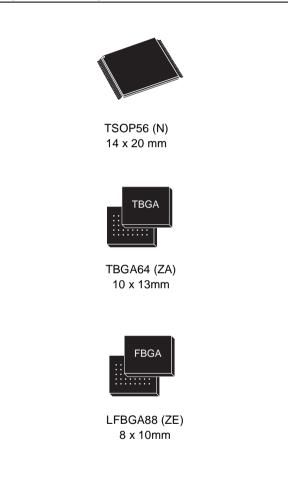


## M30LW128D


# 128 Mbit (two 64Mbit, x8/x16, Uniform Block, Flash Memories) 3V Supply, Multiple Memory Product

PRELIMINARY DATA

#### **FEATURES SUMMARY**

- TWO M58LW064D 64Mbit FLASH MEMORIES STACKED IN A SINGLE PACKAGE
- WIDE x8 or x16 DATA BUS for HIGH BANDWIDTH
- SUPPLY VOLTAGE
  - V<sub>DD</sub> = 2.7 to 3.6V for Program, Erase and Read operations
  - V<sub>DDQ</sub> = 1.8 to V<sub>DD</sub> for I/O buffers
- ACCESS TIME
  - Random Read 110ns
  - Page Mode Read 110/25ns
- PROGRAMMING TIME
  - 16 Word Write Buffer
  - 16µs Word effective programming time
- 128 UNIFORM 64 KWord/128KByte MEMORY BLOCKS
- BLOCK PROTECTION/ UNPROTECTION
- PROGRAM and ERASE SUSPEND
- 128 bit PROTECTION REGISTER
- COMMON FLASH INTERFACE
- 100, 000 PROGRAM/ERASE CYCLES per BLOCK
- ELECTRONIC SIGNATURE
  - Manufacturer Code: 20h
  - Device Code M30LW128D: 8817h

Figure 1. Packages



February 2003 1/57

## M30LW128D

## **TABLE OF CONTENTS**

| SUMMARY DESCRIPTION                                     | . 5 |
|---------------------------------------------------------|-----|
| Figure 2. Logic Diagram                                 | 6   |
| Table 1. Signal Names                                   |     |
| Figure 3. TSOP56 Connections                            | 7   |
| Figure 4. TBGA64 Connections (Top view through package) | 8   |
| Figure 5. LFBGA Connections (Top view through package)  | ç   |
|                                                         |     |
| SIGNAL DESCRIPTIONS                                     | 10  |
| Address Input (A0)                                      | 10  |
| Address Inputs (A1-A22)                                 |     |
| Address Input (A23)                                     | 10  |
| Data Inputs/Outputs (DQ0-DQ15)                          |     |
| Chip Enable (E)                                         |     |
| Output Enable (G)                                       |     |
| Write Enable (W)                                        |     |
| Reset/Power-Down (RP)                                   |     |
| Byte/Word Organization Select (BYTE)                    |     |
| Status/(Ready/Busy) (STS)                               |     |
| Program/Erase Enable (V <sub>PEN</sub> )                |     |
| V <sub>DD</sub> Supply Voltage                          |     |
| V <sub>DDQ</sub> Supply Voltage                         |     |
| V <sub>SS</sub> Ground                                  |     |
| V <sub>SSQ</sub> Ground                                 | 11  |
| MEMORY ENABLE                                           | 12  |
| Table 2. Single M58LW064D Device Enable, E2, E1 and E0  |     |
| Table 3. M30LW128D Device Enable, A23 and E             |     |
| Figure 6. Stacked Flash Memory                          |     |
| Figure 7. Block Addresses.                              |     |
|                                                         |     |
| BUS OPERATIONS                                          | 15  |
| Bus Read                                                | 15  |
| Bus Read                                                |     |
| Page Read                                               | 15  |
| Bus Write                                               | 15  |
| Output Disable                                          | 15  |
| Standby                                                 | 15  |
| Automatic Low Power                                     | 15  |
| Power-Down                                              | 15  |
| Table 4. Bus Operations                                 | 16  |
|                                                         |     |
| COMMAND INTERFACE                                       | 17  |
| Read Memory Array Command                               | 17  |
| Read Electronic Signature Command                       | 17  |

|              | Read Query Command                                               | 17 |
|--------------|------------------------------------------------------------------|----|
|              | Read Status Register Command                                     | 17 |
|              | Clear Status Register Command                                    | 17 |
|              | Block Erase Command                                              | 17 |
|              | Word/Byte Program Command                                        | 18 |
|              | Write to Buffer and Program Command                              | 18 |
|              | Program/Erase Suspend Command                                    | 18 |
|              | Program/Erase Resume Command                                     | 19 |
|              | Block Protect Command                                            | 19 |
|              | Blocks Unprotect Command                                         | 19 |
|              | Protection Register Program Command                              | 19 |
|              | Configure STS Command                                            | 19 |
|              | Table 5. Commands                                                | 20 |
|              | Table 6. Configuration Codes                                     | 21 |
|              | Table 7. Read Electronic Signature                               | 21 |
|              | Figure 8. Protection Register Memory Map                         | 22 |
|              | Table 8. Word-Wide Read Protection Register                      | 22 |
|              | Table 9. Byte-Wide Read Protection Register                      | 23 |
|              | Table 10. Program/Erase Times and Program/Erase Endurance Cycles | 24 |
|              |                                                                  |    |
| SI           | ATUS REGISTER                                                    |    |
|              | Program/Erase Controller Status (Bit 7)                          |    |
|              | Erase Suspend Status (Bit 6)                                     |    |
|              | Erase Status (Bit 5)                                             |    |
|              | Program Status (Bit 4)                                           |    |
|              | VPEN Status (Bit 3)                                              |    |
|              | Program Suspend Status (Bit 2)                                   |    |
|              | Block Protection Status (Bit 1)                                  |    |
|              | Reserved (Bit 0)                                                 |    |
|              | Table 11. Status Register Bits                                   | 27 |
| вл л         | XIMUM RATING                                                     | 20 |
| IVI <i>F</i> |                                                                  |    |
|              | Table 12. Absolute Maximum Ratings                               | 28 |
| DC           | and AC PARAMETERS                                                | 20 |
| DC           |                                                                  |    |
|              | Table 13. Operating and AC Measurement Conditions                |    |
|              | Figure 9. AC Measurement Input Output Waveform                   |    |
|              | Figure 10. AC Measurement Load Circuit                           |    |
|              | •                                                                | 29 |
|              |                                                                  | 30 |
|              | •                                                                | 31 |
|              |                                                                  | 31 |
|              | Figure 12. Page Read AC Waveforms                                |    |
|              | Table 17. Page Read AC Characteristics                           | 32 |
|              | Figure 40 Wests 40 Wassefams Wests Figure 2 Controlled           | ^^ |
|              | Figure 13. Write AC Waveform, Write Enable Controlled            |    |



## M30LW128D

| Figure 14. Write AC Waveforms, Chip Enable Controlled                                      | 34 |
|--------------------------------------------------------------------------------------------|----|
| Table 19. Write AC Characteristics, Chip Enable Controlled                                 | 34 |
| Figure 15. Reset, Power-Down and Power-Up AC Waveform                                      | 35 |
| Table 20. Reset, Power-Down and Power-Up AC Characteristics                                | 35 |
| PACKAGE MECHANICAL                                                                         | 36 |
| Figure 16. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline        | 36 |
| Table 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data | 36 |
| Figure 17. TBGA64 - 10x13mm, 8 x 8 ball array 1mm pitch, Package Outline                   | 37 |
| Table 22. TBGA64 - 10x13mm, 8 x 8 ball array, 1 mm pitch, Package Mechanical Data          | 37 |
| Figure 18. LFBGA88 8x10 mm - 8x10 ball array, 0.8mm pitch, Bottom View Package Outline     | 38 |
| Table 23. LFBGA88 8x10mm - 8x10 ball array, 0.8mm pitch, Package Mechanical Data           | 38 |
| PART NUMBERING                                                                             | 39 |
| Table 24. Ordering Information Scheme                                                      | 39 |
| APPENDIX A. BLOCK ADDRESS TABLE                                                            | 40 |
| Table 25. Block Addresses                                                                  | 40 |
| APPENDIX B. COMMON FLASH INTERFACE - CFI                                                   | 42 |
| Table 26. Query Structure Overview                                                         | 42 |
|                                                                                            | 42 |
| '                                                                                          | 43 |
| 3 1                                                                                        | 44 |
| ·                                                                                          | 44 |
| -                                                                                          | 45 |
| APPENDIX C. FLOW CHARTS                                                                    | 46 |
| Figure 19. Write to Buffer and Program Flowchart and Pseudo Code                           | 46 |
| Figure 20. Program Suspend & Resume Flowchart and Pseudo Code                              | 47 |
| Figure 21. Erase Flowchart and Pseudo Code                                                 | 48 |
| Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code                                | 49 |
| Figure 23. Block Protect Flowchart and Pseudo Code                                         | 50 |
| Figure 24. Blocks Unprotect Flowchart and Pseudo Code                                      | 51 |
| Figure 25. Protection Register Program Flowchart and Pseudo Code                           | 52 |
|                                                                                            | 53 |
| Figure 27. Command Interface and Program Erase Controller Flowchart (b)                    |    |
| Figure 28. Command Interface and Program Erase Controller Flowchart (c)                    | 55 |
| REVISION HISTORY                                                                           | 56 |
| Table 32. Document Revision History                                                        | 56 |

#### SUMMARY DESCRIPTION

The M30LW128D is a 128 Mbit device that is composed of two separate 64 Mbit M58LW064D Flash memories. The device can be erased electrically at block level and programmed in-system using a 2.7V to 3.6V ( $V_{DD}$ ) supply for the circuitry and a 1.8V to  $V_{DD}$  ( $V_{DDQ}$ ) supply for the Input/Output pins.

The bus width can be configured for x8 or x16 for the devices available in the TSOP56 (14 x 20 mm) and TBGA64 (10x13mm, 1mm pitch) packages. The bus width is set to x16 for the devices available in the LFBGA88 (8x10mm, 0.8mm pitch) package.

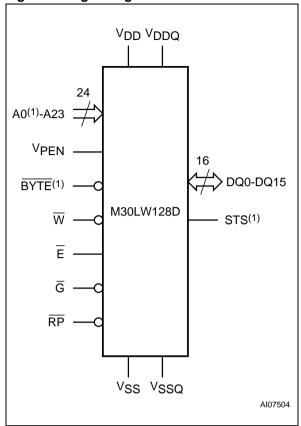
Each internal M58LW064D has 3 Chip Enable signals to allow up to 4 memories to be connected together without the use of additional glue logic. In this way the address space is contiguous and the microprocessor only requires one Chip Enable,  $\overline{E}$ , to control both memories.

The device is divided into 128 blocks of 1Mbit (2 x 64 x 1Mb) that can be erased independently so it is possible to preserve valid data while old data is erased. Program and Erase commands are written to the Command Interface of the device. An onchip Program/Erase Controller (P/E.C) simplifies the process of programming or erasing the device by taking care of all of the special operations that are required to update the memory contents. The end of a Program or Erase operation can be detected and any error conditions identified in the Status Register. The command set required to control the device is consistent with JEDEC standards.

The Write Buffer allows the microprocessor to program from 1 to 16 Words in parallel, both speeding up the programming and freeing up the microprocessor to perform other work. A Word Program command is available to program a single word.

Erase can be suspended in order to perform either Read or Program in any other block and then resumed. Program can be suspended to Read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.

Individual block protection against Program or Erase is provided for data security. All blocks are protected during power-up. The protection of the blocks is non-volatile; after power-up the protection status of each block is restored to the state when power was last removed. Software commands are provided to allow protection of some or all of the blocks and to cancel all block protection bits simultaneously. All Program or Erase operations are blocked when the Program Erase Enable input VPEN is low.


The Reset/Power-Down pin is used to apply a Hardware Reset to the enabled memory and to set the device in power-down mode.

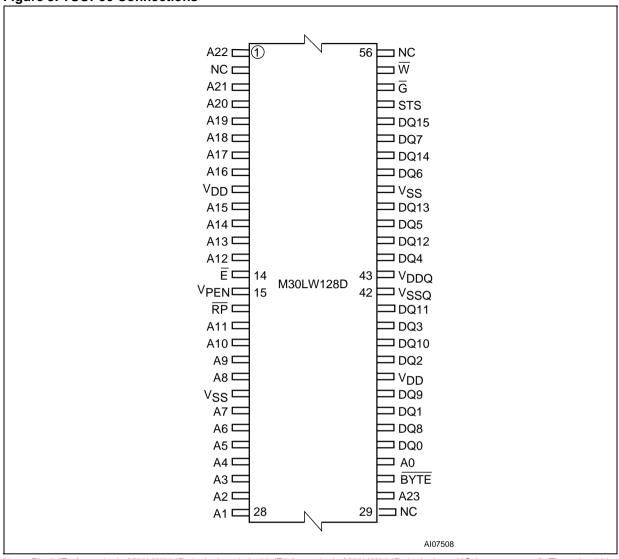
The STS signal is an open drain output that can be used to identify the Program/Erase Controller status. It can be configured in two modes: Ready/Busy mode where a static signal indicates the status of the P/E.C, and Status mode where a pulsing signal indicates the end of a Program or Block Erase operation. In both modes it can be used as a system interrupt signal, useful for saving CPU time. The STS signal is only available with the TSOP56 and TBGA64 packages.

Each memory includes a 128 bit Protection Register. The Protection Register is divided into two 64 bit segments, the first one is written by the manufacturer (contact STMicroelectronics to define the code to be written here), while the second one is programmable by the user. The user programmable segment can be locked.



Figure 2. Logic Diagram




Note: 1. Not available with LFBGA88 package.

**Table 1. Signal Names** 

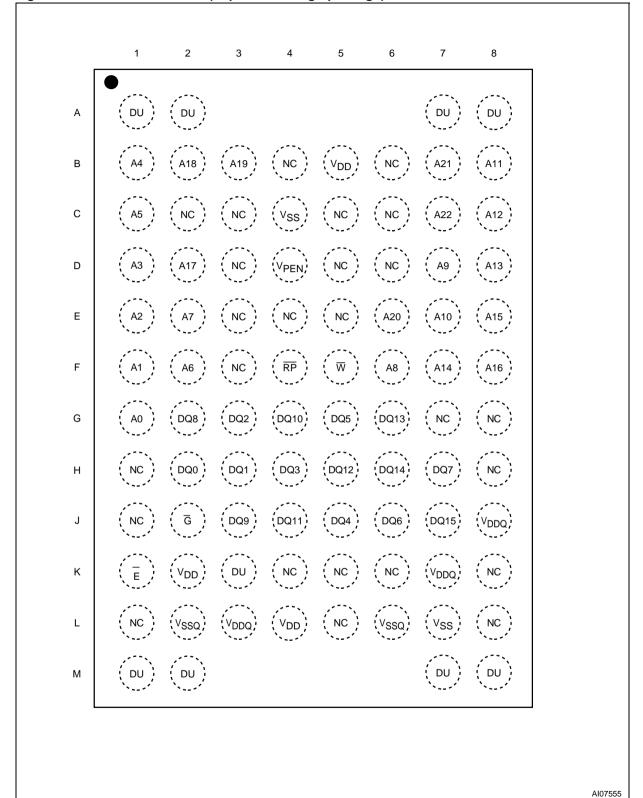
| Table 1. Signal Names                |  |  |  |  |  |  |  |  |
|--------------------------------------|--|--|--|--|--|--|--|--|
| Address input (used in X8 mode only) |  |  |  |  |  |  |  |  |
| Address inputs                       |  |  |  |  |  |  |  |  |
| Address Input to select memory       |  |  |  |  |  |  |  |  |
| Byte/Word Organization Select        |  |  |  |  |  |  |  |  |
| Data Inputs/Outputs                  |  |  |  |  |  |  |  |  |
| Chip Enable                          |  |  |  |  |  |  |  |  |
| Output Enable                        |  |  |  |  |  |  |  |  |
| Reset/Power-Down                     |  |  |  |  |  |  |  |  |
| Status/(Ready/Busy)                  |  |  |  |  |  |  |  |  |
| Program/Erase Enable                 |  |  |  |  |  |  |  |  |
| Write Enable                         |  |  |  |  |  |  |  |  |
| Supply Voltage                       |  |  |  |  |  |  |  |  |
| Input/Output Supply Voltage          |  |  |  |  |  |  |  |  |
| Ground                               |  |  |  |  |  |  |  |  |
| Input/Output Ground                  |  |  |  |  |  |  |  |  |
| Not Connected Internally             |  |  |  |  |  |  |  |  |
| Do Not Use                           |  |  |  |  |  |  |  |  |
|                                      |  |  |  |  |  |  |  |  |


Note: 1. Not available with LFBGA88 package.

Figure 3. TSOP56 Connections



Note: Pin 2 (E1 for a single M58LW064D device) and pin 29 (E2 for a single M58LW064D device) are NC (not connected). They should be tied to ground (Vss) to assure compatibility with a single chip 128Mbit device.


Figure 4. TBGA64 Connections (Top view through package)



Note: Ball B8 (E1 for a single M58LW064D device) and ball H1(E2 for a single M58LW064D device) are NC (not connected). They should be tied to ground (V<sub>SS</sub>) to assure compatibility with a single chip 128Mbit device.

47/

Figure 5. LFBGA Connections (Top view through package)



Note: 1. The BYTE, STS and A0 connections are not available with the LFBGA88 package.



#### SIGNAL DESCRIPTIONS

See Figure 2, Logic Diagram and Table 1, Signal Names, for a brief overview of the signals connected to this device

**Address Input (A0).** The A0 address input is used to select the higher or lower Byte in x8 mode. It is not used in x16 mode (where A1 is the Lowest Significant bit).

The A0 address input is not available with the LFBGA88 package.

Address Inputs (A1-A22). The Address Inputs are used to select the cells to access in the memory array during Bus Read operations either to read or to program data to. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine.

The device must be enabled (refer to Table 3, M30LW128D Device Enable) when selecting the addresses. The address inputs are latched on the rising edge of Write Enable or Chip Enable,  $\overline{E}$ , whichever occurs first.

**Address Input (A23).** Address Input A23 is used to select between the two internal memories. When it is High,  $V_{IH}$ , it selects the Upper Memory, when it is Low,  $V_{IL}$ , it selects the Lower Memory. Refer to Memory Enable section for more details.

**Data Inputs/Outputs (DQ0-DQ15).** The Data Inputs/Outputs output the data stored at the selected address during a Bus Read operation, or are used to input the data during a program operation. During Bus Write operations they represent the commands sent to the Command Interface of the internal state machine. When used to input data or Write commands they are latched on the rising edge of Write Enable or Chip Enable, E, whichever occurs first.

When the device is enabled and Output Enable is low,  $V_{IL}$ , the data bus outputs data from the memory array, the Electronic Signature, the Block Protection status, the CFI Information or the contents of the Status Register. The data bus is high impedance when the device is deselected, Output Enable is high,  $V_{IH}$ , or the Reset/Power-Down signal is low,  $V_{IL}$ . When the Program/Erase Controller is active the Ready/Busy status is given on DQ7.

Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. The M30LW128D stacked memory uses the A23 address line and the external Chip Enable, E, to select and enable the internal memories. Refer to Memory Enable section and Table 3, for more details.

When the Chip Enable deselects the memory, power consumption is reduced to the Standby level, I<sub>DD1</sub>.

**Output Enable (\overline{G}).** The Output Enable,  $\overline{G}$ , gates the outputs through the data output buffers during a read operation. When Output Enable,  $\overline{G}$ , is at  $V_{IH}$  the outputs are high impedance.

Write Enable ( $\overline{W}$ ). The Write Enable input,  $\overline{W}$ , controls writing to the Command Interface, Input Address and Data latches. Both addresses and data can be latched on the rising edge of Write Enable.

**Reset/Power-Down (RP).** The Reset/Power-Down signal can be used to apply a Hardware Reset to the memory.

A Hardware Reset is achieved by holding Reset/ Power-Down Low,  $V_{IL}$ , for at least  $t_{PLPH}$ . When Reset/Power-Down is Low,  $V_{IL}$ , the Status Register information is cleared and the power consumption is reduced to power-down level. The device is deselected and outputs are high impedance. If Reset/Power-Down goes low,  $V_{IL}$ ,during a Block Erase, a Write to Buffer and Program or a Block Protect/Unprotect the operation is aborted and the data may be corrupted. In this case the STS pin stays low,  $V_{IL}$ , for a maximum timing of  $t_{PLPH} + t_{PH-BH}$ , until the completion of the Reset/Power-Down pulse.

After Reset/Power-Down goes High, V<sub>IH</sub>, the device will be ready for Bus Read and Bus Write operations after t<sub>PHQV</sub>. Note that STS does not fall during a reset, see Ready/Busy Output section.

In an application, it is recommended to associate Reset/Power-Down pin,  $\overline{RP}$ , with the reset signal of the microprocessor. Otherwise, if a reset operation occurs while the device is performing an Erase or Program operation, the device may output the Status Register information instead of being initialized to the default Asynchronous Random Read.

Byte/Word Organization Select (BYTE). The Byte/Word Organization Select signal is used to switch between the x8 and x16 bus widths of the memory. When Byte/Word Organization Select is Low, V<sub>IL</sub>, the memory is in x8 mode, when it is High, V<sub>IH</sub>, the memory is in x16 mode.

The Byte/Word Organization Select signal is not available with the LFBGA88 package.

**Status/(Ready/Busy) (STS).** The STS signal is an open drain output that can be used to identify the Program/Erase Controller status. It can be configured in two modes:

Ready/Busy - the pin is Low, V<sub>OL</sub>, during Program and Erase operations and high impedance when the memory is ready for any Read, Program or Erase operation. ■ Status - the pin gives a pulsing signal to indicate the end of a Program or Block Erase operation.

After power-up or reset the STS pin is configured in Ready/Busy mode. The pin can be configured for Status mode using the Configure STS command.

When the Program/Erase Controller is idle, or suspended, STS can float High through a pull-up resistor. The use of an open-drain output allows the STS pins from several devices to be connected to a single pull-up resistor (a Low will indicate that one, or more, of the memories is busy).

STS is not Low during a reset unless the reset was applied when the Program/Erase controller was active.

The STS signal is not available with the LFBGA88 package.

**Program/Erase Enable (VPEN).** The Program/ Erase Enable input,  $V_{PEN}$ , is used to protect all blocks, preventing Program and Erase operations from affecting their data.

Program/Erase Enable must be kept High during all Program/Erase Controller operations, other-

wise the operations is not guaranteed to succeed and data may become corrupt.

**V<sub>DD</sub> Supply Voltage.** V<sub>DD</sub> provides the power supply to the internal core of the device. It is the main power supply for all operations (Read, Program and Erase).

 $V_{DDQ}$  Supply Voltage.  $V_{DDQ}$  provides the power supply to the I/O pins and enables all Outputs to be powered independently from  $V_{DD}$ .  $V_{DDQ}$  can be tied to  $V_{DD}$  or can use a separate supply.

It is recommended to power-up and power-down  $V_{DD}$  and  $V_{DDQ}$  together to avoid any condition that would result in data corruption.

**V<sub>SS</sub> Ground.** Ground, V<sub>SS</sub>, is the reference for the core power supply. It must be connected to the system ground.

 $V_{SSQ}$  Ground.  $V_{SSQ}$  ground is the reference for the input/output circuitry driven by  $V_{DDQ}$ .  $V_{SSQ}$  must be connected to  $V_{SS}$ .

Note: Each device in a system should have  $V_{DD}$  and  $V_{DDQ}$  decoupled with a  $0.1\mu F$  ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). See Figure 10, AC Measurement Load Circuit.



#### MEMORY ENABLE

Each internal M58LW064D memory has 3 Chip Enable signals to allow up to 4 memories to be connected together without the use of additional glue logic, see Table 2, Single M58LW064D Device Enable. In this way the address space is contiguous and the microcontroller only requires one Chip Enable.  $\overline{E}$ , to control both memories.

Figure 6 shows how a 128Mbit Stacked Flash memory is created using two M58LW064D memories. One of the memories is located in the Upper Address space and is referred to as the Upper Memory, the other is located in the lower address space and is referred to as the Lower Memory, see Figure 7, Block Addresses.

The E0, E1 and E2 Chip Enables of each M58LW064D memory are connected internally, as shown in Figure 6.

The external signal A23 is used to select between the Upper and Lower memories. A23 is connected to E2 of the Upper Memory and to E1 of the Lower Memory.

E1 of the Upper Memory is always connected to  $V_{DD}$  while E2 of the Lower Memory is always connected to  $V_{SS}$ .

The external Chip Enable,  $\overline{E}$ , is used to enable or disable the memory selected by A23, see Table 3, M30LW128D Device Enable.  $\overline{E}$  is connected to the E0 signal of both memories.

The M30LW128D (TSOP56 and TBGA64 packages only) supports both x8 and x16 bus widths. It is also possible to have a x32 bus width by connecting two x16 bus width M30LW128D devices together. Note that the two M30LW128D devices must use the same E0 as Chip Enable, as E1 and E2 are not connected internally.

Table 2. Single M58LW064D Device Enable, E2, E1 and E0

| E2              | E1              | E0              | Device   |
|-----------------|-----------------|-----------------|----------|
| V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IL</sub> | Enabled  |
| V <sub>IL</sub> | V <sub>IL</sub> | V <sub>IH</sub> | Disabled |
| V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IL</sub> | Disabled |
| V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IH</sub> | Disabled |
| V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IL</sub> | Enabled  |
| V <sub>IH</sub> | V <sub>IL</sub> | V <sub>IH</sub> | Enabled  |
| V <sub>IH</sub> | V <sub>IH</sub> | V <sub>IL</sub> | Enabled  |
| V <sub>IH</sub> | V <sub>IH</sub> | V <sub>IH</sub> | Disabled |

Table 3. M30LW128D Device Enable, A23 and  $\overline{\mathsf{E}}$ 

| A23                                                | Internal                             | Signals                            | Chip Enable, E                                     |                 | Lower Memory |          |
|----------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------------------------|-----------------|--------------|----------|
| E2 <sub>UM</sub> = E1 <sub>LM</sub> <sup>(1)</sup> | E1 <sub>UM</sub> <sup>(1)</sup>      | E2 <sub>LM</sub> <sup>(1)</sup>    | E0 <sub>UM</sub> = E0 <sub>LM</sub> <sup>(1)</sup> | Upper Memory    |              |          |
| V <sub>IL</sub>                                    | - V <sub>DD</sub> (V <sub>IH</sub> ) | V <sub>SS</sub> (V <sub>IL</sub> ) | V <sub>IL</sub>                                    | Disabled        | Enabled      |          |
| V <sub>IL</sub>                                    |                                      |                                    | Voc (VIII.)                                        | V <sub>IH</sub> | Disabled     | Disabled |
| V <sub>IH</sub>                                    |                                      |                                    | V <sub>IL</sub>                                    | Enabled         | Disabled     |          |
| V <sub>IH</sub>                                    |                                      |                                    | V <sub>IH</sub>                                    | Disabled        | Disabled     |          |

Note: 1. UM = Upper Memory, LM = Lower Memory.

47/

Figure 6. Stacked Flash Memory

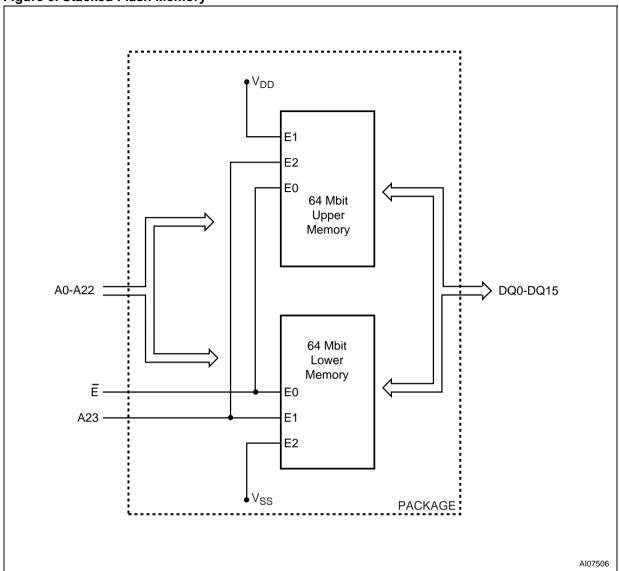
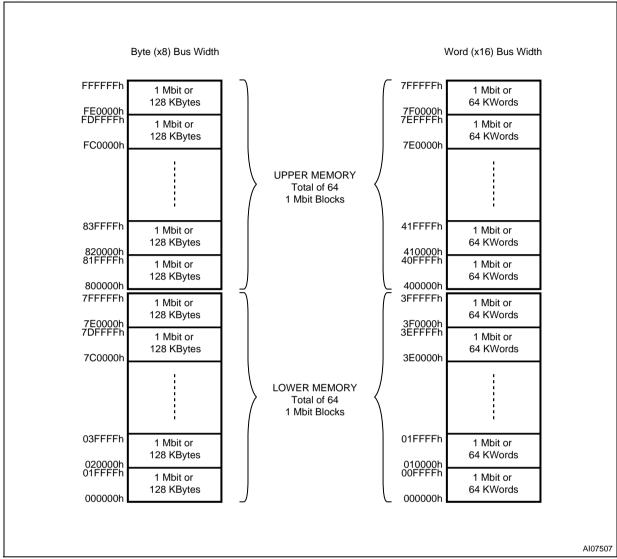




Figure 7. Block Addresses



Note: Also see Appendix A, Table 25 for a full listing of the Block Addresses

#### **BUS OPERATIONS**

There are 6 bus operations that control each memory. Each of these is described in this section, see Tables 4, Bus Operations, for a summary.

On Power-up or after a Hardware Reset the device defaults to Read Array mode (Page Read).

Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the device and do not affect bus operations.

**Bus Read.** Bus Read operations read from the memory cells, or specific registers (Electronic Signature, Status Register, CFI and Block Protection Status) in the Command Interface.

A valid bus operation involves setting the desired address on the Address inputs, enabling the device (refer to Table 3), applying a Low signal,  $V_{IL}$ , to Output Enable and keeping Write Enable High,  $V_{IH}$ .

The Data Inputs/Outputs will output the value, see Figure 11, Bus Read AC Waveforms, and Table 16, Bus Read AC Characteristics, for details of when the output becomes valid.

**Page Read.** Page Read operations are used to read from several addresses within the same memory page.

Each memory page is a 4 Words or 8 Bytes and has the same A3-A22. In x8 mode only A0, A1 and A2 may change, in x16 mode only A1 and A2 may change.

Valid bus operations are the same as Bus Read operations but with different timings. The first read operation within the page has identical timings, subsequent reads within the same page have much shorter access times. If the page changes then the normal, longer timings apply again. See Figure 12, Page Read AC Waveforms and Table 17, Page Read AC Characteristics for details on when the outputs become valid.

**Bus Write.** Bus Write operations write to the Command Interface in order to send commands to the device or to latch addresses and input data to program.

A valid Asynchronous Bus Write operation begins by setting the desired address on the Address Inputs and enabling the device (refer to Chip Enable section).

Both the Address Inputs and Data Input/Outputs are latched by the Command Interface on the rising edge of Write Enable or Chip Enable, whichever occurs first.

Output Enable must remain High, V<sub>IH</sub>, during the whole Bus Write operation. See Figures 13, and 14, Write AC Waveforms, and Tables 18 and 19, Write and Chip Enable Controlled Write AC Characteristics, for details of the timing requirements.

**Output Disable.** The Data Inputs/Outputs are in the high impedance state when the Output Enable is High.

**Standby.** When Chip Enable is High,  $V_{IH}$ , the device enters Standby mode and the Data Inputs/ Outputs pins are placed in the high impedance state regardless of Output Enable or Write Enable. The Supply Current is reduced to the Standby Supply Current,  $I_{DD1}$ .

During Program or Erase operations the device will continue to use the Program/Erase Supply Current, I<sub>DD3</sub>, for Program or Erase operations until the operation completes.

**Automatic Low Power.** If there is no change in the state of the bus for a short period of time during Asynchronous Bus Read operations the device enters Auto Low Power mode where the internal Supply Current is reduced to the Auto-Standby Supply Current, I<sub>DD5</sub>. The Data Inputs/Outputs will still output data if a Bus Read operation is in progress.

Automatic Low Power is only available in Asynchronous Read modes.

**Power-Down.** The device is in Power-Down mode when Reset/Power-Down,  $\overline{RP}$ , is Low. The power consumption is reduced to the Power-Down level,  $I_{DD2}$ , and the outputs are high impedance, independent of Chip Enable, Output Enable or Write Enable.



**Table 4. Bus Operations** 

| Bus Operation  | Memory Enabled  | A23             | Ē               | G               | w               | RP              | A1-A22 (x16)<br>A0-A22 (x8) | DQ0-DQ15 (x16)<br>DQ0-DQ7 (x8) <sup>(1)</sup> |  |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------------|-----------------------------------------------|--|
| Bus Read       | Upper           | V <sub>IH</sub> | V <sub>IL</sub> | VIL             | V <sub>IH</sub> | High            | Address                     | Data Output                                   |  |
|                | Lower           | V <sub>IL</sub> | VIL.            | ۷IL             | VIH             | riigii          | Address                     | Data Output                                   |  |
| Page Read      | Upper           | V <sub>IH</sub> | VIL             | VIL             | V <sub>IH</sub> | Lliab           | A ddroop                    | Data Output                                   |  |
|                | Lower           | V <sub>IL</sub> | VIL             | ۷IL             | VIH             | High            | Address                     |                                               |  |
| Bus Write      | Upper           | $V_{IH}$        | VIL             | V <sub>IH</sub> | VIL             | High            | Address                     | Doto Input                                    |  |
| bus write      | Lower           | $V_{IL}$        | VIL             | VIH             | V IL            | підп            | Address                     | Data Input                                    |  |
| Output Disable | Output disabled | Х               | V <sub>IL</sub> | V <sub>IH</sub> | V <sub>IH</sub> | High            | Х                           | High Z                                        |  |
| Standby        | Device disabled | Х               | V <sub>IH</sub> | Х               | Х               | High            | Х                           | High Z                                        |  |
| Power-Down     | Device disabled | Х               | Х               | Х               | Х               | V <sub>IL</sub> | Х                           | High Z                                        |  |

Note: 1. DQ8-DQ15 are High Z in x8 mode.
2. X = Don't Care V<sub>IL</sub> or V<sub>IH</sub>. High = V<sub>IH</sub> or V<sub>HH</sub>.

#### COMMAND INTERFACE

All Bus Write operations to the device are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. As the device contains two internal memories care must be taken to issue the commands to the correct address. Commands issued with A23 High will be addressed to the Upper Memory, commands issued with A23 Low will be addressed to the Lower Memory.

The Commands are summarized in Table 5, Commands. Refer to Table 5 in conjunction with the text descriptions below.

After power-up or a Reset operation the device enters Read mode.

Read Memory Array Command. The Read Memory Array command is used to return the device to Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the device to Read mode. Once the command is issued the device remains in Read mode until another command is issued. From Read mode Bus Read operations will access the memory arrays. After power-up or a reset the device defaults to Read Array mode (Page Read).

While the Program/Erase Controller is executing a Program, Erase, Block Protect, Blocks Unprotect or Protection Register Program operation the device will not accept the Read Memory Array command until the operation completes.

Read Electronic Signature Command. The Read Electronic Signature command is used to read the Manufacturer Code, the Device Code, the Block Protection Status and the Protection Register. One Bus Write cycle is required to issue the Read Electronic Signature command. Once the command is issued subsequent Bus Read operations read the Manufacturer Code, the Device Code, the Block Protection Status or the Protection Register until another command is issued. Refer to Table 7, Read Electronic Signature, Tables 8 and 9, Word and Byte-wide Read Protection Register and Figure 8, Protection Register Memory Map for information on the addresses.

Read Query Command. The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Tables 26, 27, 28, 29, 30 and 31 for details on the information contained in the Common Flash Interface (CFI) memory area.

**Read Status Register Command.** The Read Status Register command is used to read the Status Register. One Bus Write cycle is required to issue

the Read Status Register command. As the device contains two Status Registers (one for each internal memory) the command must be issued to the same address as the previous operation (Block Erase, Write to Buffer, Word Program etc.). Once the command is issued subsequent Bus Read operations to the same internal memory (A23 Low or A23 High depending on where the command was issued to) read the Status Register until another command is issued. If the Bus Read operation is issued to the other internal memory, then the other Status Register will be read, giving the status of the last command issued in the other internal memory.

The Status Register information is present on the output data bus (DQ1-DQ7) when the device is enabled and Output Enable is Low,  $V_{\rm IL}$ .

See the section on the Status Register and Table 11 for details on the definitions of the Status Register bits

Clear Status Register Command. The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status Register to '0'. One Bus Write is required to issue the Clear Status Register command. The command must be issued to the same address as the previous operation (Block Erase, Write to Buffer, Word Program etc.).

The bits in the Status Register are sticky and do not automatically return to '0' when a new Write to Buffer and Program, Erase, Block Protect, Block Unprotect or Protection Register Program command is issued. If any error occurs then it is essential to clear any error bits in the Status Register by issuing the Clear Status Register command before attempting a new Program, Erase or Resume command.

**Block Erase Command.** The Block Erase command can be used to erase a block. It sets all of the bits in the block to '1'. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error.

Two Bus Write operations are required to issue the command; the second Bus Write cycle latches the block address in the internal state machine and starts the Program/Erase Controller. Once the command is issued subsequent Bus Read operations read the Status Register. See the section on the Status Register for details on the definitions of the Status Register bits.

During Erase, the device being erased will only accept the Read Status Register and Program/Erase Suspend commands, ignoring all other commands. The device not being erased will accept

any command. Typical Erase times are given in Table 10.

See Appendix C, Figure 21, Block Erase Flowchart and Pseudo Code, for a suggested flowchart on using the Block Erase command.

Word/Byte Program Command. The Word/Byte Program command is used to program a single Word or Byte in the memory array. Two Bus Write operations are required to issue the command; the first write cycle sets up the Word Program command, the second write cycle latches the address and data to be programmed in the internal state machine and starts the Program/Erase Controller.

If the block being programmed is protected an error will be set in the Status Register and the operation will abort without affecting the data in the memory array. The block must be unprotected using the Blocks Unprotect command.

Write to Buffer and Program Command. The Write to Buffer and Program command is used to program the memory array. If the command is issued with A23 High the Upper Memory will be programmed, if the command is issued with A23 Low the Lower Memory will be programmed.

Up to 16 Words/32 Bytes can be loaded into the Write Buffer and programmed into the memory array. Each Write Buffer has the same A5-A22 addresses. In Byte-wide mode only A0-A4 may change, in Word-wide mode only A1-A4 may change.

Four successive steps are required to issue the command.

- 1. One Bus Write operation is required to set up the Write to Buffer and Program Command. Issue the set up command with the selected memory Block Address where the program operation should occur (any address in the block where the values will be programmed can be used). Any Bus Read operations will start to output the Status Register after the 1st cycle.
- Use one Bus Write operation to write the same block address along with the value N on the Data Inputs/Output, where N+1 is the number of Words/Bytes to be programmed.
- Use N+1 Bus Write operations to load the address and data for each Word into the Write Buffer. The addresses must have the same A5-A22.
- 4. Finally, use one Bus Write operation to issue the final cycle to confirm the command and start the Program operation.

Invalid address combinations or failing to follow the correct sequence of Bus Write cycles will set an error in the Status Register and abort the operation without affecting the data in the memory array. The Status Register should be cleared before re-issuing the command.

If the block being programmed is protected an error will be set in the Status Register and the operation will abort without affecting the data in the memory array. The block must be unprotected using the Blocks Unprotect command.

See Appendix C, Figure 19, Write to Buffer and Program Flowchart and Pseudo Code, for a suggested flowchart on using the Write to Buffer and Program command.

**Program/Erase Suspend Command.** The Program/Erase Suspend command is used to pause a Write to Buffer and Program or Erase operation. The command will only be accepted during a Program or an Erase operation. It can be issued at any time during an Erase operation but will only be accepted during a Write to Buffer and Program command if the Program/Erase Controller is running.

One Bus Write cycle is required to issue the Program/Erase Suspend command and pause the Program/Erase Controller. The command must be issued to the same address as the current Program or Erase operation. Once the command is issued it is necessary to poll the Program/Erase Controller Status bit (bit 7) to find out when the Program/Erase Controller has paused; no other commands will be accepted until the Program/Erase Controller has paused. After the Program/Erase Controller has paused, the device will continue to output the Status Register until another command is issued.

During the polling period between issuing the Program/Erase Suspend command and the Program/ Erase Controller pausing, it is possible for the operation to complete. Once the Program/Erase Controller Status bit (bit 7) indicates that the Program/Erase Controller is no longer active, the Program Suspend Status bit (bit 2) or the Erase Suspend Status bit (bit 6) can be used to determine if the operation has completed or is suspended. For timing on the delay between issuing the Program/Erase Suspend command and the Program/Erase Controller pausing see Table 10.

During Program/Erase Suspend the Read Memory Array, Read Status Register, Read Electronic Signature, Read Query and Program/Erase Resume commands will be accepted by the Command Interface. Additionally, if the suspended operation was Erase then the Word Program, Write to Buffer and Program, and Program Suspend commands will also be accepted.

When one of the devices is being Program or Erase Suspended, any command issued to the other internal Flash memory will be accepted. When a program operation is completed inside a

Block Erase Suspend the Read Memory Array command must be issued to reset the device in Read mode, then the Erase Resume command can be issued to complete the whole sequence. Only the blocks not being erased may be read or programmed correctly.

See Appendix C, Figure 20, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 22, Erase Suspend & Resume Flowchart and Pseudo Code, for suggested flowcharts on using the Program/Erase Suspend command.

Program/Erase Resume Command. The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the Program/Erase Resume command. The command must be issued to the same address as the Program/Erase Suspend command. Once the command is issued subsequent Bus Read operations read the Status Register.

Block Protect Command. The Block Protect command is used to protect a block and prevent Program or Erase operations from changing the data in it. Two Bus Write cycles are required to issue the Block Protect command; the second Bus Write cycle latches the block address in the internal state machine and starts the Program/Erase Controller. Once the command is issued subsequent Bus Read operations read the Status Register. See the section on the Status Register for details on the definitions of the Status Register bits.

During the Block Protect operation the device will only accept the Read Status Register command. All other commands will be ignored. Typical Block Protection times are given in Table 10.

The Block Protection bits are non-volatile, once set they remain set through reset and power-down/power-up. They are cleared by a Blocks Unprotect command.

See Appendix C, Figure 23, Block Protect Flowchart and Pseudo Code, for a suggested flowchart on using the Block Protect command.

**Blocks Unprotect Command.** The Blocks Unprotect command is used to unprotect all of the blocks. To unprotect all of the blocks in both of the internal memories the command must be issued to both memories, that is first with A23 Low and then with A23 High.

Four Bus Write cycles are required to issue the Blocks Unprotect command; the first two are written with A23 Low, the second two are written with A23 High. Once the command is issued subsequent Bus Read operations read the Status Register. See the section on the Status Register for

details on the definitions of the Status Register bits.

During the Blocks Unprotect operation the device will only accept the Read Status Register command. All other commands will be ignored. Typical Block Protection times are given in Table 10.

See Appendix C, Figure 24, Blocks Unprotect Flowchart and Pseudo Code, for a suggested flowchart on using the Blocks Unprotect command.

#### **Protection Register Program Command.**

The Protection Register Program command is used to Program the 64 bit user segment of the Protection Register. Only the lower address Protection Register is available to the customer (A23 Low), the other Protection Register is reserved.

Two write cycles are required to issue the Protection Register Program command.

- The first bus cycle sets up the Protection Register Program command.
- The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller.

Read operations output the Status Register content after the programming has started.

The user-programmable segment can be locked by programming bit 1 of the Protection Register Lock location to '0' (see Table 8 and x for Wordwide and Byte-wide protection addressing). Bit 0 of the Protection Register Lock location locks the factory programmed segment and is programmed to '0' in the factory. The locking of the Protection Register is not reversible, once the lock bits are programmed no further changes can be made to the values stored in the Protection Register, see Figure 8, Protection Register Memory Map. Attempting to program a previously protected Protection Register will result in a Status Register error.

The Protection Register Program cannot be suspended. See Appendix C, Figure 25, Protection Register Program Flowchart and Pseudo Code, for the flowchart for using the Protection Register Program command.

#### **Configure STS Command.**

The Configure STS command is used to configure the Status/(Ready/Busy) pin. It has to be configured for both internal memories, that is the command has to be issued first with A23 Low and then with A23 High. After power-up or reset the STS pin is configured in Ready/Busy mode. The pin can be configured in Status mode using the Configure STS command (refer to Status/(Ready/Busy) section for more details.

Four Bus Write cycles are required to issue the Configure STS command. The first two cycles

must be written with A23 Low and the second two with A23 High.

- The first bus cycle sets up the Configure STS command. A23 must be Low.
- The second Bus Write cycle specifies one of the four possible configurations, A23 must be Low, (refer to Table 6, Configuration Codes):
  - Ready/Busy mode
  - Pulse on Erase complete mode
  - Pulse on Program complete mode
  - Pulse on Erase or Program complete mode

- The third Bus Write cycle re-sets up the Configure STS command. This time A23 must be High.
- The fourth re-specifies the configuration code given in the second Bus Write cycle. A23 must be High.

The device will not accept the Configure STS command while the Program/Erase controller is busy or during Program/Erase Suspend. When STS pin is pulsing it remains Low for a typical time of 250ns. Any invalid Configuration Code will set an error in the Status Register.

The Configure STS command is not available with the LFBGA88 package.

**Table 5. Commands** 

|                                      | s      |           |         |            |           | В                  | us Ope             | eration    | s       |      |       |         |      |
|--------------------------------------|--------|-----------|---------|------------|-----------|--------------------|--------------------|------------|---------|------|-------|---------|------|
| Command                              | Cycles | 1st Cycle |         |            | 2nd Cycle |                    |                    | Subsequent |         |      | Final |         |      |
|                                      | Q.     | Op.       | Addr.   | Data       | Op.       | Addr.              | Data               | Op.        | Addr.   | Data | Op.   | Addr.   | Data |
| Read Memory<br>Array                 | 2      | Write     | RA      | FFh        | Read      | RA                 | RD                 |            |         |      |       |         |      |
| Read Electronic<br>Signature         | ≥2     | Write     | Х       | 90h        | Read      | IDA <sup>(2)</sup> | IDD <sup>(2)</sup> |            |         |      |       |         |      |
| Read Status<br>Register              | 2      | Write     | PA/BA   | 70h        | Read      | PA/BA              | SRD                |            |         |      |       |         |      |
| Read Query                           | ≥2     | Write     | Х       | 98h        | Read      | QA <sup>(3)</sup>  | QD <sup>(3)</sup>  |            |         |      |       |         |      |
| Clear Status<br>Register             | 1      | Write     | PA/BA   | 50h        |           |                    |                    |            |         |      |       |         |      |
| Block Erase                          | 2      | Write     | BA      | 20h        | Write     | BA                 | D0                 |            |         |      |       |         |      |
| Word/Byte Program                    | 2      | Write     | PA      | 40h<br>10h | Write     | PA                 | PD                 |            |         |      |       |         |      |
| Write to Buffer and<br>Program       | 4+N    | Write     | BA      | E8h        | Write     | ВА                 | N                  | Write      | PA      | PD   | Write | ВА      | D0h  |
| Program/Erase<br>Suspend             | 1      | Write     | PA/BA   | B0h        |           |                    |                    |            |         |      |       |         |      |
| Program/Erase<br>Resume              | 1      | Write     | PA/BA   | D0h        |           |                    |                    |            |         |      |       |         |      |
| Block Protect                        | 2      | Write     | BA      | 60h        | Write     | BA                 | 01h                |            |         |      |       |         |      |
| Blocks Unprotect                     | 4      | Write     | 000000h | 60h        | Write     | 000000h            | D0h                | Write      | 400000h | 60h  | Write | 400000h | D0h  |
| Protection Register<br>Program       | 2      | Write     | PRA     | C0h        | Write     | PRA                | PRD                |            |         |      |       |         |      |
| Configure STS command <sup>(4)</sup> | 4      | Write     | 000000h | B8h        | Write     | 000000h            | СС                 | Write      | 400000h | B8h  | Write | 400000h | СС   |

Note: 1. X Don't Care; RA Read Address, RD Read Data, IDA Identifier Address, IDD Identifier Data, SRD Status Register Data, PA Program Address, PD Program Data, QA Query Address, QD Query Data, BA Any address in Block, PRA Protection register address, PRD Protection Register Data, CC Configuration Code. The shaded areas highlight the differences with a single M58LW064D memory.

<sup>2.</sup> For Identifier addresses and data refer to Table 7, Read Electronic Signature.

<sup>3.</sup> For Query Address and Data refer to Appendix B, CFI.

<sup>4.</sup> Not available with LFBGA88 package.

**Table 6. Configuration Codes** 

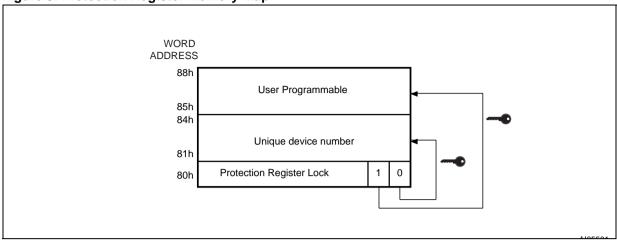
| Configuration<br>Code | DQ1 | DQ2                                      | Mode                            | STS Pin                                                                             | Description                                                                                                                                  |  |
|-----------------------|-----|------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00h                   | 0   | 0                                        | Ready/Busy                      | V <sub>OL</sub> during P/E<br>operations<br>Hi-Z when the<br>memory is ready        | The STS pin is Low during Program and Erase operations and high impedance when the memory is ready for any Read, Program or Erase operation. |  |
| 01h                   | 0   | 1                                        | Pulse on Erase complete         |                                                                                     | Supplies a system interrupt pulse at the end of a Block Erase operation.                                                                     |  |
| 02h                   | 1   | 0                                        | Pulse on<br>Program<br>complete | Pulse Low then High when operation completed <sup>(2)</sup>                         | Supplies a system interrupt pulse at the end of a Program operation.                                                                         |  |
| 03h                   | 1 1 | Pulse on Erase<br>or Program<br>complete | , compresse                     | Supplies a system interrupt pulse at the end of a Block Erase or Program operation. |                                                                                                                                              |  |

Note: 1. DQ2-DQ7 are reserved

**Table 7. Read Electronic Signature** 

| Code                    | Bus Width | Address (A23-A1) <sup>(3)</sup> | Data (DQ15-DQ0)                                      |
|-------------------------|-----------|---------------------------------|------------------------------------------------------|
| Manufacturer Code       | x8        | 000000h                         | 20h                                                  |
| Wandiacturer Code       | x16       | 00000011                        | 0020h                                                |
| Device Code             | x8        | 000001h                         | 17h                                                  |
|                         | x16       | 00000111                        | 8817h                                                |
| Block Protection Status | x8        | SBA <sup>(1)</sup> +02h         | 00h (Block Unprotected)<br>01h (Block Protected)     |
| DIOCK FTOLECTION Status | x16       | SDA\*/+UZN                      | 0000h (Block Unprotected)<br>0001h (Block Protected) |
| Protection Register     | x8, x16   | 000080h <sup>(2)</sup>          | PRD <sup>(1)</sup>                                   |

Note: 1. SBA is the Start Base Address of each block, PRD is Protection Register Data.




<sup>2.</sup> When STS pin is pulsing it remains Low for a typical time of 250ns.

<sup>2.</sup> Base Address, refer to Figure 8 and Tables 8 and 9 for more information. A23 must be Low to address the customer's Protection Register. The other Protection Register is reserved.

<sup>3.</sup> A0 is not used in Read Electronic Signature in either x8 or x16 mode. The data is always presented on the lower byte in x16 mode.

Figure 8. Protection Register Memory Map



**Table 8. Word-Wide Read Protection Register** 

|      |                     |    | 3  |    |    |    |    |    |    |
|------|---------------------|----|----|----|----|----|----|----|----|
| Word | Use                 | A8 | A7 | A6 | A5 | A4 | А3 | A2 | A1 |
| Lock | Factory, User       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| 1    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 2    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |
| 3    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 4    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 1  |
| 5    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 0  |
| 6    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| 7    | User                | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |

Table 9. Byte-Wide Read Protection Register

| Word | Use                 | A8 | A7 | A6 | A5 | A4 | А3 | A2 | A1 |
|------|---------------------|----|----|----|----|----|----|----|----|
| Lock | Factory, User       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Lock | Factory, User       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| 1    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| 2    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 3    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| 4    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |
| 5    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |
| 6    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 7    | Factory (Unique ID) | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| 8    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 1  |
| 9    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 1  |
| А    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 0  |
| В    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 0  |
| С    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| D    | User                | 1  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| E    | User                | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| F    | User                | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |



Table 10. Program/Erase Times and Program/Erase Endurance Cycles

| Parameters                                            | Min     | Typ <sup>(1,2)</sup> | Max <sup>(2)</sup> | Unit   |
|-------------------------------------------------------|---------|----------------------|--------------------|--------|
| Block (1Mb) Erase                                     |         | 1.2                  | 4.8 <sup>(4)</sup> | s      |
| Chip Program (Write to Buffer)                        |         | 98                   | 290 <sup>(4)</sup> | s      |
| Chip Erase Time                                       |         | 148                  | 440 (4)            | s      |
| Program Write Buffer                                  |         | 192 <sup>(3)</sup>   | 576 <sup>(4)</sup> | μs     |
| Word/Byte Program Time<br>(Word/Byte Program command) |         | 16                   | 48 (4)             | μs     |
| Program Suspend Latency Time                          |         | 1                    | 20 <sup>(5)</sup>  | μs     |
| Erase Suspend Latency Time                            |         | 1                    | 25 <sup>(5)</sup>  | μs     |
| Block Protect Time                                    |         | 18                   | 30 <sup>(5)</sup>  | μs     |
| Blocks Unprotect Time                                 |         | 0.75                 | 1.2 <sup>(5)</sup> | S      |
| Program/Erase Cycles (per block)                      | 100,000 |                      |                    | cycles |
| Data Retention                                        | 20      |                      |                    | years  |

Note: 1. Typical values measured at room temperature and nominal voltages.

<sup>2.</sup> Sampled, but not 100% tested.

Effective byte programming time 6µs, effective word programming time 12µs.
 Maximum value measured at worst case conditions for both temperature and V<sub>DD</sub> after 100,000 program/erase cycles.

<sup>5.</sup> Maximum value measured at worst case conditions for both temperature and V<sub>DD</sub>.

#### STATUS REGISTER

The Status Register provides information on the current or previous Program, Erase, Block Protect or Blocks Unprotect operation. The various bits in the Status Register convey information and errors on the operation. They are output on DQ7-DQ0.

To read the Status Register the Read Status Register command can be issued. The Status Register is automatically read after Program, Erase, Block Protect, Blocks Unprotect and Program/Erase Resume commands. As the device contains two Status Registers (one for each internal memory) the Status Register must be read at the same address as the previous operation.

The contents of the Status Register can be updated during an Erase or Program operation by toggling the Output Enable pin or by dis-activating and then reactivating the device (refer to Table 3).

Status Register bits 5, 4, 3 and 1 are associated with various error conditions and can only be reset with the Clear Status Register command. The Status Register bits are summarized in Table 11, Status Register Bits. Refer to Table 11 in conjunction with the following text descriptions.

**Program/Erase Controller Status (Bit 7).** The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low,  $V_{OL}$ , the Program/Erase Controller is active and all other Status Register bits are High Impedance; when the bit is High,  $V_{OH}$ , the Program/Erase Controller is inactive.

The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High.

During Program, Erase, Block Protect and Blocks Unprotect operations the Program/Erase Controller Status bit can be polled to find the end of the operation. The other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High.

After the Program/Erase Controller completes its operation the Erase Status, Program Status and Block Protection Status bits should be tested for errors.

Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation has been suspended and is waiting to be resumed. The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive); after a Program/Erase Suspend command is issued the memory may still complete the operation rather than entering the Suspend mode.

When the Erase Suspend Status bit is Low,  $V_{OL}$ , the Program/Erase Controller is active or has completed its operation; when the bit is High,  $V_{OH}$ , a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command.

When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.

**Erase Status (Bit 5).** The Erase Status bit can be used to identify if the device has failed to verify that the block has erased correctly or that all blocks have been unprotected successfully. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

When the Erase Status bit is Low,  $V_{OL}$ , the device has successfully verified that the block has erased correctly or all blocks have been unprotected successfully. When the Erase Status bit is High,  $V_{OH}$ , the erase operation has failed. Depending on the cause of the failure other Status Register bits may also be set to High,  $V_{OH}$ .

- If only the Erase Status bit (bit 5) is set High, V<sub>OH</sub>, then the Program/Erase Controller has applied the maximum number of pulses to the block and still failed to verify that the block has erased correctly or that all the blocks have been unprotected successfully.
- If the failure is due to an erase or blocks unprotect with V<sub>PEN</sub> low, V<sub>OL</sub>, then V<sub>PEN</sub> Status bit (bit 3) is also set High, V<sub>OH</sub>.
- If the failure is due to an erase on a protected block then Block Protection Status bit (bit 1) is also set High, V<sub>OH</sub>.
- If the failure is due to a program or erase incorrect command sequence then Program Status bit (bit 4) is also set High, V<sub>OH</sub>.

Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

**Program Status (Bit 4).** The Program Status bit is used to identify a Program or Block Protect failure. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

When the Program Status bit is Low,  $V_{OL}$ , the device has successfully verified that the Write Buffer has programmed correctly or the block is protected. When the Program Status bit is High,  $V_{OH}$ , the program or block protect operation has failed. Depending on the cause of the failure other Status Register bits may also be set to High,  $V_{OH}$ .

- If only the Program Status bit (bit 4) is set High, V<sub>OH</sub>, then the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that the Write Buffer has programmed correctly or that the Block is protected.
- If the failure is due to a program or block protect with V<sub>PEN</sub> low, V<sub>OL</sub>, then V<sub>PEN</sub> Status bit (bit 3) is also set High, V<sub>OH</sub>.
- If the failure is due to a program on a protected block then Block Protection Status bit (bit 1) is also set High, V<sub>OH</sub>.
- If the failure is due to a program or erase incorrect command sequence then Erase Status bit (bit 5) is also set High, V<sub>OH</sub>.

Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

**V<sub>PEN</sub> Status (Bit 3).** The V<sub>PEN</sub> Status bit can be used to identify if a Program, Erase, Block Protection or Block Unprotection operation has been attempted when V<sub>PEN</sub> is Low, V<sub>IL</sub>.

When the  $V_{PEN}$  Status bit is Low,  $V_{OL}$ , no Program, Erase, Block Protection or Block Unprotection operations have been attempted with  $V_{PEN}$  Low,  $V_{IL}$ , since the last Clear Status Register command, or hardware reset. When the  $V_{PEN}$  Status bit is High,  $V_{OH}$ , a Program, Erase, Block Protection or Block Unprotection operation has been attempted with  $V_{PEN}$  Low,  $V_{IL}$ .

Once set High, the V<sub>PEN</sub> Status bit can only be reset by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program, Erase, Block Protection or Block Unprotection command is issued, otherwise the new command will appear to fail.

Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation has been suspended and is waiting to be resumed. The Program Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive); after a Program/Erase Suspend command is issued the device may still complete the operation rather than entering the Suspend mode.

When the Program Suspend Status bit is Low,  $V_{OL}$ , the Program/Erase Controller is active or has completed its operation; when the bit is High,  $V_{OH}$ , a Program/Erase Suspend command has been issued and the device is waiting for a Program/Erase Resume command.

When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.

**Block Protection Status (Bit 1).** The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the contents of a protected block.

When the Block Protection Status bit is Low,  $V_{OL}$ , no Program or Erase operations have been attempted to protected blocks since the last Clear Status Register command or hardware reset; when the Block Protection Status bit is High,  $V_{OH}$ , a Program (Program Status bit 4 set High) or Erase (Erase Status bit 5 set High) operation has been attempted on a protected block.

Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

**Reserved (Bit 0).** Bit 0 of the Status Register is reserved. Its value should be masked.

**Table 11. Status Register Bits** 

| OPERATION                                                          | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Result<br>(Hex) |
|--------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------------|
| Program/Erase Controller active                                    | 0     |       |       | Hi    | -Z    |       | •     | N/A             |
| Write Buffer not ready                                             | 0     |       |       | Hi    | -Z    |       |       | N/A             |
| Write Buffer ready                                                 | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 80h             |
| Write Buffer ready in Erase Suspend                                | 1     | 1     | 0     | 0     | 0     | 0     | 0     | C0h             |
| Program suspended                                                  | 1     | 0     | 0     | 0     | 0     | 1     | 0     | 84h             |
| Program suspended in Erase Suspend                                 | 1     | 1     | 0     | 0     | 0     | 1     | 0     | C4h             |
| Program/Block Protect completed successfully                       | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 80h             |
| Program completed successfully in Erase Suspend                    | 1     | 1     | 0     | 0     | 0     | 0     | 0     | C0h             |
| Program/Block protect failure due to incorrect command sequence    | 1     | 0     | 1     | 1     | 0     | 0     | 0     | B0h             |
| Program failure due to incorrect command sequence in Erase Suspend | 1     | 1     | 1     | 1     | 0     | 0     | 0     | F0h             |
| Program/Block Protect failure due to VPEN error                    | 1     | 0     | 0     | 1     | 1     | 0     | 0     | 98h             |
| Program failure due to V <sub>PEN</sub> error in Erase Suspend     | 1     | 1     | 0     | 1     | 1     | 0     | 0     | D8h             |
| Program failure due to Block Protection                            | 1     | 0     | 0     | 1     | 0     | 0     | 1     | 92h             |
| Program failure due to Block Protection in Erase Suspend           | 1     | 1     | 0     | 1     | 0     | 0     | 1     | D2h             |
| Program/Block Protect failure due to cell failure                  | 1     | 0     | 0     | 1     | 0     | 0     | 0     | 90h             |
| Program failure due to cell failure in Erase<br>Suspend            | 1     | 1     | 0     | 1     | 0     | 0     | 0     | D0h             |
| Erase Suspended                                                    | 1     | 1     | 0     | 0     | 0     | 0     | 0     | C0h             |
| Erase/Blocks Unprotect completed successfully                      | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 80h             |
| Erase/Blocks Unprotect failure due to incorrect command sequence   | 1     | 0     | 1     | 1     | 0     | 0     | 0     | B0h             |
| Erase/Blocks Unprotect failure due to VPEN error                   | 1     | 0     | 1     | 0     | 1     | 0     | 0     | A8h             |
| Erase failure due to Block Protection                              | 1     | 0     | 1     | 0     | 0     | 0     | 1     | A2h             |
| Erase/Blocks Unprotect failure due to failed cells in Block        | 1     | 0     | 1     | 0     | 0     | 0     | 0     | A0h             |
| Configure STS error due to invalid configuration code              | 1     | 0     | 1     | 1     | 0     | 0     | 0     | B0h             |



#### **MAXIMUM RATING**

Stressing the device above the ratings listed in Table 12, Absolute Maximum Ratings, may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is

not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

**Table 12. Absolute Maximum Ratings** 

| Symbol                             | Parameter                    | Va          | Unit                  |      |
|------------------------------------|------------------------------|-------------|-----------------------|------|
|                                    | Farameter                    | Min         | Max                   | Onit |
| T <sub>BIAS</sub>                  | Temperature Under Bias       | -40         | 125                   | °C   |
| T <sub>STG</sub>                   | Storage Temperature          | <b>-</b> 55 | 150                   | °C   |
| V <sub>IO</sub>                    | Input or Output Voltage      | -0.6        | V <sub>DDQ</sub> +0.6 | V    |
| V <sub>DD</sub> , V <sub>DDQ</sub> | Supply Voltage               | -0.6        | 5.0                   | V    |
| losc                               | Output Short-circuit Current |             | 100 <sup>(1)</sup>    | mA   |

Note: 1. Maximum one output short-circuited at a time and for no longer than 1 second.

#### DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measure-

ment Conditions summarized in Table 13, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the guoted parameters.

**Table 13. Operating and AC Measurement Conditions** 

| Parameter                                       | M30LV       | Units                 |     |        |  |
|-------------------------------------------------|-------------|-----------------------|-----|--------|--|
| Faranietei                                      |             | Min                   | Max | Offics |  |
| Supply Voltage (V <sub>DD</sub> )               |             | 2.7                   | 3.6 | V      |  |
| Input/Output Supply Voltage (V <sub>DDQ</sub> ) |             | 2.7                   | 3.6 | V      |  |
| Ambient Temperature (T <sub>A</sub> )           | Grade 1     | 0                     | 70  | °C     |  |
| Ambient reimperature (1 <sub>A</sub> )          | Grade 6 -40 |                       | 85  | °C     |  |
| Load Capacitance (C <sub>L</sub> )              |             | 3                     | 30  |        |  |
| Input Pulses Voltages                           |             | 0 to V <sub>DDQ</sub> |     | V      |  |
| Input and Output Timing Ref. Voltages           |             | 0.5 V <sub>DDQ</sub>  |     | V      |  |

Figure 9. AC Measurement Input Output Waveform

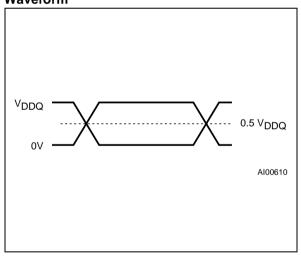



Figure 10. AC Measurement Load Circuit

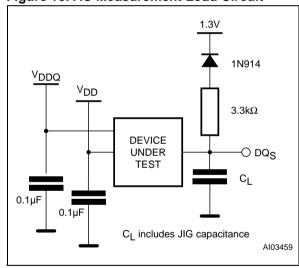
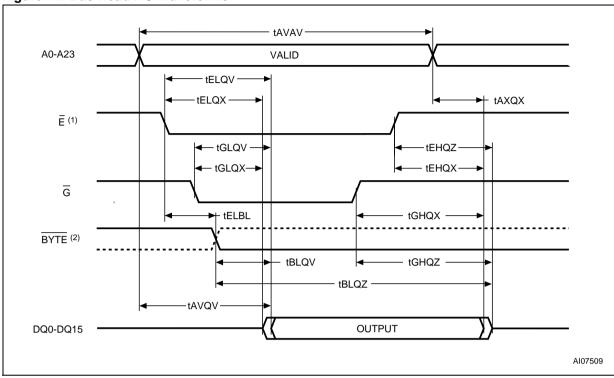



Table 14. Capacitance

| Symbol           | Parameter          | Test Condition        | Тур | Max | Unit |
|------------------|--------------------|-----------------------|-----|-----|------|
| C <sub>IN</sub>  | Input Capacitance  | V <sub>IN</sub> = 0V  | 6   | 8   | pF   |
| C <sub>OUT</sub> | Output Capacitance | V <sub>OUT</sub> = 0V | 8   | 12  | pF   |

Note: 1.  $T_A = 25$ °C, f = 1 MHz

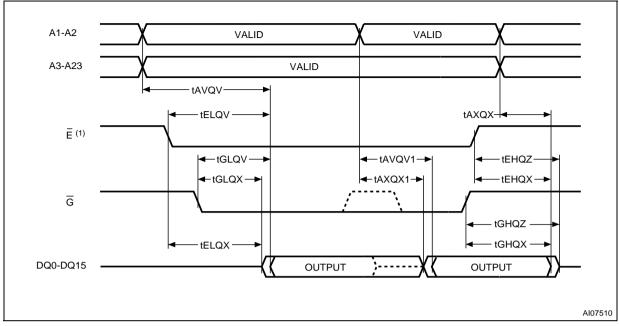



<sup>2.</sup> Sampled only, not 100% tested.

**Table 15. DC Characteristics** 

| Symbol            | Parameter                                                                | Test Condition                         | Min                   | Max                    | Unit |
|-------------------|--------------------------------------------------------------------------|----------------------------------------|-----------------------|------------------------|------|
| ILI               | Input Leakage Current                                                    | $0V \le V_{IN} \le V_{DDQ}$            |                       | ±1                     | μA   |
| I <sub>LO</sub>   | Output Leakage Current                                                   | $0V \le V_{OUT} \le V_{DDQ}$           |                       | ±5                     | μA   |
| I <sub>DD</sub>   | Supply Current (Random Read)                                             | $\overline{E} = V_{IL}, f=5MHz$        |                       | 20                     | mA   |
| I <sub>DDO</sub>  | Supply Current (Page Read)                                               | $\overline{E} = V_{IL}$ , f=33MHz      |                       | 29                     | mA   |
| I <sub>DD1</sub>  | Supply Current (Standby)                                                 | $E = V_{IH}, \overline{RP} = V_{IH}$   |                       | 80                     | μΑ   |
| I <sub>DD5</sub>  | Supply Current (Auto Low-Power)                                          | $E = V_{IL}, \overline{RP} = V_{IH}$   |                       | 80                     | μΑ   |
| I <sub>DD2</sub>  | Supply Current (Reset/Power-Down)                                        | RP = V <sub>IL</sub>                   |                       | 80                     | μA   |
| I <sub>DD3</sub>  | Supply Current (Program or Erase,<br>Block Protect, Block Unprotect)     | Program or Erase operation in progress |                       | 30                     | mA   |
| I <sub>DD4</sub>  | Supply Current<br>(Erase/Program Suspend)                                | E = V <sub>IH</sub>                    |                       | 80                     | μΑ   |
| VIL               | Input Low Voltage                                                        |                                        | -0.5                  | 0.3V <sub>DDQ</sub>    | V    |
| V <sub>IH</sub>   | Input High Voltage                                                       |                                        | 0.7V <sub>DDQ</sub>   | V <sub>DDQ</sub> + 0.5 | V    |
| V <sub>OL</sub>   | Output Low Voltage                                                       | I <sub>OL</sub> = 100μA                |                       | 0.2                    | V    |
| VoH               | Output High Voltage                                                      | I <sub>OH</sub> = -100μA               | V <sub>DDQ</sub> -0.2 |                        | V    |
| V <sub>LKO</sub>  | V <sub>DD</sub> Supply Voltage (Erase and Program lockout)               |                                        |                       | 2                      | V    |
| V <sub>PENH</sub> | V <sub>PEN</sub> Supply Voltage (block erase, program and block protect) |                                        | 2.7                   | 3.6                    | V    |

Figure 11. Bus Read AC Waveforms




2.  $\overline{\text{BYTE}}$  can be Low or High. The  $\overline{\text{BYTE}}$  signal is not available with the LFBGA88 package.

**Table 16. Bus Read AC Characteristics** 

| Symbol            | Parameter                               | Test Condition                                 | M30LW128D | Unit |    |
|-------------------|-----------------------------------------|------------------------------------------------|-----------|------|----|
| Syllibol          | raiametei                               | rest Condition                                 | 110       | Onit |    |
| t <sub>AVAV</sub> | Address Valid to Address Valid          | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Min       | 110  | ns |
| t <sub>AVQV</sub> | Address Valid to Output Valid           | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Max       | 110  | ns |
| t <sub>AXQX</sub> | Address Transition to Output Transition | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Min       | 0    | ns |
| t <sub>BLQV</sub> | Byte Low (or High) to Output Valid      | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Max       | 1    | μs |
| t <sub>BLQZ</sub> | Byte Low (or High) to Output Hi-Z       | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Max       | 1    | μs |
| t <sub>EHQX</sub> | Chip Enable High to Output Transition   | G = V <sub>IL</sub>                            | Min       | 0    | ns |
| t <sub>EHQZ</sub> | Chip Enable High to Output Hi-Z         | G = V <sub>IL</sub>                            | Max       | 25   | ns |
| t <sub>ELBL</sub> | Chip Enable Low to Byte Low (or High)   | G = V <sub>IL</sub>                            | Max       | 10   | ns |
| t <sub>ELQX</sub> | Chip Enable Low to Output Transition    | G = V <sub>IL</sub>                            | Min       | 0    | ns |
| t <sub>ELQV</sub> | Chip Enable Low to Output Valid         | G = V <sub>IL</sub>                            | Max       | 110  | ns |
| tGHQX             | Output Enable High to Output Transition | E = V <sub>IL</sub>                            | Min       | 0    | ns |
| t <sub>GHQZ</sub> | Output Enable High to Output Hi-Z       | E = V <sub>IL</sub>                            | Max       | 15   | ns |
| t <sub>GLQX</sub> | Output Enable Low to Output Transition  | E = V <sub>IL</sub>                            | Min       | 0    | ns |
| t <sub>GLQV</sub> | Output Enable Low to Output Valid       | E = V <sub>IL</sub>                            | Max       | 25   | ns |

Figure 12. Page Read AC Waveforms



**Table 17. Page Read AC Characteristics** 

| Symbol             | Parameter                               | Test Condition                                 |     | M30LW128D | Unit  |
|--------------------|-----------------------------------------|------------------------------------------------|-----|-----------|-------|
| Symbol             | Farameter                               | rest Condition                                 |     | 110       | Oilit |
| t <sub>AXQX1</sub> | Address Transition to Output Transition | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Min | 6         | ns    |
| t <sub>AVQV1</sub> | Address Valid to Output Valid           | $\overline{E} = V_{IL}, \overline{G} = V_{IL}$ | Max | 25        | ns    |

Note: For other timings see Table 16, Bus Read AC Characteristics.

47/

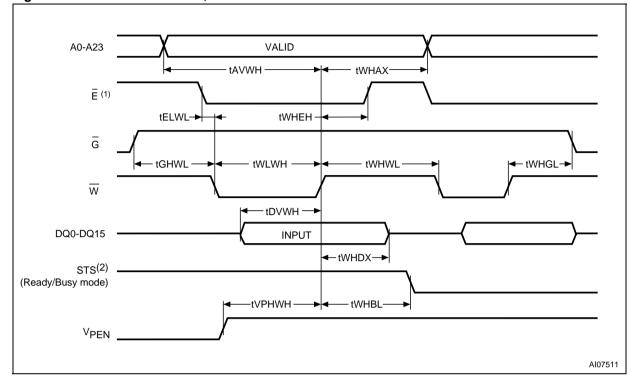



Figure 13. Write AC Waveform, Write Enable Controlled

2. Not available with the LFBGA88 package.

Table 18. Write AC Characteristics, Write Enable Controlled

| Symbol Parameter  |                                                | Test Condit             | ion | M30LW128D | Unit  |
|-------------------|------------------------------------------------|-------------------------|-----|-----------|-------|
| Syllibol          | raiametei                                      | rest Condition          |     | 110       | Offic |
| t <sub>AVWH</sub> | Address Valid to Write Enable High             | $\overline{E} = V_{IL}$ | Min | 50        | ns    |
| t <sub>DVWH</sub> | Data Input Valid to Write Enable High          | E = V <sub>IL</sub>     | Min | 50        | ns    |
| t <sub>ELWL</sub> | Chip Enable Low to Write Enable Low            |                         | Min | 0         | ns    |
| tvphwh            | Program/Erase Enable High to Write Enable High |                         | Min | 0         | ns    |
| t <sub>WHAX</sub> | Write Enable High to Address Transition        | E = V <sub>IL</sub>     | Min | 0         | ns    |
| t <sub>WHBL</sub> | Write Enable High to Status/(Ready/Busy) low   |                         | Max | 500       | ns    |
| t <sub>WHDX</sub> | Write Enable High to Input Transition          | $\overline{E} = V_{IL}$ | Min | 0         | ns    |
| twheh             | Write Enable High to Chip Enable High          |                         | Min | 0         | ns    |
| t <sub>GHWL</sub> | Output Enable High to Write Enable Low         |                         | Min | 20        | ns    |
| twHGL             | Write Enable High to Output Enable Low         |                         | Min | 35        | ns    |
| t <sub>WHWL</sub> | Write Enable High to Write Enable Low          |                         | Min | 30        | ns    |
| t <sub>WLWH</sub> | Write Enable Low to Write Enable High          | E = V <sub>IL</sub>     | Min | 70        | ns    |

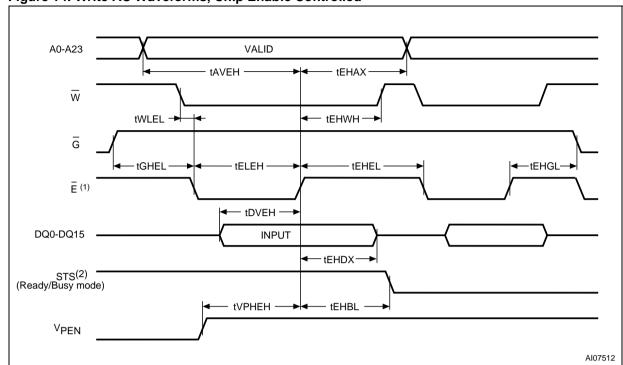



Figure 14. Write AC Waveforms, Chip Enable Controlled

2. Not available with the LFBGA88 package.

Table 19. Write AC Characteristics, Chip Enable Controlled.

| Symbol            | Parameter                                     | Test Condit             | ion | M30LW128D | Unit |  |
|-------------------|-----------------------------------------------|-------------------------|-----|-----------|------|--|
| Symbol            | Farameter                                     | rest Condition          |     | 110       | Oill |  |
| t <sub>AVEH</sub> | Address Valid to Chip Enable High             | $\overline{W} = V_{IL}$ | Min | 50        | ns   |  |
| t <sub>DVEH</sub> | Data Input Valid to Chip Enable High          | $\overline{W} = V_{IL}$ | Min | 50        | ns   |  |
| t <sub>WLEL</sub> | Write Enable Low to Chip Enable Low           |                         | Min | 0         | ns   |  |
| tvpheh            | Program/Erase Enable High to Chip Enable High |                         | Min | 0         | ns   |  |
| t <sub>EHAX</sub> | Chip Enable High to Address Transition        | $\overline{W} = V_{IL}$ | Min | 5         | ns   |  |
| t <sub>EHBL</sub> | Chip Enable High to Status/(Ready/Busy) low   |                         | Max | 500       | ns   |  |
| tEHDX             | Chip Enable High to Input Transition          | $\overline{W} = V_{IL}$ | Min | 5         | ns   |  |
| t <sub>EHWH</sub> | Chip Enable High to Write Enable High         |                         | Min | 0         | ns   |  |
| tGHEL             | Output Enable High to Chip Enable Low         |                         | Min | 20        | ns   |  |
| tEHGL             | Chip Enable High to Output Enable Low         |                         | Min | 35        | ns   |  |
| tehel             | Chip Enable High to Chip Enable Low           |                         | Min | 30        | ns   |  |
| teleh             | Chip Enable Low to Chip Enable High           | $\overline{W} = V_{IL}$ | Min | 70        | ns   |  |

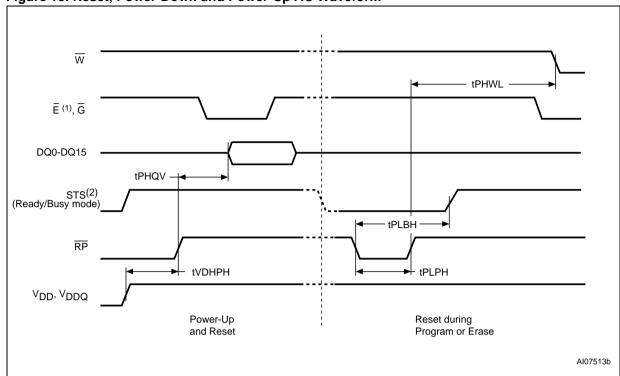



Figure 15. Reset, Power-Down and Power-Up AC Waveform

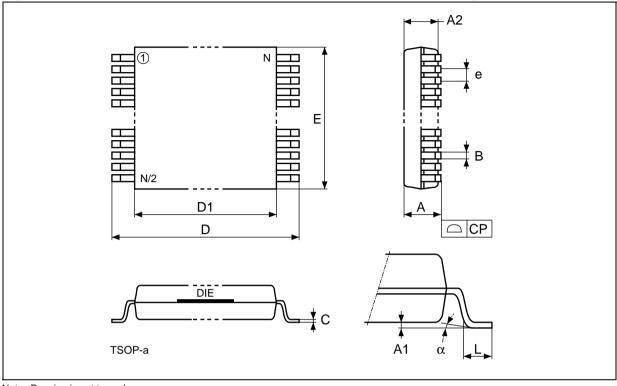

2. Not available with the LFBGA88 package.

Table 20. Reset, Power-Down and Power-Up AC Characteristics

| Symbol             | Parameter                                        | M30LW128D | Unit  |    |
|--------------------|--------------------------------------------------|-----------|-------|----|
| Syllibol           | Farameter                                        | 110       | Oilit |    |
| t <sub>PHQV</sub>  | Reset/Power-Down High to Data Valid              | Max       | 150   | ns |
| t <sub>PHWL</sub>  | Reset/Power-Down High to Write Enable Low        | Max       | 1     | μs |
| t <sub>PLPH</sub>  | Reset/Power-Down Low to Reset/Power-Down High    | Min       | 100   | ns |
| t <sub>PLBH</sub>  | Reset/Power-Down Low to Status/(Ready/Busy) High | Max       | 30    | μs |
| t <sub>VDHPH</sub> | Supply Voltages High to Reset/Power-Down High    | Min       | 0     | μs |

### **PACKAGE MECHANICAL**

Figure 16. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline



Note: Drawing is not to scale.

Table 21. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data

| Cumbal |      | mm    |       |        | inches |        |
|--------|------|-------|-------|--------|--------|--------|
| Symbol | Тур  | Min   | Max   | Тур    | Min    | Max    |
| А      |      |       | 1.20  |        |        | 0.0472 |
| A1     |      | 0.05  | 0.15  |        | 0.0020 | 0.0059 |
| A2     |      | 0.95  | 1.05  |        | 0.0374 | 0.0413 |
| В      |      | 0.17  | 0.27  |        | 0.0067 | 0.0106 |
| С      |      | 0.10  | 0.21  |        | 0.0039 | 0.0083 |
| D      |      | 19.80 | 20.20 |        | 0.7795 | 0.7953 |
| D1     |      | 18.30 | 18.50 |        | 0.7205 | 0.7283 |
| E      |      | 13.90 | 14.10 |        | 0.5472 | 0.5551 |
| е      | 0.50 | -     | _     | 0.0197 | _      | _      |
| L      |      | 0.50  | 0.70  |        | 0.0197 | 0.0276 |
| α      |      | 0°    | 5°    |        | 0°     | 5°     |
| N      |      | 56    |       |        | 56     |        |
| СР     |      |       | 0.10  |        |        | 0.0039 |

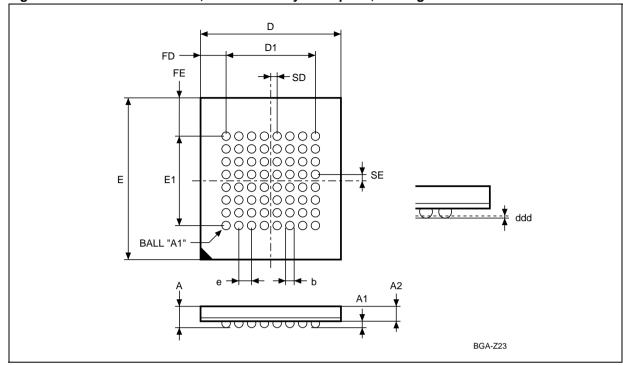



Figure 17. TBGA64 - 10x13mm, 8 x 8 ball array 1mm pitch, Package Outline

Note: Drawing is not to scale.

Table 22. TBGA64 - 10x13mm, 8 x 8 ball array, 1 mm pitch, Package Mechanical Data

| Symbol |        | millimeters |        | inches |        |        |  |
|--------|--------|-------------|--------|--------|--------|--------|--|
| Symbol | Тур    | Min         | Max    | Тур    | Min    | Max    |  |
| Α      |        |             | 1.200  |        |        | 0.0472 |  |
| A1     | 0.300  | 0.200       | 0.350  | 0.0118 | 0.0079 | 0.0138 |  |
| A2     |        |             | 0.850  |        |        | 0.0335 |  |
| b      |        | 0.400       | 0.500  |        | 0.0157 | 0.0197 |  |
| D      | 10.000 | 9.900       | 10.100 | 0.3937 | 0.3898 | 0.3976 |  |
| D1     | 7.000  | -           | -      | 0.2756 | -      | -      |  |
| ddd    |        |             | 0.100  |        |        | 0.0039 |  |
| е      | 1.000  | _           | -      | 0.0394 | _      | _      |  |
| Е      | 13.000 | 12.900      | 13.100 | 0.5118 | 0.5079 | 0.5157 |  |
| E1     | 7.000  | -           | -      | 0.2756 | _      | _      |  |
| FD     | 1.500  | -           | -      | 0.0591 | -      | -      |  |
| FE     | 3.000  | _           | -      | 0.1181 | _      | -      |  |
| SD     | 0.500  | _           | -      | 0.0197 | _      | _      |  |
| SE     | 0.500  | _           | _      | 0.0197 | _      | _      |  |

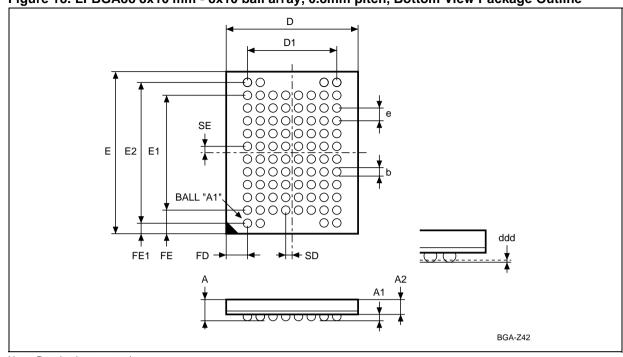
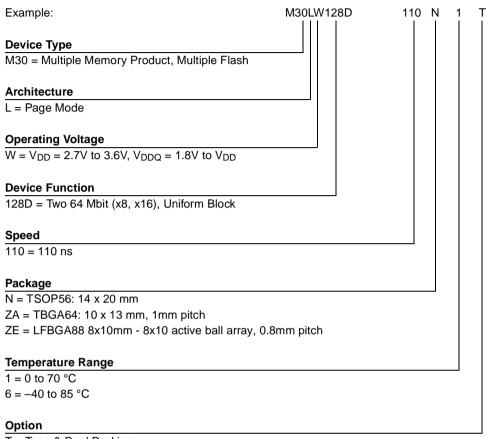



Figure 18. LFBGA88 8x10 mm - 8x10 ball array, 0.8mm pitch, Bottom View Package Outline

Note: Drawing is not to scale.

Table 23. LFBGA88 8x10mm - 8x10 ball array, 0.8mm pitch, Package Mechanical Data


| Symbol |        | millimeters |        | inches |        |        |
|--------|--------|-------------|--------|--------|--------|--------|
| Symbol | Тур    | Min         | Max    | Тур    | Min    | Max    |
| А      |        |             | 1.400  |        |        | 0.0551 |
| A1     |        | 0.300       |        |        | 0.0118 |        |
| A2     | 0.960  |             |        | 0.0378 |        |        |
| b      | 0.400  | 0.350       | 0.450  | 0.0157 | 0.0138 | 0.0177 |
| D      | 8.000  | 7.900       | 8.100  | 0.3150 | 0.3110 | 0.3189 |
| D1     | 5.600  | _           | _      | 0.2205 | -      | -      |
| ddd    |        |             | 0.100  |        |        | 0.0039 |
| E      | 10.000 | 9.900       | 10.100 | 0.3937 | 0.3898 | 0.3976 |
| E1     | 7.200  | _           | _      | 0.2835 | -      | _      |
| E2     | 8.800  | -           | -      | 0.3465 | -      | -      |
| е      | 0.800  | -           | -      | 0.0315 | -      | -      |
| FD     | 1.200  | _           | _      | 0.0472 | -      | _      |
| FE     | 1.400  | -           | -      | 0.0551 | -      | -      |
| FE1    | 0.600  | _           | _      | 0.0236 | -      | _      |
| SD     | 0.400  | -           | _      | 0.0157 | -      | _      |
| SE     | 0.400  | _           | _      | 0.0157 | _      | _      |

Note: All of the values in the table are preliminary and are subject to change.

47/

#### **PART NUMBERING**

## **Table 24. Ordering Information Scheme**



T = Tape & Reel Packing

Note: Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.



## APPENDIX A. BLOCK ADDRESS TABLE

**Table 25. Block Addresses** 

| Blo          | ock No. | Address Range<br>(x8 Bus Width) | Address Range<br>(x16 Bus Width) |  |  |
|--------------|---------|---------------------------------|----------------------------------|--|--|
|              | 128     | FE0000h-FFFFFh                  | 7F0000h-7FFFFh                   |  |  |
|              | 127     | FC0000h-FDFFFFh                 | 7E0000h-7EFFFFh                  |  |  |
| ,            | 126     | FA0000h-FBFFFFh                 | 7D0000h-7DFFFFh                  |  |  |
|              | 125     | F80000h-F9FFFFh                 | 7C0000h-7CFFFFh                  |  |  |
|              | 124     | F60000h-F7FFFh                  | 7B0000h-7BFFFFh                  |  |  |
|              | 123     | F40000h-F5FFFFh                 | 7A0000h-7AFFFFh                  |  |  |
|              | 122     | F20000h-F3FFFh                  | 790000h-79FFFFh                  |  |  |
| ,            | 121     | F00000h-F1FFFh                  | 780000h-78FFFFh                  |  |  |
|              | 120     | EE0000h-EFFFFh                  | 770000h-77FFFFh                  |  |  |
|              | 119     | EC0000h-EDFFFFh                 | 760000h-76FFFFh                  |  |  |
|              | 118     | EA0000h-EBFFFFh                 | 750000h-75FFFFh                  |  |  |
|              | 117     | E80000h-E9FFFh                  | 740000h-74FFFFh                  |  |  |
|              | 116     | E60000h-E7FFFh                  | 730000h-73FFFFh                  |  |  |
|              | 115     | E40000h-E5FFFh                  | 720000h-72FFFFh                  |  |  |
| _            | 114     | E20000h-E3FFFh                  | 710000h-71FFFFh                  |  |  |
| mor          | 113     | E00000h-E1FFFh                  | 700000h-70FFFh                   |  |  |
| Jpper Memory | 112     | DE0000h-DFFFFh                  | 6F0000h-6FFFFh                   |  |  |
| Jppe         | 111     | DC0000h-DDFFFFh                 | 6E0000h-6EFFFh                   |  |  |
| . ر          | 110     | DA0000h-DBFFFFh                 | 6D0000h-6DFFFFh                  |  |  |
|              | 109     | D80000h-D9FFFFh                 | 6C0000h-6CFFFh                   |  |  |
|              | 108     | D60000h-D7FFFh                  | 6B0000h-6BFFFh<br>6A0000h-6AFFFh |  |  |
| ,            | 107     | D40000h-D5FFFFh                 |                                  |  |  |
| ,            | 106     | D20000h-D3FFFFh                 | 690000h-69FFFFh                  |  |  |
|              | 105     | D00000h-D1FFFh                  | 680000h-68FFFFh                  |  |  |
| ,            | 104     | CE0000h-CFFFFh                  | 670000h-67FFFh                   |  |  |
|              | 103     | CC0000h-CDFFFFh                 | 660000h-66FFFFh                  |  |  |
|              | 102     | CA0000h-CBFFFFh                 | 650000h-65FFFFh                  |  |  |
|              | 101     | C80000h-C9FFFh                  | 640000h-64FFFFh                  |  |  |
|              | 100     | C60000h-C7FFFh                  | 630000h-63FFFFh                  |  |  |
|              | 99      | C40000h-C5FFFh                  | 620000h-62FFFFh                  |  |  |
|              | 98      | C20000h-C3FFFh                  | 610000h-61FFFFh                  |  |  |
|              | 97      | C00000h-C1FFFh                  | 600000h-60FFFh                   |  |  |
|              | 96      | BE0000h-BFFFFFh                 | 5F0000h-5FFFFFh                  |  |  |

| Block No.    |    | Address Range<br>(x8 Bus Width) | Address Range<br>(x16 Bus Width) |  |
|--------------|----|---------------------------------|----------------------------------|--|
|              | 95 | BC0000h-BDFFFFh                 | 5E0000h-5EFFFFh                  |  |
|              | 94 | BA0000h-BBFFFFh                 | 5D0000h-5DFFFFh                  |  |
|              | 93 | B80000h-B9FFFFh                 | 5C0000h-5CFFFFh                  |  |
|              | 92 | B60000h-B7FFFFh                 | 5B0000h-5BFFFFh                  |  |
|              | 91 | B40000h-B5FFFFh                 | 5A0000h-5AFFFFh                  |  |
| •            | 90 | B20000h-B3FFFFh                 | 590000h-59FFFFh                  |  |
|              | 89 | B00000h-B1FFFFh                 | 580000h-58FFFFh                  |  |
| •            | 88 | AE0000h-AFFFFh                  | 570000h-57FFFh                   |  |
|              | 87 | AC0000h-ADFFFFh                 | 560000h-56FFFFh                  |  |
|              | 86 | AA0000h-ABFFFFh                 | 550000h-55FFFFh                  |  |
|              | 85 | A80000h-A9FFFFh                 | 540000h-54FFFFh                  |  |
|              | 84 | A60000h-A7FFFFh                 | 530000h-53FFFFh                  |  |
|              | 83 | A40000h-A5FFFFh                 | 520000h-52FFFFh                  |  |
| ^            | 82 | A20000h-A3FFFFh                 | 510000h-51FFFFh                  |  |
| mor          | 81 | A00000h-A1FFFFh                 | 500000h-50FFFh                   |  |
| r Me         | 80 | 9E0000h-9FFFFh                  | 4F0000h-4FFFFh                   |  |
| Jpper Memory | 79 | 9C0000h-9DFFFFh                 | 4E0000h-4EFFFFh                  |  |
| ٔ ر          | 78 | 9A0000h-9BFFFFh                 | 4D0000h-4DFFFFh                  |  |
|              | 77 | 980000h-99FFFFh                 | 4C0000h-4CFFFFh                  |  |
|              | 76 | 960000h-97FFFh                  | 4B0000h-4BFFFFh                  |  |
|              | 75 | 940000h-95FFFFh                 | 4A0000h-4AFFFFh                  |  |
|              | 74 | 920000h-93FFFFh                 | 490000h-49FFFFh                  |  |
|              | 73 | 900000h-91FFFFh                 | 480000h-48FFFFh                  |  |
|              | 72 | 8E0000h-8FFFFFh                 | 470000h-47FFFh                   |  |
|              | 71 | 8C0000h-8DFFFFh                 | 460000h-46FFFFh                  |  |
|              | 70 | 8A0000h-8BFFFFh                 | 450000h-45FFFFh                  |  |
|              | 69 | 880000h-89FFFFh                 | 440000h-44FFFFh                  |  |
|              | 68 | 860000h-87FFFh                  | 430000h-43FFFFh                  |  |
|              | 67 | 840000h-85FFFFh                 | 420000h-42FFFFh                  |  |
|              | 66 | 820000h-83FFFFh                 | 410000h-41FFFFh                  |  |
|              | 65 | 800000h-81FFFFh                 | 400000h-40FFFFh                  |  |



| Blo         | ock No. | Address Range<br>(x8 Bus Width) | Address Range<br>(x16 Bus Width) |  |
|-------------|---------|---------------------------------|----------------------------------|--|
|             | 64      | 7E0000h-7FFFFh                  | 3F0000h-3FFFFFh                  |  |
|             | 63      | 7C0000h-7DFFFFh                 | 3E0000h-3EFFFFh                  |  |
|             | 62      | 7A0000h-7BFFFFh                 | 3D0000h-3DFFFFh                  |  |
|             | 61      | 780000h-79FFFFh                 | 3C0000h-3CFFFFh                  |  |
|             | 60      | 760000h-77FFFFh                 | 3B0000h-3BFFFFh                  |  |
|             | 59      | 740000h-75FFFFh                 | 3A0000h-3AFFFFh                  |  |
|             | 58      | 720000h-73FFFFh                 | 390000h-39FFFFh                  |  |
|             | 57      | 700000h-71FFFFh                 | 380000h-38FFFFh                  |  |
|             | 56      | 6E0000h-6FFFFh                  | 370000h-37FFFFh                  |  |
|             | 55      | 6C0000h-6DFFFFh                 | 360000h-36FFFFh                  |  |
|             | 54      | 6A0000h-6BFFFFh                 | 350000h-35FFFFh                  |  |
|             | 53      | 680000h-69FFFFh                 | 340000h-34FFFFh                  |  |
|             | 52      | 660000h-67FFFh                  | 330000h-33FFFFh                  |  |
|             | 51      | 640000h-65FFFFh                 | 320000h-32FFFFh                  |  |
|             | 50      | 620000h-63FFFFh                 | 310000h-31FFFFh                  |  |
| _           | 49      | 600000h-61FFFFh                 | 300000h-30FFFFh                  |  |
| ower Memory | 48      | 5E0000h-5FFFFh                  | 2F0000h-2FFFFh                   |  |
| r Me        | 47      | 5C0000h-5DFFFFh                 | 2E0000h-2EFFFFh                  |  |
| оме         | 46      | 5A0000h-5BFFFFh                 | 2D0000h-2DFFFFh                  |  |
|             | 45      | 580000h-59FFFFh                 | 2C0000h-2CFFFFh                  |  |
|             | 44      | 560000h-57FFFh                  | 2B0000h-2BFFFFh                  |  |
|             | 43      | 540000h-55FFFFh                 | 2A0000h-2AFFFFh                  |  |
|             | 42      | 520000h-53FFFFh                 | 290000h-29FFFh                   |  |
|             | 41      | 500000h-51FFFFh                 | 280000h-28FFFFh                  |  |
|             | 40      | 4E0000h-4FFFFh                  | 270000h-27FFFh                   |  |
|             | 39      | 4C0000h-4DFFFFh                 | 260000h-26FFFFh                  |  |
|             | 38      | 4A0000h-4BFFFFh                 | 250000h-25FFFFh                  |  |
|             | 37      | 480000h-49FFFFh                 | 240000h-24FFFFh                  |  |
|             | 36      | 460000h-47FFFFh                 | 230000h-23FFFFh                  |  |
|             | 35      | 440000h-45FFFFh                 | 220000h-22FFFFh                  |  |
|             | 34      | 420000h-43FFFFh                 | 210000h-21FFFFh                  |  |
|             | 33      | 400000h-41FFFFh                 | 200000h-20FFFFh                  |  |
|             | 32      | 3E0000h-3FFFFh                  | 1F0000h-1FFFFFh                  |  |
|             | 31      | 3C0000h-3DFFFFh                 | 1E0000h-1EFFFFh                  |  |
|             | 30      | 3A0000h-3BFFFFh                 | 1D0000h-1DFFFFh                  |  |

| Block No.   |    | Address Range<br>(x8 Bus Width) | Address Range<br>(x16 Bus Width) |  |  |
|-------------|----|---------------------------------|----------------------------------|--|--|
|             | 29 | 380000h-39FFFFh                 | 1C0000h-1CFFFFh                  |  |  |
|             | 28 | 360000h-37FFFFh                 | 1B0000h-1BFFFFh                  |  |  |
|             | 27 | 340000h-35FFFFh                 | 1A0000h-1AFFFFh                  |  |  |
|             | 26 | 320000h-33FFFFh                 | 190000h-19FFFFh                  |  |  |
|             | 25 | 300000h-31FFFFh                 | 180000h-18FFFFh                  |  |  |
|             | 24 | 2E0000h-2FFFFh                  | 170000h-17FFFFh                  |  |  |
|             | 23 | 2C0000h-2DFFFFh                 | 160000h-16FFFFh                  |  |  |
|             | 22 | 2A0000h-2BFFFFh                 | 150000h-15FFFFh                  |  |  |
|             | 21 | 280000h-29FFFFh                 | 140000h-14FFFFh                  |  |  |
|             | 20 | 260000h-27FFFh                  | 130000h-13FFFFh                  |  |  |
|             | 19 | 240000h-25FFFFh                 | 120000h-12FFFFh                  |  |  |
|             | 18 | 220000h-23FFFFh                 | 110000h-11FFFFh                  |  |  |
| /           | 17 | 200000h-21FFFFh                 | 100000h-10FFFFh                  |  |  |
| mory        | 16 | 1E0000h-1FFFFh                  | 0F0000h-0FFFFh                   |  |  |
| r Me        | 15 | 1C0000h-1DFFFFh                 | 0E0000h-0EFFFh                   |  |  |
| ower Memory | 14 | 1A0000h-1BFFFFh                 | 0D0000h-0DFFFFh                  |  |  |
|             | 13 | 180000h-19FFFFh                 | 0C0000h-0CFFFh                   |  |  |
|             | 12 | 160000h-17FFFFh                 | 0B0000h-0BFFFFh                  |  |  |
|             | 11 | 140000h-15FFFFh                 | 0A0000h-0AFFFh                   |  |  |
|             | 10 | 120000h-13FFFFh                 | 090000h-09FFFh                   |  |  |
|             | 9  | 100000h-11FFFFh                 | 080000h-08FFFFh                  |  |  |
|             | 8  | 0E0000h-0FFFFh                  | 070000h-07FFFh                   |  |  |
|             | 7  | 0C0000h-0DFFFFh                 | 060000h-06FFFFh                  |  |  |
|             | 6  | 0A0000h-0BFFFFh                 | 050000h-05FFFFh                  |  |  |
|             | 5  | 080000h-09FFFFh                 | 040000h-04FFFFh                  |  |  |
|             | 4  | 060000h-07FFFh                  | 030000h-03FFFFh                  |  |  |
|             | 3  | 040000h-05FFFFh                 | 020000h-02FFFFh                  |  |  |
|             | 2  | 020000h-03FFFFh                 | 010000h-01FFFFh                  |  |  |
|             | 1  | 000000h-01FFFFh                 | 000000h-00FFFFh                  |  |  |



#### APPENDIX B. COMMON FLASH INTERFACE - CFI

The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the de-

vice, enabling the software to upgrade itself when necessary.

When the CFI Query Command (RCFI) is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 26, 27, 28, 29, 30 and 31 show the addresses used to retrieve the data.

**Table 26. Query Structure Overview** 

| Add                 | ress              | Out and the Name                                  | Barantintan.                                                          |
|---------------------|-------------------|---------------------------------------------------|-----------------------------------------------------------------------|
| x16                 | x8 <sup>(4)</sup> | Sub-section Name                                  | Description                                                           |
| 0000h               | 10h               |                                                   | Manufacturer Code                                                     |
| 0001h               | 11h               |                                                   | Device Code                                                           |
| 0010h               | 20h               | CFI Query Identification String                   | Command set ID and algorithm data offset                              |
| 001Bh               | 36h               | System Interface Information                      | Device timing and voltage information                                 |
| 0027h               | 4Eh               | Device Geometry Definition                        | Flash memory layout                                                   |
| P(h                 | n) <sup>(1)</sup> | Primary Algorithm-specific Extended Query Table   | Additional information specific to the Primary Algorithm (optional)   |
| A(h) <sup>(2)</sup> |                   | Alternate Algorithm-specific Extended Query Table | Additional information specific to the Alternate Algorithm (optional) |
| (SBA                | +02)h             | Block Status Register                             | Block-related Information                                             |

Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.

- 2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.
- 3. SBA is the Start Base Address for each block.
- 4. In x8 mode A0 must be set to V<sub>IL</sub>. Otherwise, 00h will be output.

Table 27. CFI - Query Address and Data Output

| Add                  | Address           |      | ۱۵  | Description                                               |  |
|----------------------|-------------------|------|-----|-----------------------------------------------------------|--|
| x16                  | x8 <sup>(3)</sup> | Data |     |                                                           |  |
| 0010h                | 20h               | 51h  | "Q" | 51h; "Q"                                                  |  |
| 0011h                | 22h               | 52h  | "R" | Query ASCII String 52h; "R"                               |  |
| 0012h                | 24h               | 59h  | "Y" | 59h; "Y"                                                  |  |
| 0013h                | 26h               | 01h  |     | Primary Vendor: Command Set and Control Interface ID Code |  |
| 0014h                | 28h               | 00h  |     |                                                           |  |
| 0015h                | 2Ah               | 31h  |     | Drimany algorithm extended Query Address Tables D/h)      |  |
| 0016h                | 2Ch               | 001  | h   | Primary algorithm extended Query Address Table: P(h)      |  |
| 0017h                | 2Eh               | 001  | h   | Alternate Vendor:                                         |  |
| 0018h                | 30h               | 00h  |     | Command Set and Control Interface ID Code                 |  |
| 0019h                | 32h               | 00h  |     | Altamata Alaasishaa Futandad Oosaa addaaa Tabla           |  |
| 001Ah <sup>(2)</sup> | 34h               | 001  | h   | Alternate Algorithm Extended Query address Table          |  |

Note: 1. Query Data are always presented on DQ7-DQ0. DQ15-DQ8 are set to '0'.

- 2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.
- 3. In x8 mode A0 must be set to V<sub>IL</sub>. Otherwise, 00h will be output.

Table 28. CFI - Device Voltage and Timing Specification

| Add   | Address           |                    | Description                                                             |  |
|-------|-------------------|--------------------|-------------------------------------------------------------------------|--|
| x16   | x8 <sup>(4)</sup> | Data               | Description                                                             |  |
| 001Bh | 36h               | 27h <sup>(1)</sup> | V <sub>DD</sub> Min, 2.7V                                               |  |
| 001Ch | 38h               | 36h <sup>(1)</sup> | V <sub>DD</sub> max, 3.6V                                               |  |
| 001Dh | 3Ah               | 00h <sup>(2)</sup> | V <sub>PP</sub> min – Not Available                                     |  |
| 001Eh | 3Ch               | 00h <sup>(2)</sup> | V <sub>PP</sub> max – Not Available                                     |  |
| 001Fh | 3Eh               | 04h                | 2 <sup>n</sup> µs typical time-out for Word, DWord prog – Not Available |  |
| 0020h | 40h               | 08h                | 2 <sup>n</sup> μs, typical time-out for max buffer write                |  |
| 0021h | 42h               | 0Ah                | 2 <sup>n</sup> ms, typical time-out for Erase Block                     |  |
| 0022h | 44h               | 00h <sup>(3)</sup> | 2 <sup>n</sup> ms, typical time-out for chip erase – Not Available      |  |
| 0023h | 46h               | 04h                | 2 <sup>n</sup> x typical for Word Dword time-out max – Not Available    |  |
| 0024h | 48h               | 04h                | 2 <sup>n</sup> x typical for buffer write time-out max                  |  |
| 0025h | 4Ah               | 04h                | 2 <sup>n</sup> x typical for individual block erase time-out maximum    |  |
| 0026h | 4Ch               | 00h <sup>(3)</sup> | 2 <sup>n</sup> x typical for chip erase max time-out – Not Available    |  |

Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.

<sup>2.</sup> Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.

<sup>3.</sup> Not supported.

<sup>4.</sup> In x8 mode A0 must be set to  $V_{\text{IL}}$ . Otherwise, 00h will be output.

**Table 29. Device Geometry Definition** 

| Add   | Address            |      | Description                                                                                                  |                                                                                               |  |  |
|-------|--------------------|------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| x16   | x8 <sup>(1)</sup>  | Data | Description                                                                                                  |                                                                                               |  |  |
| 0027h | 4Eh                | 18h  | n where 2 <sup>n</sup> is num                                                                                | ber of bytes memory Size                                                                      |  |  |
| 0028h | 50h                | 02h  | 02h is the interface for M30LW128D devices delivered TSOP56 and TBGA64 packages (x8 and x16 modes available) |                                                                                               |  |  |
|       | N/A <sup>(2)</sup> | 01h  | Device Interface                                                                                             | 01h is the interface for M30LW128D devices delivered in LFBGA88 packages (x16 mode available) |  |  |
| 0029h | 52h                | 00h  |                                                                                                              |                                                                                               |  |  |
| 002Ah | 54h                | 05h  | Maximuma aumaban                                                                                             | of husban in Write Buffer, 20                                                                 |  |  |
| 002Bh | 56h                | 00h  | Maximum number                                                                                               | of bytes in Write Buffer, 2 <sup>n</sup>                                                      |  |  |
| 002Ch | 58h                | 01h  | Bit7-0 = number o                                                                                            | f Erase Block Regions in device                                                               |  |  |
| 002Dh | 5Ah                | 7Fh  | Number (p. 1) of E                                                                                           | raca Placks of identical size: n=129                                                          |  |  |
| 002Eh | 5Ch                | 00h  | Number (n-1) of Erase Blocks of identical size; n=128                                                        |                                                                                               |  |  |
| 002Fh | 5Eh                | 00h  | Erase Block Region Information                                                                               |                                                                                               |  |  |
| 0030h | 60h                | 02h  | x 256 bytes per Erase block (128K bytes)                                                                     |                                                                                               |  |  |

Note: 1. In x8 mode A0 must be set to  $V_{\text{IL}}$ . Otherwise, 00h will be output.

**Table 30. Block Status Register** 

| Address                | Data   |   | Selected Block Information                      |
|------------------------|--------|---|-------------------------------------------------|
|                        | bit0   | 0 | Block Unprotected                               |
|                        | DIIU   | 1 | Block Protected                                 |
| (BA+2)h <sup>(1)</sup> | bit1   | 0 | Last erase operation ended successfully (2)     |
|                        | Ditt   | 1 | Last erase operation not ended successfully (2) |
|                        | bit7-2 | 0 | Reserved for future features                    |

Note: 1. BA specifies the block address location, A22-A17.

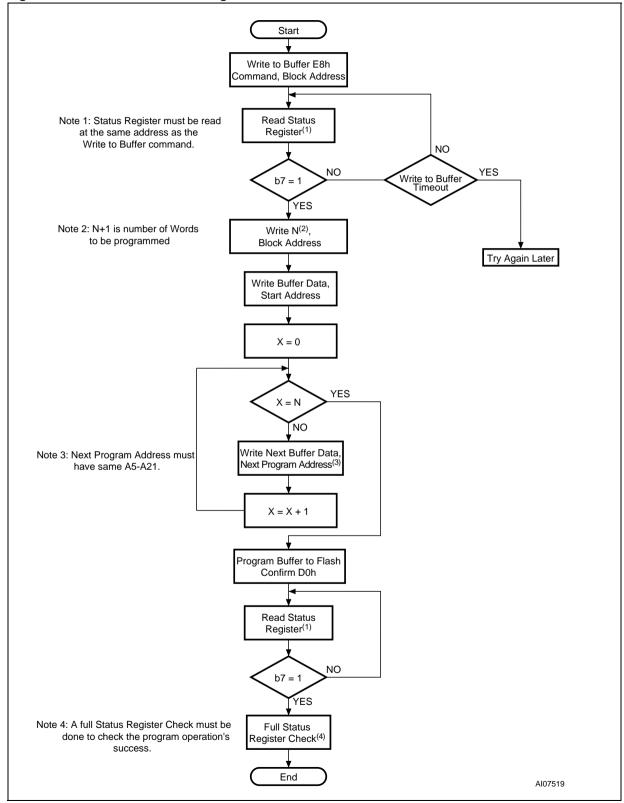
2. Not Supported.

44/57

<sup>2.</sup> N/A = Not Applicable. Only the x16 mode is available with the LFBGA88 package.

**Table 31. Extended Query information** 

| Address |       | 5 ( 41 )          |      | Description |                                                                                                                                                                                                                                                                                                                           |
|---------|-------|-------------------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| offset  | x16   | x8 <sup>(2)</sup> | Data | (Hex)       | Description                                                                                                                                                                                                                                                                                                               |
| (P)h    | 0031h | 62h               | 50h  | "P"         |                                                                                                                                                                                                                                                                                                                           |
| (P+1)h  | 0032h | 64h               | 52h  | "R"         | Query ASCII string - Extended Table                                                                                                                                                                                                                                                                                       |
| (P+2)h  | 0033h | 66h               | 49h  | "]"         |                                                                                                                                                                                                                                                                                                                           |
| (P+3)h  | 0034h | 68h               | 3′   | 1h          | Major version number                                                                                                                                                                                                                                                                                                      |
| (P+4)h  | 0035h | 6Ah               | 3′   | <b>I</b> h  | Minor version number                                                                                                                                                                                                                                                                                                      |
| (P+5)h  | 0036h | 6Ch               | CI   | ≣h          | Optional Feature: (1=yes, 0=no)                                                                                                                                                                                                                                                                                           |
| (P+6)h  | 0037h | 6Eh               | 06   | 3h          | bit0, Chip Erase Supported (0=no) bit1, Suspend Erase Supported (1=yes)                                                                                                                                                                                                                                                   |
| (P+7)h  | 0038h | 70h               | 00   | )h          | bit2, Suspend Program Supported (1=yes) bit3, Protect/Unprotect Supported (1=yes)                                                                                                                                                                                                                                         |
| (P+8)h  | 0039h | 72h               | 00h  |             | bit4, Queue Erase Supported (0=no) bit5, Instant Individual Block locking (0=no) bit6, Protection bits supported (1=yes) bit7, Page Read supported (1=yes) bit8, Synchronous Read supported (0=no) bit9, Multi chip device (1=yes) bit10, Simultaneous operations supported (1=yes) Bits 11 to 31 reserved for future use |
| (P+9)h  | 003Ah | 74h               | 01h  |             | Function allowed after Suspend: Program allowed after Erase Suspend (1=yes) Bits 1 to 7 reserved for future use                                                                                                                                                                                                           |
| (P+A)h  | 003Bh | 76h               | 0′   | 1h          | Block Status Register                                                                                                                                                                                                                                                                                                     |
| (P+B)h  | 003Ch | 78h               | 00   | )h          | bit0, Block Protect-Bit status active (1=yes) bit1, Block Lock-Down Bit status (not available) bits 2 to 15 reserved for future use                                                                                                                                                                                       |
| (P+C)h  | 003Dh | 7Ah               | 33   | 3h          | V <sub>DD</sub> OPTIMUM Program/Erase voltage conditions                                                                                                                                                                                                                                                                  |
| (P+D)h  | 003Eh | 7Ch               | 00   | )h          | V <sub>PP</sub> OPTIMUM Program/Erase voltage conditions                                                                                                                                                                                                                                                                  |
| (P+E)h  | 003Fh | 7Eh               | 0′   | 1h          | OTP protection: No. of protection register fields                                                                                                                                                                                                                                                                         |
| (P+F)h  | 0040h | 80h               | 80   | )h          | Protection Register's start address, least significant bits                                                                                                                                                                                                                                                               |
| (P+10)h | 0041h | 82h               | 00h  |             | Protection Register's start address, most significant bits                                                                                                                                                                                                                                                                |
| (P+11)h | 0042h | 84h               | 03h  |             | n where 2 <sup>n</sup> is number of factory reprogrammed bytes                                                                                                                                                                                                                                                            |
| (P+12)h | 0043h | 86h               | 03h  |             | n where 2 <sup>n</sup> is number of user programmable bytes                                                                                                                                                                                                                                                               |
| (P+13)h | 0044h | 88h               | 03h  |             | Page Read: 2 <sup>n</sup> Bytes (n = bits 0-7)                                                                                                                                                                                                                                                                            |
| (P+14)h | 0045h | 8Ah               | 00   | )h          | Synchronous mode configuration fields                                                                                                                                                                                                                                                                                     |
| (P+15)h | 0046h | 8Ch               |      |             | Reserved for future use                                                                                                                                                                                                                                                                                                   |


Note: 1. Bit7 to bit4 are coded in Hexadecimal and scaled in Volt while bit3 to bit0 are in Binary Code Decimal and scaled in mV.

2. In x8 mode, A0 must be set to V<sub>IL</sub>, otherwise 00h will be output.



### **APPENDIX C. FLOW CHARTS**

Figure 19. Write to Buffer and Program Flowchart and Pseudo Code



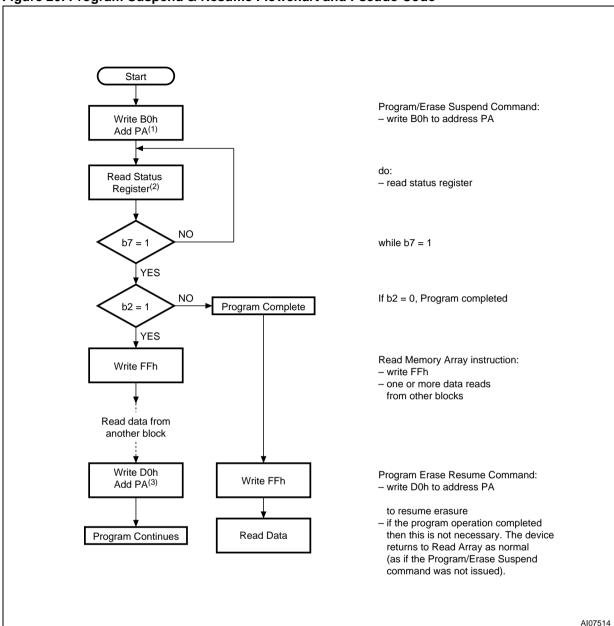
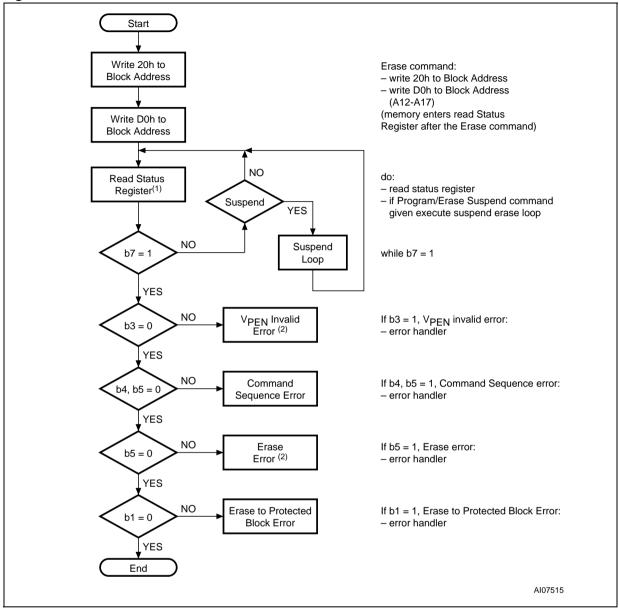




Figure 20. Program Suspend & Resume Flowchart and Pseudo Code

Note: 1. PA = Program Address. The Program/ Erase Suspend command must be issued to the same address as the current Program command.

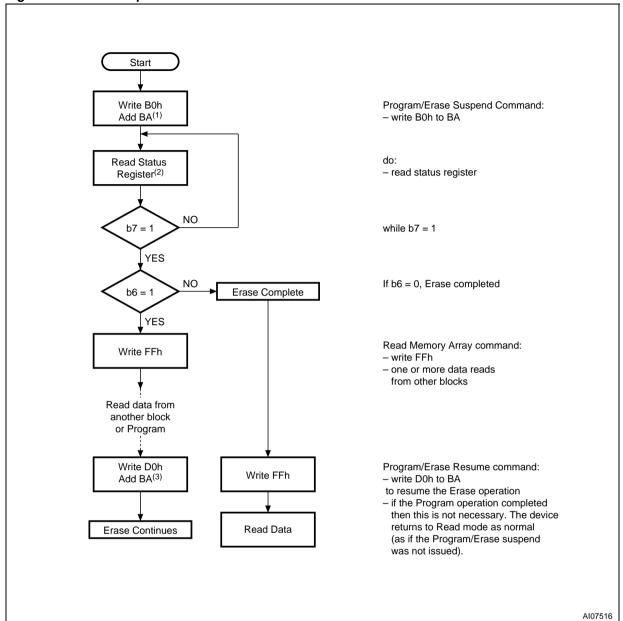
- 2. The Read Status Register command must be issued to the same address as the Program/ Erase Suspend command.
- 3. PA = Program Address. The Program/ Erase Resume command must be issued to the same address as the Program/ Erase Suspend command.

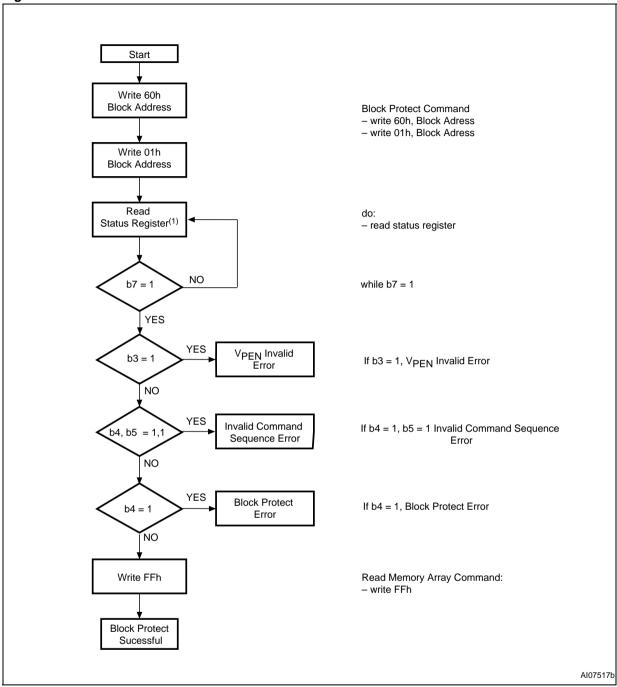
Figure 21. Erase Flowchart and Pseudo Code



Note: 1. The Read Status Register command must be issued to the same address as the Block Erase command.

2. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase operations





Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code

Note: 1. The Program/ Erase Suspend command must be issued to the same address as the current Erase command.

2. The Read Status Register command must be issued to the same address as the Program/ Erase Suspend command.

3. The Program/ Erase Resume command must be issued to the same address as the Program/ Erase Suspend command.

Figure 23. Block Protect Flowchart and Pseudo Code



Note: 1. The Read Status Register command must be issued to the same address as the Block Protect command.

Start **Blocks Unprotect Command** Set A23 Low - set Address 000000h (A23 Low) (Add 000000h) Write 60h - write 60h - write D0h Write D0h Read do: Status Register - read status register Set A23 High (Add 400000h) NO b7 = 1while b7 = 1YES YES V<sub>PEN</sub> Invalid b3 = 1If b3 = 1,  $V_{PEN}$  Invalid Error Error NO YES **Invalid Command** If b4 = 1, b5 = 1 Invalid Command b4, b5 = 1,1 Sequence Error Sequence Error NO YES **Blocks Unprotect** If b5 = 1, Blocks Unprotect Error b5 = 1Error NO If A23 = Low, YES - set Address 000000h (A23 Low) A23 = Low? - repeat command NO Read Memory Array Command: Write FFh - write FFh Blocks Unprotect Sucessful AI07518b

Figure 24. Blocks Unprotect Flowchart and Pseudo Code

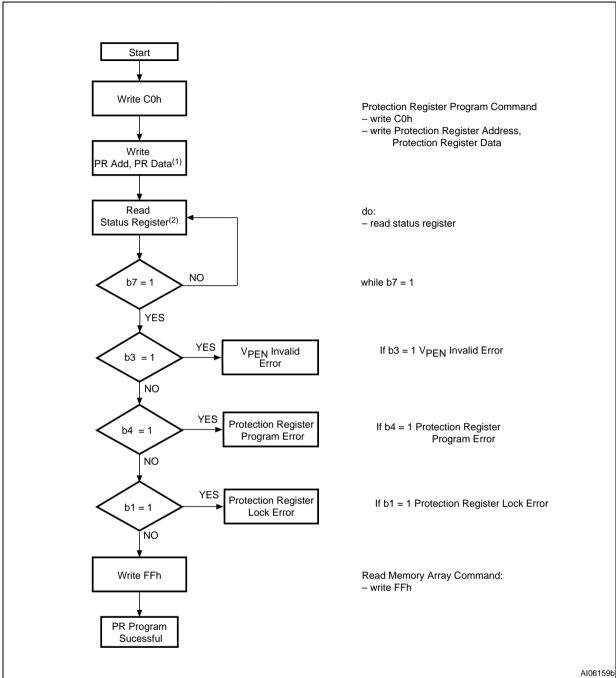



Figure 25. Protection Register Program Flowchart and Pseudo Code

Note: 1. PR = Protection Register

2. The Read Status Register command must be issued to the same address as the Protection Register Program command.

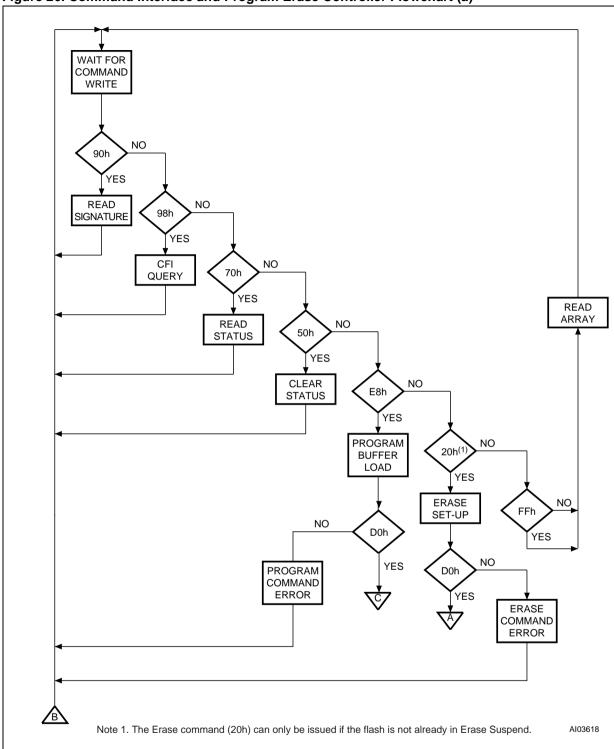



Figure 26. Command Interface and Program Erase Controller Flowchart (a)

Note: The commands must be issued to the addresses detailed in the Command Interface section, Table 5.

ERASE (READ STATUS) Program/Erase Controller Status bit in the Status Register YES READ READY **STATUS** NO READ NO **ARRAY** B0h YES YES READ NO **STATUS** FFh ERASE SUSPEND NO ERASE SUSPENDED YES READY NO READ YES WAIT FOR STATUS COMMAND WRITE YES READ 70h **STATUS** NO YES READ 90h SIGNATURE NO YES CFI 98h QUERY NO **PROGRAM** YES **BUFFER** E8h LOAD NO PROGRAM NO YES READ COMMAND D0h (ERASE RESUME) **STATUS ERROR** NO YES READ ARRAY AI03619

Figure 27. Command Interface and Program Erase Controller Flowchart (b)

Note: The commands must be issued to the addresses detailed in the Command Interface section, Table 5.

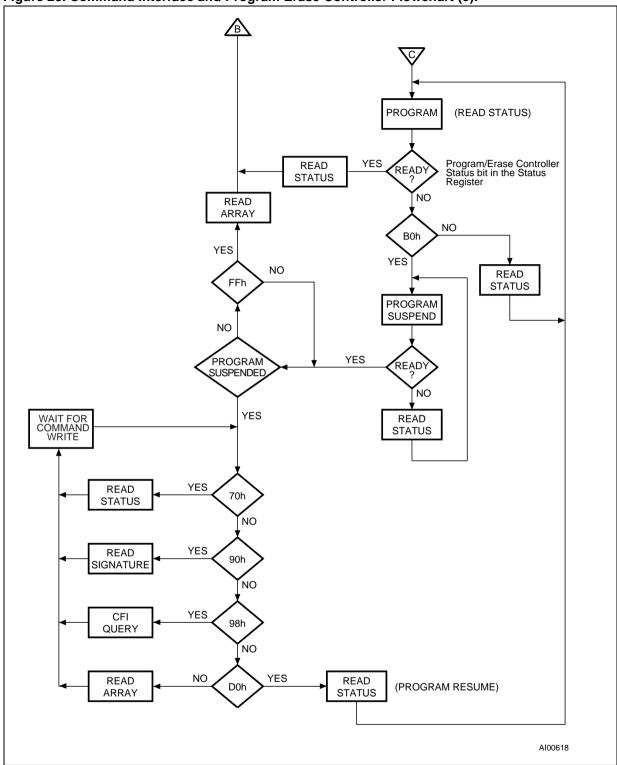



Figure 28. Command Interface and Program Erase Controller Flowchart (c).

Note: The commands must be issued to the addresses detailed in the Command Interface section, Table 5.

# **REVISION HISTORY**

**Table 32. Document Revision History** 

| Date        | Version | Revision Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-Oct-2002 | 1.0     | First Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11-Feb-2003 | 2.0     | Device code changed, LFBGA88 package added, Program /Erase Times and Program/Erase Endurance cycles table modified, Read Electronic Signature table modified, CFI Tables clarified in particular Table 31 and 29 (Extended Query Information and Device Geometry Definition). I <sub>OSC</sub> parameter added to Absolute Maximum Ratings table. I <sub>DD</sub> and V <sub>LKO</sub> clarified and I <sub>DDO</sub> and V <sub>PENH</sub> parameters added to DC Characteristics table. t <sub>PHWL</sub> parameter added to Reset, Power-Down and Power-Up AC Waveforms figure and Characteristics table. I <sub>DD1</sub> , I <sub>DD5</sub> , I <sub>DD2</sub> , I <sub>DD4</sub> , V <sub>IL</sub> , V <sub>IH</sub> and V <sub>LKO</sub> values refined in DC Characteristics table.  Chip Enable state corrected for Power-Down in Table 4, Bus Operations. Addresses modified for Blocks Unprotect and Configure STS commands in Table 5, Commands. Addresses modified in Figure 24, Blocks Unprotect Flowchart and Pseudo Code. Figure 23, Block Protect Flowchart and Pseudo Code, clarified.  Blocks Temporary Unprotect feature of Reset/Power Down pin no longer available. Program/Erase Suspend, Write to Buffer and Program, and Block Erase Commands clarified. |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

