPD=4), Tprog = 38 bus cycles. For
;* other speeds, Tprog = 8 * CPUSPD + 5 bus cycles.

PRGstep8: ;delay for Tprog (Prog Algo Step 8)
 lda CPUSPD ;[3]
 cmp #4 ;[2] if CPUSPD=4 (bus = 1MHz),
 beq PRGstep9 ;[3] Tprog=38 cycles
 asla ;[1] for other cases
 sub #9 ;[2] A = 2 x CPUSPD - 9

DelayPRG: nop ;[1] 1~ delay
 dbnza DelayPRG ;[3] Tprog = 8 * CPUSPD + 5 cycles

PRGstep9: ; (Prog Algo Step 9)
 aix #1 ;[2] point to next FLASH address
 inc RamPntrLo ;[4] increment DATA array pointer
 dec ByteCntr ;[4] decrement byte counter
 bne PRGstep7 ;[3] loop until byte counter is = 0

 rol 1,sp ;[5] ROL/ROR/SEI makes 12~ delay
 ror 1,sp ;[5] to match delay to PRGstep10
 sei ;[2]

PRGstep10: lda #mHVEN ;[2] clear PGM, leave HVEN=1
sta FLCR ;[..w.] (Prog Algo Step 10)

PRGstep11: lda CPUSPD ;[3] delay for time Tnvh
 dbnza * ;[3*CPUSPD] (Prog Algo Step 11)

PRGstep12: clra ;[1] pattern to clear HVEN
 sta FLCR ;[..w.] clear HVEN bit in FLCR

On-Chip Routines Source Code

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 33

 ;clr HVEN (Prog Algo Step 12)
 sta COPCTL ;[4] service COP
 rts ;[4]
;* PRGRNGE DONE ******************

;***
;* NAME: DELNUS
;* PURPOSE: Generate delay (3 * A * X) + 5 [cycles]
;* ENTRY CONDITIONS:
;* A contains an integer value equal to 4 or higher
;* X contains an integer value equal to 1 or higher
;* STACK USED: 3 bytes (including the call to this routine)
;* SIZE: 10 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* This routine is called from ERARNGE routines.
;* For example when bus frequency = 4MHz, A=16, and X=17, the
;* delay time is:
;* delay time = (3 x 16 x 17) + 5 = 821 cycles (205.25us)
;* remember to consider delays associated with setup and JSR/BSR
;***
DELNUS: deca ;[1] A - 1

Loop: psha ;[2] temp save
 deca ;[1] original A - 2
 deca ;[1] original A - 3
 dbnza * ;[3(orig A - 3)] (inner loop)
 pula ;[2] recover original A - 1
 dbnzx Loop ;[3] (bottom of outer loop)
;* outer loop = (X(2+1+1+(3(A-3))+2+3)) = (X(9+(3A-9)) = 3 * X * A

 rts ;[4]
;* DELNUS DONE ******************

;***
;* NAME: ERARNGE
;* PURPOSE:
;* Erase a page or a whole array in FLASH memory. A bus frequency
;* range has to be between 1.0MHz and 8.4MHz.
;* ENTRY CONDITIONS:
;* H:X contains an FLASH address within a page or an array to be
;* erased
;* CTRLBYT selects MASS erase ($40) or PAGE erase ($00)
;* If other value is written to CTRLBYT, the erase operation
;* will not be performed
;* CPUSPD contains a nearest integer of 4 x bus frequency
;* EXIT CONDITIONS:
;* The contents of H:X (address passed) is preserved; I-bit set
;* SUBROUTINES CALLED: DELNUS
;* VARIABLES READ: CTRLBYT, CPUSPD
;* VARIABLES MODIFIED:
;* STACK USED: 7 (including the call to this routine)
;* SIZE: 76 bytes
;* DESCRIPTION: EXECUTED OUT OF ROM
;* Does not check for a blank range before (to see if erase is
;* necessary) or after (to see if successful erase). The COP is
;* serviced in this routine. The first COP is serviced on
;* (40+3xCPUSPD) bus cycles after this routine is called in the user
;* software. However, there could still be COP time out if the COP

On-Chip FLASH Programming Routines, Rev. 4

34 Freescale Semiconductor

On-Chip Routines Source Code

;* is not served within a proper period in the user software.
;***
ERARNGE:
 lda CTRLBYT ;if CTRLBYT is not either $40 or
 and #$BF ; $00, the operation is skipped
 bne Finish
 sei ;block interrupts during erase
 pshx ;temp save addr(lo) to free up X
ERAstep1:
 lda #mERASE
 brclr MASSBIT,CTRLBYT,PageErase
 ;if MASSBIT is set in the CTRLBYT,
 ora #mMASS ; sets MASS and ERASE bits in A
PageErase: sta FLCR ;[..w.] (Erase Algo Step 1)
 ; set ERASE only, or MASS and ERASE

ERAstep2: lda FLBPR ;[4] (Erase Algo Step 2)

ERAstep3: sta ,x ;[.w] (Erase Algo Step 3)
 ;latch addr for Flash page or block

ERAstep4: lda CPUSPD ;[3] delay Tnvs (Erase Algo Step 4)
 dbnza * ;[3+(3*A)]

ERAstep5: lda FLCR ;[4] leave MASS and ERASE as is
 ora #mHVEN ;[2] set HVEN
 sta FLCR ;[..w.] (Erase Algo Step 5)

ERAstep6: ;delay Terase (Erase Algo Step 6)
 ;slit up to allow COP service
 lda #LoopErase ;[2] initialize Loop Counter
 psha ;[2] Loop Count on stack for calcs
 ; using ' dec 1,sp' instruction

ServiceCOP: sta COPCTL ;[4] service COP
 ldx #TERASE ;[2] about 200us delay
 lda CPUSPD ;[3]
 bsr DELNUS ;[4+(3*A*X)+5)]
 dec 1,sp ;[5] decrement Loop Counter
 bne ServiceCOP ;[3] loop if Loop Count not zero
;* bottom of COP service loop
;* total Terase time = setup from HVEN=1 + loop + overhead to ERASE=0
;* = 5 + (ELOOPS(3*A*X + 26)) + 15 33,180~ @8MHz (Terase=4.148mS)

 pula ;[2] deallocate Loop Counter
 ; (Erase Algo Step 7)
 sta COPCTL ;[4] service COP
ERAstep7:
 lda FLCR ;[4]
 and #{$FF-(mERASE+mMASS)}
 ;[2] clear ERASE and MASS bits
 sta FLCR ;[..w.] (Erase Algo Step 8)
 ;[2]
ERAstep8: ldx #TNVHL ;delay for time Tnvhl
 lda CPUSPD ;[3] Tnvhl is used for both
 bsr DELNUS ; page and mass erase
 ;[4+(3*A*X)+5)] PAGE and MASS erase

Notes

On-Chip FLASH Programming Routines, Rev. 4

Freescale Semiconductor 35

ERAstep9: ; (Erase Algo Step 9)
 clra ;[1] clear all bits in FLCR
 sta FLCR ;[..w.] next 3 instructions
 ; including last cycle of this
 ; instruction make at least 1us
 ; delay for Trcv
ERAstep10: ; (Erase Algo Step 10)
 pulx ;[2] recover original addr(lo)
 nsa ;[3] 3~ delay
Finish:
 rts ;[4] return from ERARNGE
;* ERARNGE DONE ******************

Notes

AN2635
Rev. 4, 10/2005

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

