Preliminary Technical Data

FEATURES

Fixed gain of $\mathbf{2 0 ~ d B}$
Operation up to 1000 MHz

+ $\mathbf{3 7 . 3} \mathbf{~ d B m}$ OIP3 at 70 MHz
Noise Figure 2.9 dB at $70 \mathbf{M H z}$
Input/output internally matched to 75Ω
Temperature and power supply stable
Power supply: 5 V
Power supply current: 66 mA
1000 V ESD (Class 1C)

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Block Diagram

GENERAL DESCRIPTION

The ADL5533 is a fixed-gain, linear amplifier that operates at frequencies up to 1000 MHz . Intended for use in a wide variety of applications, including broadband, CATV, cable modem and FTTH.

The fixed gain of 20 dB is stable over frequency, temperature, power supply and from device to device. OIP3 is +37.3 dBm with an output compression point of +18.8 dBm and a noise figure of 2.9 dB .

The ADL5533 is single-ended and internally matched to 75Ω with an input return loss of 10 dB . Only input/output ac-
coupling capacitors, a power supply decoupling capacitor and external inductor are required for operation.

This amplifier operates with a supply voltage of +5 V , consuming 66 mA of supply current.

The ADL5533, fabricated on a GaAs HBT process, and has an ESD rating of 1000 V (Class 1C).The device is packaged in a 3 mm x 3 mm LFCSP that uses an exposed paddle for excellent thermal impedance and operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A fully populated evaluation board is available.

Rev. PrC 5/07
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Evaluation Board 7
Outline Dimensions 9
Ordering Guide 9

REVISION HISTORY

5/07-Rev. PrC: Preliminary Version

Preliminary Technical Data

ADL5533

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION Frequency Range Gain vs. Frequency Input Return Loss (S11) Output Return Loss (S22)	$\pm 50 \mathrm{MHz}$. Center Frequency $=190 \mathrm{MHz}$ or 380 MHz 50 MHz to 750 MHz 50 MHz to 750 MHz	30	$\begin{gathered} \pm 0.25 \\ -10 \\ -10 \end{gathered}$	1000	MHz dB dB dB
FREQUENCY $=70 \mathrm{MHz}$ Gain vs. Temperature Output 1 dB Compression Point Output Third-Order Intercept Output Second Order Intercept	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power (Pout) }=0 \mathrm{dBm} \text { (per tone) } \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power }(\text { Pout })=0 \mathrm{dBm} \text { (per tone) } \end{aligned}$		$\begin{array}{r} 19.8 \\ \pm .25 \\ 18.7 \\ 37.3 \\ \text { TBD } \end{array}$		dB dB dBm dBm dBm
Noise Figure			2.9		dB
FREQUENCY $=380 \mathrm{MHz}$ Gain vs. Temperature Output 1 dB Compression Point Output Third-Order Intercept Output Second Order Intercept	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power (Pout) }=0 \mathrm{dBm} \text { (per tone) } \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power }(\text { Pout })=0 \mathrm{dBm} \text { (per tone) } \end{aligned}$		$\begin{array}{r} 18.6 \\ \pm .25 \\ 18.8 \\ 35.7 \\ \text { TBD } \end{array}$		dB dB dBm dBm dBm
Noise Figure			3.1		dB
FREQUENCY $=820 \mathrm{MHz}$ Gain vs. Temperature Output 1 dB Compression Point Output Third-Order Intercept Output Second Order Intercept Noise Figure	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power (Pout) }=0 \mathrm{dBm} \text { (per tone) } \\ & \Delta \mathrm{f}=1 \mathrm{MHz} \text {, Output Power }(\text { Pout })=0 \mathrm{dBm} \text { (per tone) } \end{aligned}$		$\begin{gathered} 16.8 \\ \pm .25 \\ 18.3 \\ 34.5 \\ \text { TBD } \\ 3.2 \end{gathered}$		dB dB dBm dBm dBm dB
POWER INTERFACE Supply Voltage Supply Current vs. Temperature Power Dissipation	Pins RFOUT,Vcc $\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { VPOS }=5 \mathrm{~V} \end{aligned}$	4.75	$\begin{gathered} 5 \\ 66 \\ 75 \\ 330 \end{gathered}$	5.25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPOS	5.5 V
Input Power (re: 75Ω)	+12 dBm
Internal Power Dissipation (Paddle Soldered)	650 mW
θ_{JA} (Paddle Soldered)	$\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	$\mathrm{TBD}^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad (Soldering 60 sec)	$240^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions Single

Pin No.	Mnemonic	Description
2	RFIN	RF Input: Requires a DC blocking capacitor. RF Output and Bias: DC bias is provided to this pin through an inductor. RF path requires a DC blocking capacitor.
7	RFOUT	No Connect
6,8	NC	CLIN 5
Exposed Paddle	A 10 nF capacitor connected between pin 5 and ground provides decoupling for the on board linearizer. Internally connected to GND. Solder to a low impedance ground plane	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3 ADL5533 Gain, Noise Figure, OIP3 and P1dB vs Frequency

Figure 4 ADL5534 OIP3 vs Pout and Frequency

Figure 5 ADL5533 Input / Output Return Loss and Reverse Isolation vs Frequency

EVALUATION BOARD

Figure 6 shows the schematic for the ADL, 5533 evaluation board. The board is powered by a single 5 V supply.

The components used on the board are listed in. Table 4 Power can be applied to the board through clip-on leads (Vcc, Gnd), or through Jumper W1.

Figure 6. Evaluation Board Schematic

Table 4. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2	AC-coupling capacitors.	10 nF 0402
C3,	Compensates for internal non linearities	C3 100 nF 0603
C4, C5	Power Supply decoupling capacitors capacitor.	C4 10 nF 0603
C6, C7		C5 1uF 0603
L1	DC bias inductor.	Open 0603
L2	Output matching element.	470 nH L0603
VCC \& GND	Clip-on terminals for power supply.	6.8 nH L0603
	RFI	VCC Red
RFIN, RFOUT	RF input and output interface	GND Black
W1	2-pin jumper for connection of ground and supply via cable.	75 ohm "F"type connectors

Figure 7. Evaluation Board Layout (Top)

Figure 8.Evaluation Board Layout (Bottom)

Preliminary Technical Data

OUTLINE DIMENSIONS

Figure 9. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin, Dual Lead
CP-8-2

Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding	Ordering Quantity
ADL5533ACPZ-R7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Lead LFCSP Tape and Reel	$\mathrm{CP}-8-2$		
ADL5533ACPZ-WP ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead LFCSP Waffle Pack	CP-8-2		
ADL5533-EVALZ		Evaluation Board			

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

