
Writing an Ethernet
Device Driver for the
Alchemy™ Au1000™
Processor from AMD

Application Note
003Revision:
September 2001Issue Date:

© 2002 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to make
changes to specifications and product descriptions at any time without notice. No license,
whether express, implied, arising by estoppel or otherwise, to any intellectual property
rights is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or
implied warranty, relating to its products including, but not limited to, the implied warranty
of merchantability, fitness for a particular purpose, or infringement of any intellectual prop-
erty right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes
to its products at any time without notice.

Contacts

www.amd.com pcs.support@amd.com

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and Au1000, Au1100, Au1500, and Alchemy are trademarks of
Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Writing an Ethernet Device Driver for the Au1000™ ProcessorRev. 003 September 2001
The Au1000™ processor integrates two Ethernet Media Access Controllers, MAC. The MACs are
identical and independent of one another. Each MAC communicates to a Media Independent
Interface, MII, and is capable of supporting 10/100Mbps Ethernet. This document discusses how to
write a MAC device driver for the Au1000 processor.

Overview
The MAC is a simple device to utilize; once configured, the packet receive and transmit operations
are a “fire and forget” scenario.

The “fire and forget” scenario is supported by two DMA engines which independently handle
receiving and transmitting frames. Each DMA engine processes a 4-entry ring from/into which
packets are moved.

There are two rings, one for transmit and one for receive. As the DMA engine completes an operation
on an entry, it moves on to the next entry in the ring. Status bits and interrupts indicate when the
operation has completed.

A transmit DMA engine entry is composed of the macdma_txstat, macdma_txlen and
macdma_txaddr register triplet. A receive DMA engine entry is composed of the
macdma_rxstat and macdma_rxaddr register pair. Note that the Ethernet DMA engines are
dedicated engines; separate from the general purpose DMA controller.

The control of the MAC by software is described below. The discussions below apply equally to both
MACs, however, where coding examples are given, MAC0 will be used.

Programming Considerations
When programming the MAC, take into consideration the following:

• Before the MAC can be used, the entire MAC module must be enabled via the macen_mac0
register. An unused MAC should be disabled to reduce power consumption.

0

1

2

3

DMA Engine Ent ries Main Memory Buffers
Application Note 3

Rev. 003 September 2001Writing an Ethernet Device Driver for the Au1000™ Processor
• All register accesses must be 32-bits. Furthermore, 32-bit register accesses works for both endian
modes. NOTE: This is not true for the buffer contents, which is independently controlled via the
mac_control[EM] bit.

As with all peripherals integrated into the Au1000 processor, all register accesses should be through
the KSEG1 region. This region is un-mapped, and more importantly, non-cached. All non-cached
accesses proceed through the write buffer, WB. (Please see the Au1000 Processor Databook[1].) As a
result, accesses to the MAC registers must flush the write buffer (before and/or) after a register write.
Flushing the write buffer also guarantees that previous writes have been posted to the peripheral (as
opposed to sitting indefinitely in the write buffer until a write buffer flush event occurs). The write
buffer is flushed with a SYNC instruction (rather than a non-cached read since a read of a peripheral
register can have unintended side-effects).

MAC Initialization
Initialization of the MAC is performed using these recommended steps.

1. Pre-allocate four buffers for the receiver buffer DMA ring. See discussion on buffer
management for more information.

2. Pre-allocate four buffers for the transmitter buffer DMA ring. See discussion on buffer
management for more information.

3. Place the MAC in reset. This is accomplished by writing the value 0x00000040 to the
macen_mac0 register. This disables the entire MAC module and its DMA engines.

4. Initialize the receive DMA ring. For each of the four DMA entries, write the value
0x00000000 to the macdma_rxstat register, and write the address of a receive buffer
along with EN=1 bit to the macdma_rxaddr register. NOTE that the receive buffers must
be cache line (32-byte) aligned.

5. Initialize the transmit DMA ring. For each of the four DMA entries, write the value
0x00000000 to the macdma_txaddr, macdma_txstat and macdma_txlen registers.
NOTE that the transmit buffers must be cache line (32-byte) aligned. Note that the
macdma_txaddr[EN] bit must not be set until a frame is actually ready to be transmitted.

6. Enable the MAC module by performing this sequence:

a. Write 0x00000041 to mac0_enable. This enable clocks to the MAC.

b. Write 0x00000033 to mac0_enable. This takes the MAC out of reset, enables
coherent transactions and only passes valid frames to memory. Steps 6a and 6b must
not be combined, but performed in sequence.

7. Configure the MAC module.

a. Write the mac_control register. The exact value will vary depending upon the
application, but the value 0x00800000 will work in most circumstances. NOTE:
4 Application Note

Writing an Ethernet Device Driver for the Au1000™ ProcessorRev. 003 September 2001
That EM (bit 30) bit of this register indicates if the buffer contents are written by the
processor in big endian or little endian mode. If the processor is running in big endian,
then the value 0x40800000 is desired.

b. Write the mac_addrhigh and mac_addrlow registers with the 48-bit Ethernet
MAC address for this controller. For example, if the MAC address is
01:23:45:67:89:AB, then mac_addrhigh is written with 0x0000AB89 and
mac_addrlow is written with 0x67452301.

c. Write the mac_hashhigh and mac_hashlow registers with 0xFFFFFFFF. This
value accepts all multicast frames (if enabled by mac_control[PM,HO,HP] bits).

8. Configure the MII. Consult the documentation for the PHY device for any special settings.
NOTE: Must poll the mac_miictrl[MB] bit before each MII access. NOTE: The MAC
and the PHY must agree on duplex, else collisions between the MAC and the PHY occur on
the MII interface and significantly degrade performance.

9. Initialize a driver global variable named NextRxBuffer. This variable is initialized from
the (macdma_rxaddr[CB] >> 2) of any receive DMA entry. The CB field points to the
entry that will be processed next by the receive DMA engine. It’s value out of reset is not
guaranteed to be zero.

10. Initialize a driver global variable named NextTxBuffer and LastTxBuffer. Both
variables are initialized from the (macdma_txaddr[CB] >> 2) of any transmit DMA
entry. The CB field points to the entry that will be processed next by the transmit DMA
engine. Its value out of reset is not guaranteed to be zero.

11. Enable the transmit and receive DMA engines. Utilizing a read-modify-write operation, set
the mac_control[TE,RE] bits. Now enabled, Ethernet packet reception and transmission
can occur.

The MAC should now be operational.

MAC Interrupts
There are two possible options in configuring the interrupt controller, IC0, for MAC interrupts: rising
edge or high level. The reason for the two options is a result of the interrupt logic. The MAC interrupt
signal is a logical OR’ing of all the DN bits in the macdma_rxaddr and macdma_txaddr DMA
registers. When a DMA entry is consumed, the DN bit transitions from a 0 to 1, thus a rising edge
interrupt is possible. Similarly, as long as a DN bit is set, high level interrupts are also possible. The
DN bit is cleared only by software when handling a completed DMA entry.

The interrupt controller, IC0, for MAC interrupts (interrupt 28 for MAC0 and interrupt 29 for MAC1)
should be configured as rising-edge or high-level. If the MAC interrupt is configured for rising-edge,
then it must be acknowledged by writing 1 to the corresponding bit in ic0_risingclr in IC0. The
receive and transmit algorithms described below work with either interrupt type. However, the use of
Application Note 5

Rev. 003 September 2001Writing an Ethernet Device Driver for the Au1000™ Processor
rising edge interrupts requires a mature driver (to avoid the race condition of taking the interrupt,
acknowledging the interrupt and receiving additional interrupts while handling the interrupt). Thus,
many drivers may (and should) choose to utilize high-level interrupts, which is more forgiving during
driver development, and generally more robust as interrupts are not easily lost.

When a MAC interrupt does occur, software must examine the DMA entries; there is no interrupt
status register to check. Since the receiver can not throttle traffic, for most applications it is best to
handle the receive buffers first, and then the transmit buffers.

In other words, the interrupt service routine for the MAC should call the MAC receive algorithm and
then the MAC transmit algorithm. The algorithms are designed to process zero or more completed
buffers.

If the application is polled, rather than interrupt driven, then it too should call the MAC receive and
transmit algorithms described below, since they are designed to process zero or more completed
buffers.

MAC Frame Receive
The algorithm for processing buffers which the receive DMA engine has filled is simple and robust.
Its robustness is due to the fact that it can handle zero or more completed buffers, independent of
whether or not the driver is interrupt driven or polled. The algorithm pseudo-code is:

while (macdma_rxaddr[NextRxBuffer].DN == 1)

{

Examine macdma_rxstat[NextRxBuffer].FA for errors

If no errors, process buffer contents

Zero macdma_rxstat[NextRxBuffer]

Write macdma_rxaddr[NextRxBuffer] with memory buffer address
and DN=0,EN=1 // clear IRQ

Advance NextRxBuffer: if (++NextRxBuffer == 4) NextRxBuffer = 0

}

This algorithm assumes that the same memory buffer is used for the same DMA entry. In the
discussion on Buffer Management , the receive algorithm is changed to accommodate managing
multiple memory buffers for the DMA entries. It is necessary to write the address of the memory
buffer every time to macdma_rxaddr since the DMA engine modifies the value in the register.

In the event that the DMA engine discovers that the next buffer entry is not yet available
(macdma_rxaddr[EN]=0), the engine stalls until the EN bit is set by software. In other words, frames
6 Application Note

Writing an Ethernet Device Driver for the Au1000™ ProcessorRev. 003 September 2001
are dropped and the CB field does not advance until the buffer entry becomes available again. There
is no mechanism for reporting that frames have been.

MAC Frame Transmit
The algorithm for transmitting frames is also straightforward. This code to transmit a frame is
independent of whether or not the driver is interrupt driven or polled. The algorithm pseudo-code is:

// Handle previously transmitted frames

while (1)

{

if (macdma_txaddr[LastTxBuffer].DN == 1)

{

Examine macdma_txstat[LastTxBuffer] for errors

Write macdma_txaddr[LastTxBuffer].DN=0 // clear IRQ

Advance LastTxBuffer: if (++LastTxBuffer == 4)
LastTxBuffer = 0

If (LastTxBuffer == NextTxBuffer) BREAK;

}

else BREAK;

}

// Ensure previous transmit of this entry completed

While (macdma_txaddr[NextTxBuffer].EN == 1)

;

Copy data into transmit buffer

Write macdma_txstat[NextTxBuffer] with 0x00000000

Write macdma_txlen[NextTxBuffer] with packet length

Write macdma_txaddr[NextTxBuffer] with address of memory buffer and
DN=0,EN=1

Advance NextTxBuffer: if (++NextTxBuffer == 4) NextTxBuffer = 0
Application Note 7

Rev. 003 September 2001Writing an Ethernet Device Driver for the Au1000™ Processor
This algorithm assumes that the same memory buffer is used for the DMA entry. The transmit
algorithm can be changed to accommodate multiple memory buffers for the DMA entries, as
discussed in the Buffer Management section. It is necessary to write the address of the memory
buffer every time to macdma_txaddr since the DMA engine modifies the value in the register.

Processing MAC Frames
When preparing a frame for transmission, or processing a received frame, it is important to
understand the layout of the frame in memory.

The diagram above illustrates that the destination (D) Ethernet mac address occupies the first 6 bytes,
the source (S) Ethernet mac address occupies the next 6 bytes, and the frame type/length (T) occupies
the next two bytes. The data payload follows, starting at byte offset 14.

Since the DMA engine buffers are on cache line boundaries, an important side effect occurs with the
payload. The packet is aligned to a 32-bit boundary, but the payload, starting at offset 14, is NOT
aligned on a 32-bit boundary. In the case of a TCP/IP packet, the IP header begins at byte offset 14,
and is mis-aligned. Upper layer software must take care in accessing 32-bit values in the packet since
mis-aligned accesses are not supported in hardware.

Buffer Allocation
The memory buffers accessed by the DMA engines must be cache-line (32-byte) aligned, and must
2048 bytes in size. A 2048 byte buffer is large enough to hold the largest possible Ethernet packet,
1518 (6 + 6 + 2 + 1500 + 4) bytes and, under specific circumstances, maximum jabber timeout.

The addresses programmed into the DMA entries are physical addresses. The addresses utilized by
the DMA engine do not pass through translation, and therefore must be physical addresses. The
buffers can be referenced in KSEG0 or KSEG1 regions since the data cache on the Au1000 maintains
coherency.

In the absence of a special memory allocator which is capable of providing 32-byte aligned buffers,
do the following:

- Request/allocate all receiver buffers in one chunk.

- The value 2048 is an integer multiple of the cache-line size (32 bytes), and need not be
adjusted.

- Request an additional 32 bytes which can be used to guarantee cache-line alignment.

A code example demonstrates these principles.

D D D D D D S S S S S S T T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
8 Application Note

Writing an Ethernet Device Driver for the Au1000™ ProcessorRev. 003 September 2001
static char rx_buffer_pool[(2048 * MAX_RX_BUFS) + 32];

or

char *rx_buffer_pool = malloc((2048 * MAX_RX_BUFS) + 32);

The first cache-aligned buffer is then guaranteed to be at this address:

char *first_buffer = (char *)(((unsigned long)rx_buffer_pool + 32) &
~0x1F);

Subsequent buffers are guaranteed to be cache-aligned, each 2048 bytes in length.

for (i = 0; i < MAX_RX_BUFS; ++i)

{

rx_buffer_addr[i] = &first_buffer[i * 2048];

}

Likewise, the same can be done for the transmit buffers.

Buffer Management
In applications where the Au1000 processor is to process lots of Ethernet traffic (e.g. on a heavily-
loaded network or in promiscuous mode), the simple DMA buffer management strategy of one fixed
buffer per DMA entry previously suggested becomes inadequate. A more aggressive buffering
strategy is necessary.

At 100Mbps, with back-to-back [Ethernet legal] minimum frames of 64 bytes, an entry is consumed
every 6.72 microseconds.

frame

us
us

frame

byte

bits

byte

s

Mbits
72.6

96.0
1

6417
*

8

1
*

100
1 =+
























 ++
































Application Note 9

Rev. 003 September 2001Writing an Ethernet Device Driver for the Au1000™ Processor
Note: The 7+1 term is the preamble and start frame delimiter. 0.96us is the inter-frame minimum
delay.

With 4 DMA entries, the CPU must, at worst case, service the receive DMA entries within 26.88
microseconds, else further Ethernet receive frames will be dropped.

At best case (100% cache hit rate), 26.88 microseconds equates to these number of instructions before
the next packet arrives (and thus requires a valid DMA entry):

In the real world, the number of instructions is likely to be less due to a less-than perfect cache hit rate
and memory latencies of load/stores. In the heavily loaded environment, a different buffering scheme
is needed. The following is one possible solution.

For each the transmitter and the receiver, preallocate a large number of buffers (see Buffer Allocation
above). Depending upon available memory, at least 32 for the receiver would be a comfortable start.

When an interrupt arrives, immediately start to examine the receiver DMA ring (see MAC Frame
Receive). For all the entries that have been filled by the DMA, place on a “ToDo” list, and
immediately update macdma_rxaddr with a new/different buffer from the receive buffer pool.

Having serviced the receiver DMA engine, now process the buffer(s) that are on the “ToDo” list. It is
important to provide the DMA engine entries with new buffers prior to processing the packet(s). In
doing so, the DMA engine will have a higher probability of a valid buffer(s) to which it can transfer
Ethernet frame(s).

References:
[1] Au1000™ Processor Data Book.

Frequency (MHz) # of Instructions per frame
of Instructions for four

frames

266 1787 7150

400 2688 10752

500 3360 13440
10 Application Note

