Photo IC for laser beam synchronous detection # S10317 series # Low voltage operation (3.3 V) S10317 series photo IC uses a high-speed PIN photodiode designed for laser beam synchronous detection. S10317 series is driven by a low voltage (3.3 V) compatible with low voltage peripheral components that will be mounted on the same PC board. Two types of current amplifiers are available with a gain of 6 times (S10317-01) and 20 times (S10317) that can be selected according to laser power to be used. Tape-and-reel shipment is also available (\$10317-30 and \$10317-31). ### **Features** - ◆ Low voltage operation (3.3 V) - High sensitivity Current amplifier gain: 20 times (S10317) 6 times (S10317-01) - Digital output - Small package - Suitable for lead-free solder reflow - Active area: 2.84 x 0.5 mm ## Applications Print start timing detection for laser printers, digital copiers, fax machines, etc. ■ Absolute maximum ratings (Ta=25 °C, unless otherwise noted) | Parameter | Symbol | Value | Unit | |-----------------------|--------|------------|------| | Supply voltage | Vcc | -0.5 to +7 | V | | Power dissipation *1 | Р | 300 | mW | | Output voltage *2 | Vo | -0.5 to +7 | V | | Output current | lo | 5 | mA | | Ro terminal current | IRO | 3 | mA | | Operating temperature | Topr | -25 to +80 | °C | | Storage temperature | Tstg | -40 to +85 | °C | ^{*1:} Power dissipation decreases at a rate of 4 mW/°C above Ta=25 °C. PRELIMINARY DATA ■ Electrical and optical characteristics (Ta=25 °C, λ=780 nm, Vcc=3.3 V, Ro=5.1 kΩ, unless otherwise noted) | Parameter | | Symbol | Condition | Min. | Тур. | Max. | Unit | | |---------------------------|-----------|---------|--|------|------|---------|------|--| | Current consumption | | Icc | No input | - | 0.7 | 1.5 | mA | | | High level output voltage | | Voн | IOH=4 mA | 2.9 | - | - | V | | | Low level output voltage | | Vol | IoL=4 mA *3 | - | - | 0.3 | V | | | Threshold input power | S10317 | Ртн | | 14 | 19 | 24 | μW | | | | S10317-01 | | | 49.5 | 62 | 74.5 | | | | H L propagation | S10317 | tPHL | Pι=57 μW (S10317)
Pι=186 μW (S10317-01)
Duty ratio 1:1 | - | 130 | 250 | ns | | | delay time | S10317-01 | | | - | 100 | 200 | | | | L H propagation | S10317 | tou | | - | 200 | 300 | | | | delay time | S10317-01 | | | - | 150 | 250 | | | | Rise time | | tr | CL=15 pF *4 | - | 4 | 7 | ns | | | Fall time | | tf | | - | 4 | 7 | ns | | | Maximum input power | | Pı Max. | _ | - | - | Ртн × 8 | μW | | | | | | | | | | | | ^{*3:} Input power [Pi]=57 μW (S10317), Pi=186 μW (S10317-01) ^{*2:} Vcc=+0.5 V or less # Photo IC for laser beam synchronous detection \$10317 series ### ■ Block diagram #### Function S10317 series photo IC integrates a photodiode chip and an IC chip into the same package. The photodiode chip is internally connected to the IC chip as shown in the block diagram. S10317 series should be used with terminal Ro connected to an external gain resistance Ro. A photocurrent is generated when a laser beam enters the photodiode. This photocurrent is fed to the input terminal of the IC and, after being amplified by the current amplifier, flows to the external gain resistance. At this time, voltages VRO at terminal Ro is given by the following expression. VRO=A × S × PI × Ro [V](1) - A: Current amplifier gain (S10317: 20 times, S10317-01: 6 times) - S: Photodiode sensitivity [A/W] (approx. 0.44 A/W at 780 nm) - Pi: Input power [W] Ro: External gain resistance [Ω]; usable range 2 k Ω to 10 k Ω VRO is input to the internal comparator and compared with the internal reference voltage Vref (approx. 0.8 V) so the output Vo is "High" when VRO < Vref or "Low" when VRO > Vref. In equatin (1), set the Ro value so that VRO is 2 to 3 V. (Monitoring VRo shows that it is limited to about 2 V (with respect to GND) by the voltage limiting circuit. Keep this in mind when monitoring.) ### ■ Dimensional outline (unit: mm) Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2007 Hamamatsu Photonics K.K. HAMAMATSU PHOTONICS K.K., Solid State Division 1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184, www.hamamatsu.com U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-9960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 00 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solna, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01 Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741