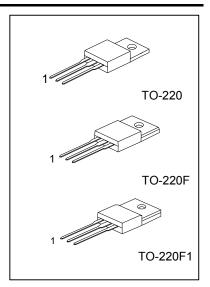


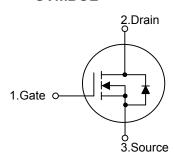
UNISONIC TECHNOLOGIES CO., LTD


6N80 **Preliminary Power MOSFET**

6.0 Amps, 800 Volts N-CHANNEL POWER MOSFET

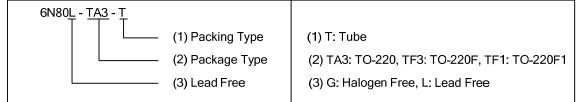
DESCRIPTION

The UTC 6N80 is a N-channel mode Power FET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology specialized in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.


The UTC 6N80 is universally applied in high efficiency switch mode power supply.

FEATURES

- * 6.0A, 800V, $R_{DS(on)} = 2.5\Omega @V_{GS} = 10 \text{ V}$
- * Improved dv/dt capability
- * Fast switching
- * 100% avalanche tested


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
6N80L-TA3-T	6N80G-TA3-T	TO-220	G	D	S	Tube	
6N80L-TF3-T	6N80G-TF3-T	TO-220F	G	D	S	Tube	
6N80L-TF1-T	6N80G-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	800	V
Gate-Source Voltage		V_{GSS}	±30	٧
Drain Current	Continuous	I_{D}	6 *	Α
	Pulsed (Note 1)	I _{DM}	22 *	Α
Avalanche Energy	Single Pulsed (Note 2)	E _{AS}	680	mJ
	Repetitive (Note 1)	E _{AR}	15.8	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
Power Dissipation	TO-220	ם	138	W
	TO-220F/TO-220F1	P _D	51	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T_{STG}	-55~+150	ů

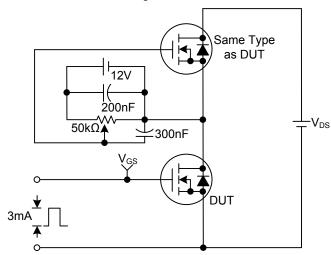
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

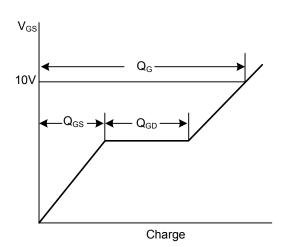
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220	0	62.5	°C/W
	TO-220F/TO-220F1	θ_{JA}	62.5	°C/W
Junction to Case	TO-220	0	0.9	°C/W
	TO-220F/TO-220F1	θ_{JC}	2.45	°C/W

^{*} Drain current limited by maximum junction temperature.

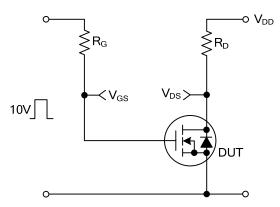
■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise noted)

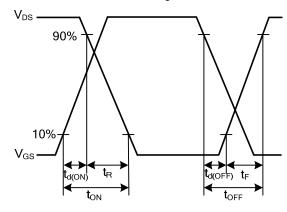

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	•					•
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	800			V
Breakdown Voltage Temperature Coefficient		Reference to 25°C, I _D =250µA		0.97		V/°C
Drain-Source Leakage Current	I _{DSS}	V _{DS} =800V, V _{GS} =0V V _{DS} =640V, T _C =125°C			10 100	μA
Gate- Source Leakage Current Reverse	I _{GSS}	V _{GS} =+30V, V _{DS} =0V V _{GS} =-30V, V _{DS} =0V			100 -100	nA nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$ 3.0			5.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3A		1.6	2.5	Ω
Forward Transconductance	g FS	V _{DS} =50V, I _D =3A (Note 4)		5.4		S
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		1010	1310	pF
Output Capacitance	Coss			90	115	pF
Reverse Transfer Capacitance	C _{RSS}			8	11	pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_{G}	V _{GS} =10V, V _{DS} =640V, I _D =6A (Note 4, 5)		21	30	nC
Gate to Source Charge	Q_{GS}			6		nC
Gate to Drain Charge	Q_{GD}			9		nC
Turn-ON Delay Time	t _{D(ON)}	V_{DD} =400V, I_{D} =6A, R_{G} =25 Ω (Note 4, 5)		26	60	ns
Rise Time	t _R			65	140	ns
Turn-OFF Delay Time	t _{D(OFF)}			47	105	ns
Fall-Time	t _F			44	90	ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTERIS	STICS				
Maximum Body-Diode Continuous Current	Is				6	Α
Maximum Body-Diode Pulsed Current	I _{SM}				22	Α
Drain-Source Diode Forward Voltage	V _{SD}	I _S =6A, V _{GS} =0V			1.4	V
Reverse Recovery Time	t _{RR}	I _S =6A, V _{GS} =0V, dI _F /dt=100A/μs		615		ns
Reverse Recovery Charge	Q_{RR}	(Note 4)		5.4		μC

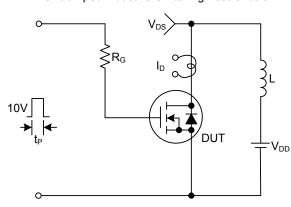
Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature

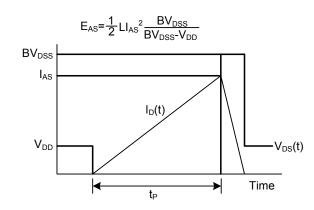

- 2. L = 37mH, I_{AS} = 6A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}C$
- 3. $I_{SD} \le 5.5 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25 ^{\circ}C$
- 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

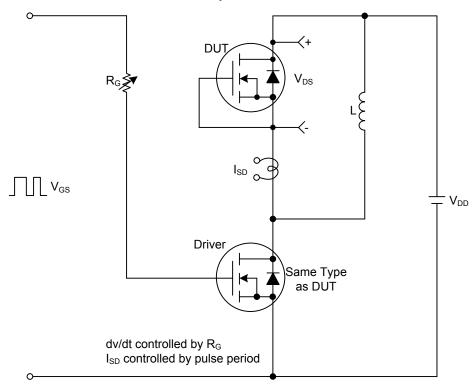
■ TEST CIRCUITS AND WAVEFORMS

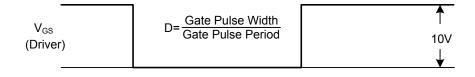

Gate Charge Test Circuit

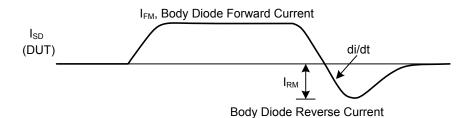

Gate Charge Waveforms

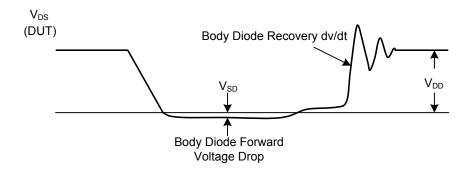

Resistive Switching Test Circuit


Resistive Switching Waveforms


Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.