
Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

Flash Application Design Guidelines

ADE-603-010A
Rev. 2.0
12/5/00
Hitachi, Ltd.

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 2.0, 12/00, page iii of 6

Preface

This document presents flash application guidelines, including points requiring special attention,
for developing systems using Hitachi AND flash memory.

Hitachi AND Flash Write Commands
 (List of Program Functions, Areas Subject
 to Programming, Programming Example)
Concept of Number of Rewrites
Sample SH InterfaceNext Step

Next Step

Next Step

Next Step

: P1 to P4

: P11, P12
: P13 to P16

NG

Start of system
designNG

Start of system
evaluation

Hitachi AND Flash Write Commands
Error Handling and Bad Sector Processing
 (Errors during reading, erasing, and writing)
Concept of Number of Rewrites
Sample SH Interface
 (Basic Specifications, Overview, Sample Circuit,
 Input Waveforms)
Sample H8S Interface
 (Operating Mode, Control Method, Sample Circuit,
 Port Settings, Data Transfer to On-Chip RAM)
Power Shutdown Processing

: P1 to P5
: P6 to P10

: P11, P12
: P13 to P20

: P20 to P22

: P24, P25

NG

Data Sheet
check

Data Sheet : Next page
NG

Contact Hitachi
representative

OK

System
amendment

Start of system
study

System design

Relevant Sections in Flash Application Design Guidelines Rev. 2.0 Page

Hitachi AND Flash Write Commands
Error Handling and Bad Sector Processing
 (Errors during reading, erasing, and writing)
Sample SH Interface (Input Waveforms)
Power Shutdown Processing

: P3 to P5
: P6 to P10

: P17 to P20
: P24, P25

Please contact a Hitachi representative in the event of problems relating to flash memory. Early
diagnosis is vital for solving problems.

Rev. 2.0, 12/00, page iv of 6

Data Sheet pages for reference during the design of a system using Hitachi AND flash memory are
shown below.

NG

NG

NG

NG

NG

NG

NG

NG

NG

NG

NG

NG

Pin functions

System design

P6

Relevant section and page in HN29W25611 Series Data Sheet
ADE-203-1178A Rev. 1.0

Mode setting P7

Pin arrangement P3

Absolute
maximum ratings P17

Capacitance P17

Command
descriptions P8, 9

State transitions P16

Function descriptions P36

DC characteristics P18

Mode descriptions

System
amendment

Reading
Auto-erase
Auto-program
Status register read
Product ID read
Data recovery read/write

: P10
: P10
: P10
: P11
: P11
: P12

AC characteristics Test conditions
Parameters
 Power-on/off, serial mode
 Program, erase, and erase-verify
Timing waveforms
 Power-on/off
 Serial read
 Erase and status data polling
 Program and status polling
 Product ID and status register
 Data recovery read/write
 Clear status register

: P18

: P19, 20
: P21, 22

: P23
: P24, 25
: P25
: P26 to 31
: P32
: P33, 34
: P35

 Command/address/
data input order

Serial read
Single-sector erase
Programming
Product ID code read
Data recovery read/write

: P13
: P13
: P14, 15
: P15
: P15

Concerning
system use

OK

NG

Spec for system use
Handling of invalid sectors
Securing system reliability

: P36
: P37
: P38

Rev. 2.0, 12/00, page v of 6

Contents

1. Hitachi AND Flash Write Commands .. 1

2. Error Handling and Bad Sector Processing .. 6

3. Concept of Number of Rewrites ... 11

4. Sample Microcomputer Interfaces .. 13

5. Power Shutdown Recovery Method ... 24

6 Examples of Sector Management Method... 26

7 Some Common Questions ... 34

8. Check List ... 46

Rev. 2.0, 12/00, page vi of 6

Rev. 2.0, 12/00, page 1 of 46

1. Hitachi AND Flash Write Commands

1.1 Overview

This section describes the differences between the four kinds of auto-program commands,
Program (1) to Program (4).

Programming operations can be broadly classified into the following three kinds:

• Additional write

Performs additional writing to arbitrary bytes in the erased state (FFH) within a sector.
(Program1, Program3)

• Write

Performs writing to a sector in the erased state. (Program2)

• Rewrite

Rewrites data regardless of the write target byte data. (Program4)

Rev. 2.0, 12/00, page 2 of 46

1.2 List of Hitachi AND Flash Program Functions

Program No.

Target Area
(Column Address
CA Range)

Column
Address Function Figure No.

Yes • Performs additional writes starting at
byte indicated by input column address.

• Additional writes are possible on
unwritten (FFH) bytes.

• FFH is input for bytes on which writes
are not performed.

Figure 1.2Program(1)
Additional write

Data area
(CA0 to CA2047)
+
Control area
(CA2048 to CA2111)

No • Performs additional writes on sector.
• Additional writes are possible on

unwritten (FFH) bytes.
• FFH is input for bytes on which writes

are not performed.

Figure 1.3

Program(2)
Write

Data area
(CA0 to CA2047)
+
Control area
(CA2048 to CA2111)

No • Performs additional writes on sectors
in erased state (all FFH).

• FFH is input for bytes on which writes
are not performed.

Figure 1.4

Program(3)
Control area
additional write

Control area
(CA2048 to CA2111)

No • Performs additional writes on control
area.

• Additional writes are possible on
unwritten (FFH) bytes.

• FFH is input for bytes on which writes
are not performed.

Figure 1.5

Yes • Performs rewrites starting at byte
indicated by input column address.

• Rewrites with input data (including FFH
data).

Figure 1.6Program(4)
Rewrite

Data area
(CA0 to CA2047)
+
Control area
(CA2048 to CA2111)

No • Performs rewrites on sector.
• Rewrites with input data (including FFH

data).

Figure 1.7

Notes on Use of Additional Writes

• As additional writes by Program(1) and Program(3) are also counted in the number of rewrites,
the stipulated number of rewrites should not be exceeded. For the method of counting rewrites,
see section 3, Concept of Number of Rewrites.

• Additional rewrites are performed in byte units.

Rev. 2.0, 12/00, page 3 of 46

1.3 Areas Subject to Hitachi AND Flash Programming

Memory array

0

0

Register

2111

2048 2111

• Program(3)

(Sector)
16383

0
2048

Memory array

0

Column
address

• Program(1) with CA
• Program(4) with CA

(Sector)
16383

0

Memory array

0

Register

2111
(Column)

2111
(Column)

00 2111 2111

Sector
address

• Program(1) without CA
• Program(2)
• Program(4) without CA

(Sector)
16383

0

Register

Sector
address

Sector
address

Figure 1.1 Areas Subject to Hitachi AND Flash Programming

1.4 Examples of Use of Hitachi AND Flash Program Modes

Examples of the use of the various program modes are shown below.

1. Program(1) with CA (additional write)

Writes are performed on bytes with a value of FFH. (Byte-unit additional writes)

Note: When FFH is input, the result is no change to the existing stored data.

10

0 2111(Column address)

(Data)20 30 40 50 60 70 80FF FF FF FF FF FF FF FF 90 A0 B0 C0 FF FF ... FF

FF FF FF FF10 20 30 40 50 60 70 80 No data

10

Memory cell data before writing

Write data from outside

Buffer data in actual writes 20 30 40 50 60 70 8010 20 30 40 50 60 70 80 90 A0 B0 C0 FF FF ... FF

Figure 1.2 Program Mode Example 1

2. Program(1) without CA (additional write)

10

0 2111(Column address)

(Data)20 30 40 50 60 70 80FF FF FF FF FF FF FF FF 90 A0 B0 C0 FF FF ... FF

FF FF FF FF FF FF FF FF10 20 30 40 50 60 70 80 No data

10

Memory cell data before writing

Write data from outside

Buffer data in actual writes 20 30 40 50 60 70 8010 20 30 40 50 60 70 80 90 A0 B0 C0 FF FF ... FF

Figure 1.3 Program Mode Example 2

Rev. 2.0, 12/00, page 4 of 46

3. Program(2) (write for pre-erased sectors)

Writing is performed on sectors in the erased state.

Note: When FFH is input, the result is no change to the existing stored data.

FF FF FF FF FF FF FF FFFF FF FF FF FF FF FF FF FF FF FF FF FF FF ... FF

FF FF FF FF FF FF FF FF10 20 30 40 50 60 70 80 No data

FF FF FF FF FF FF FF FF10 20 30 40 50 60 70 80 FF FF FF FF FF FF ... FF

0 2111(Column address)

(Data)Memory cell data before writing

Write data from outside

Buffer data in actual writes

Figure 1.4 Program Mode Example 3

4. Program(3) (additional write to control area)

Writing is performed on bytes with a value of FFH in the control area.

Note: When FFH is input, the result is no change to the existing stored data.

10 20 30 40 50 60 70 8020 30 40 FF FF FF FF 90 A0 B0 C0 FF FF ... FF

FF FF FF FF 50 60 70 80 No data

10 20 30 40 50 60 70 80...

...

20 30 40 50 60 70 80 90 A0 B0 C0 FF FF ... FF

0 2048 2111(Column address)

(Data)Memory cell data before writing

Write data from outside

Buffer data in actual writes

Figure 1.5 Program Mode Example 4

5. Program(4) with CA (rewrite)

Performs rewriting.

Addresses for which data has been entered from outside are rewritten. (FFH data rewriting is
also performed.)

10 20 30 40 50 60 70 80FF FF FF FF FF FF FF FF 90 A0 B0 C0 FF FF ... FF

50 60 70 80 FF FF FF FF10 20 30 40 50 60 70 80 No data

50 60 70 80 FF FF FF FF10 20 30 40 50 60 70 80 90 A0 B0 C0 FF FF ... FF

0 2111(Column address)

(Data)Memory cell data before writing

Write data from outside

Buffer data in actual writes

Figure 1.6 Program Mode Example 5

6. Program(4) without CA (rewrite)

10 20 30 40 50 60 70 80FF FF FF FF FF FF FF FF 90 A0 B0 C0 FF FF ... FF

50 60 70 80 FF FF FF FF10 20 30 40 50 60 70 80 No data

50 60 70 80 FF FF FF FF10 20 30 40 50 60 70 80 90 A0 B0 C0 FF FF ... FF

0 2111(Column address)

(Data)Memory cell data before writing

Write data from outside

Buffer data in actual writes

Figure 1.7 Program Mode Example 6

Rev. 2.0, 12/00, page 5 of 46

Conditions for the use of the Program(1) to Program(4) modes are summarized below.

Write execution

Program(1)
Program(2)
Program(3)
Program(4)
can be used

Write target
sector in erased

state?

Program(1)
Program(3)
Program(4)
can be used

Program(1)
Program(4)
can be used

Program(4)
can be used

Yes

Write target
byte in erased

state?

Yes

No

No

NoWrite
of control bytes

only?

Yes

Figure 1.8 Conditions for Use of Each Program Mode

Rev. 2.0, 12/00, page 6 of 46

2. Error Handling and Bad Sector Processing

A read, erase, or rewrite error may occur when Hitachi AND flash memory is programmed. To
secure system reliability, provisions must be made to handle such errors when they occur.

The approach to error handling and bad sector processing is outlined below. The most appropriate
processing should be incorporated into the system after checking details of flash memory state
transitions, status information, etc., in the Data Sheet.

2.1 Errors during Reading

When a data read is performed, the read data may differ from the written data. Therefore, an ECC
correction function of 3 or more bits per sector (2 kbytes) should be provided.

Read data + ECC code

Write data + ECC code
(Rewrite corrected data)

Error correction

ECC check

2-kbyte data preparation

ECC Generation when Writing

ECC code generation

Write data + ECC code

OK

NG

... Flash processing

... Controller processing

Start

ECC Check when Reading

Start Start

End

End

Figure 2.1 Example of Read Error Handling

Rev. 2.0, 12/00, page 7 of 46

2.2 Errors during Erasing

The main points for attention when an error occurs during erasing are given below.

(1) Factory shipped bad sectors, or sectors that have become bad due to erasing or writing, should
not be erased or written.

(2) Carry out a good sector code check before writing or erasing. One option may be to create a
check table in which such sectors are recorded.

(3) Data in a sector in which an error has occurred during erasing will be undefined, and
meaningless data will be returned if the sector is read.

(4) If an error occurs, record the bad sector, and then issue a Clear Status Register command and
restore the flash memory to the state in which commands can be received.

Read good sector code

Erase

Bad sector

Good sector

Code check

NG

OK

Status read

Busy

Ready

Ready/Busy

Record bad sector

Record bad sector

Clear status
register

... Flash processing

... Controller processing

Start

End

End

Figure 2.2 Example of Erase Error Handling

Rev. 2.0, 12/00, page 8 of 46

2.3 Errors during Writing

The main points for attention when an error occurs during writing are given below.

(1) Factory shipped bad sectors, or sectors that have become bad due to erasing or writing, should
not be erased or written.

(2) Carry out a good sector code check before writing or erasing. One option may be to create a
check table in which such sectors are recorded.

(3) Error confirmation can be achieved by performing a status register read after writing.

(4) Data in a sector in which a write error has occurred will be indeterminate, and should not be
used for rewriting to a spare sector.

(5) Any of the following three methods can be used for rewriting.

(a) Writing data reloaded from an external buffer (See figure 2.4.)
Requires host to maintain data buffer until successful completion of write command.

(b) Data recovery read (See figure 2.5.)

(c) Data recovery write (See figure 2.6.)

(6) Do not perform any further accesses to a sector in which an error has occurred.

Rev. 2.0, 12/00, page 9 of 46

Write

NG

OK

NG

OK

(a)

Status read

Busy

Ready

Ready/Busy

Start

Clear status register

External buffer
data load

Record bad sector

(b)

(c)

Find spare sector

Write

Record bad sector

Find spare sector

Data recovery write

Data recovery read

Status read

... Flash processing

... Controller processingEnd

(a) Writing data reloaded from an external
buffer (See figure 2.4.)
Requires host to maintain data buffer until
successful completion of write command.

(b) Data recovery read (See figure 2.5.)
(c) Data recovery write (See figure 2.6.)

Figure 2.3 Example of Write Error Handling

Rev. 2.0, 12/00, page 10 of 46

2 kB + ECC

Flash

NG

Rewrite destination

Controller

(1)

(2)

2 kB + ECC

Sector
addresses

Data buffer

Figure 2.4 Writing Data Reloaded from an External Buffer

2 kB + ECC

Flash

NG

Rewrite destination

Controller

(1)

(3)

(2)

2 kB + ECC

Sector
addresses

Data buffer

Figure 2.5 Data Recovery Read

2 kB + ECC

Flash

NG

Rewrite destination

Controller

(1)

(2)

2 kB + ECC

Sector
addresses

Data buffer

Figure 2.6 Data Recovery Write

Rev. 2.0, 12/00, page 11 of 46

3. Concept of Number of Rewrites

3.1 Definition of Number of Rewrites

This is calculated by totaling the number of operations for each process per sector unit (see
below).

Erase + Write 1.0
Additional write 1.0
Rewrite 1.0

3.2 Definition of Bad Sector Occurrence Rate [= 1.8(%)]

The probability of a defect occurring when the same sector is rewritten 300,000 times. (See figure
3.1.)

N = Stipulated number of rewrites

N
Number of rewrites

1.8%

B
ad

 s
ec

to
r

oc
cu

rr
en

ce
 r

at
e

Figure 3.1 Definition of Bad Sector Occurrence Rate

3.3 Sample Calculation of Number of Spare Sectors

Example: Number of spare sectors needed when the entire area of 98% MGM flash is rewritten
300,000 times
Defect rate of 1.8(%) for 300,000 rewrites with total of 16,384 sectors and MGM rate
of 98(%)

Number of spare sectors needed = 16,384 × 0.98 × 0.018 = 290 (sectors) or more

Rev. 2.0, 12/00, page 12 of 46

3.4 Notes on Number of Rewrites

(1) Do not exceed the stipulated number of rewrites on the same sector.

(2) If the stipulated number of rewrites is exceeded, unexpected errors may occur in that sector.

(3) Execute processing on the system side to prevent a system crash in the event of such an error.

Rev. 2.0, 12/00, page 13 of 46

4. Sample Microcomputer Interfaces

4.1 Sample SH Interface

This section shows examples of the interface to a microcomputer. Operation of the sample SH
interface circuit has been confirmed with an SH7709.

4.1.1 Basic Specifications

Embedded flash (AND) control is performed from the SH by means of simple flash control logic
(TTLIC, GA, etc.).

(1) Interfacing is performed via area n (CSn).

(2) A register to control the flash pins is provided at an area n (CSn) address (Address: AP).
(External ports: CE, WE, CDE, SC)

(3) Flash is accessed by area n (CSn) address (Address: AF).

(4) 2.5 kbytes of RAM are necessary (5 kbytes recommended) as a buffer for providing a spare
sector in the event of a flash memory write or read error.

RAM

SH Flash

TTLIC, GA, etc.

Data bus

Flash
control logic

• Minimum requirement:
 2.5 kbytes
• Can be connected
 externally

A0

Figure 4.1 Flash Memory Interface Block Configuration

Rev. 2.0, 12/00, page 14 of 46

4.1.2 Overview

(1) CDE performs command/address switching, and so can be low during polling.

(2) CE disables all input (including SC), so is overlapped with WE, SC, etc.

(3) Operation is not started by a command not stipulated in the Data Sheet.

Ex: 02H, 03H, ... 07H, etc.

(4) SC becomes valid after the prescribed procedure.

After SA(2) + first access when reading; after SA(2) CDE fall when writing.

(5) Polling is performed by I/O7. (R/B not used.)

CPU bus Flash

VCC VCC

RESET

SC

R/B

I/O0 to I/O7

VSS

An to Am,
CSn

D0 to D7

GND

Power on reset

Address
Qualifier

Latch

Figure 4.2 Flash Memory Interface Block Configuration

Description of Blocks

• Address Qualifier

Selects whether an input value from the data bus is to be latched as a signal for control signal
setting, or the latch data is to be held.

During the latch data hold period, control signals are output to the flash memory, so command,
sector address, or other input is performed from the data bus to the flash memory.

• Latch

Latches data input from the data bus, and provides the necessary control signal to the flash
memory on the basis of that latched data.

Rev. 2.0, 12/00, page 15 of 46

4.1.3 Sample Circuit

CPU bus Flash

Address Qualifier Latch

RESET

R/B

I/O7
I/O6
I/O5
I/O4
I/O3
I/O2
I/O1
I/O0

A0

D7
D6
D5
D4
D3
D2
D1
D0

D Q

D Q

D Q

D Q

Power-on reset

Figure 4.3 Flash Control Logic

Various kinds of processing are performed on the flash memory by combining the states in (1) and
(2) below (see section 4.1.4, Input Waveforms, for the flow).

Rev. 2.0, 12/00, page 16 of 46

(1) Address A0 = High & CSnCSnCSnCSn = Low

Flash control signals are set in the latch (command setting, sector address setting, data read/write
CE, OE, WE, CDE, etc.).

Latch Input Signal Name Latch Data Output Signal State

1) D0 1; WE0 → WE
0; WE Fixed high

2) D1 1; CDE Fixed high

0; CDE Fixed low

3) D2 1; WE0 → SC

0; RD → SC

4) D3 1; CE Fixed high

0; CE Fixed low

(2) Address A0 = Low & CSnCSnCSnCSn = High

Latch hold state; command setting and data read/write access executed on the flash memory.

Rev. 2.0, 12/00, page 17 of 46

4.1.4 Input Waveforms

Sample input waveforms in read, program, and erase operations are shown below.

• Serial Read (1) → (2)

• Program (1) → (3)

• Erase (1) → (4)

(1) Command and Address Setting

01H

A0

D0 to D7

*1 Com → flash commands
Serial Read: 00H

 Program2: 1FH
 Sing Sec Erase: 20H
*2 SA1, SA2 → sector addresses

SC

Latch set Command set Latch set Address set Address set

Com 03H SA1*1 *2 SA2*2

Figure 4.4 Example of Timing Waveforms in Command and Address Setting

Rev. 2.0, 12/00, page 18 of 46

(2) Read

Data read

SB

Data read Data read Data read Latch set

0FH

SB SB SB

A0

D0 to D7

SC

Figure 4.5 Example of Read Timing Waveforms

• Read flow

I/O A0 D0 to D7

O 1 0FH (Clear)

O 1 01H (Com Latch)

O 0 00H (Serial Read)

O 1 03H (Add Latch)

O 0 AAH (Sector Add 1)

O 0 AAH (Sector Add 2)

I 0 Data (Read Data)

: : :

O 1 0FH (Clear)

Rev. 2.0, 12/00, page 19 of 46

(3) Program

A0

D0 to D7

SC

Latch set Data write Data write Latch set Command set

Program start

Wait

Status read Latch set

01H04H 0FH

SB SB

Figure 4.6 Example of Program Timing Waveforms

• Programming flow

I/O A0 D0 to D7

O 1 0FH (Clear)

O 1 01H (Com Latch)

O 0 11H (Program 4)

O 1 03H (Add Latch)

O 0 AAH (Sector Add 1)

O 0 AAH (Sector Add 2)

O 1 04H (SC Latch)

O 0 DDH (Data Input)

: : :

O 1 01H (Com Latch)

O 0 40H (Prg Start)
(Status Read)

O 1 0FH (Clear)

Rev. 2.0, 12/00, page 20 of 46

(4) Erase

A0

D0 to D7

SC

Latch set Command set Status read Latch set

Erase start

Wait

0FH01H

Figure 4.7 Example of Erase Timing Waveforms

• Erase flow

I/O A0 D0 to D7

O 1 0FH (Clear)

O 1 01H (Com Latch)

O 0 20H (Single Erase)

O 1 03H (Add Latch)

O 0 AAH (Sector Add 1)

O 0 AAH (Sector Add 2)

O 1 01H (Com Latch)

O 0 B0H (Erase Start)
(Status Read)

O 1 0FH (Clear)

4.2 Sample H8S Interface

4.2.1 Operating Mode

Mode 3/EXPE = 0 normal single-chip mode is used.

Rev. 2.0, 12/00, page 21 of 46

4.2.2 Control Method

Control is performed using ports in order to implement simple signal connection and control.

Port 1 is used for signal control.

Port 2 is used for data input/output.

H8S Flash
Port 1

Control signals

Port 2

Data

Figure 4.8 Control Method

4.2.3 Sample Circuit

H8S/2100 Flash 1

Flash 2

P
or

t 1
P

or
t 2

P10
P11
P12
P13
P14
P15
P16
P17

OE
WE
CDE
SC
CE1

RDY
/Busy

OE
WE
CDE
SC
CE2
RDY
/Busy

I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
RES

I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
RES

Open

P20
P21
P22
P23
P24
P25
P26
P27

Power on reset circuit

Figure 4.9 Sample Circuit

Rev. 2.0, 12/00, page 22 of 46

4.2.4 Port Settings

Port 1 Settings

Port 1 P10 P11 P12 P13 P14 P15 P16 P17

Flash memory OE WE CDE SC CE1 CE2 — RDY/Busy

Input/output Out Out Out Out Out Out Out In

Pull up Yes Yes Yes No Yes Yes Yes Yes

Port 2 Settings

Port 2 P20 P21 P22 P23 P24 P25 P26 P27

Flash memory I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7

Input/output I/O I/O I/O I/O I/O I/O I/O I/O

Pull up Yes Yes Yes Yes Yes Yes Yes Yes

4.2.5 Data Transfer to On-Chip RAM

If the on-chip RAM capacity is not sufficient for one flash sector of data to be transferred, one
sector of data should be divided for transfer as shown in the example below.

Example: One sector of data is divided into four parts, which are transferred separately.

Taking 2048 + 64 bytes as (512 (data area) + 16 (management area)) × 4 bytes, 528
bytes are transferred at a time.

H8S microcomputer Flash

On-chip RAM

528

528 528 528 528
(1) Transfer of 528-byte unit

(3) Transfer of 528-byte unit

(2) 528-byte data processing

Figure 4.10 Example of Data Transfer

Rev. 2.0, 12/00, page 23 of 46

4.3 Reference Materials

(1) 256-Mbit flash memory (HN29W25611 Series) Data Sheet

(2) SH Series Hardware Manual

(3) H8S Series Hardware Manual

Rev. 2.0, 12/00, page 24 of 46

5. Power Shutdown Recovery Method

5.1 Internal Circuitry that Executes Erasing/Writing

Figure 5.1 shows the 256-Mbit flash memory circuit configuration and memory cell erase/write
operations. Memory cells are linked by a source line, word line, and data line, with each signal
line driven by peripheral circuitry.

In a write, a charge is injected into the floating gate by setting the word line to positive potential.

In an erase, the floating gate charge is discharged by setting the word line to negative potential.

When power is shut down, the memory cells themselves in the flash memory are not damaged, but
memory cell data may become invalid due to faulty operation of the peripheral circuitry that
controls memory cell erasing, writing, etc. (see figure 5.1).

256M flash memory (AND type)

Reset
IC

VCC

Peripheral circuitry

Data buffer I/O
[7:0]

Word line

Data
line

Source
line

Word line

Erase processing

e e e

Source
line

Sense amp

Word line

Word line

VSS

E
ra

se
/w

rit
e

co
nt

ro
l c

irc
ui

t

Floating
gate

Word line

Write processing

Floating
gate

Data
line

e e e

Flash
memory
cell

Data
line

Source
line

(a) Image of Flash Memory Circuit
Configuration
(256M Flash Memory)

(b) Flash Memory Erase and
Write Operations
(Based on 256M Flash Memory)

Figure 5.1 Flash Memory Circuit Configuration Image and
Erase and Write Operations

Rev. 2.0, 12/00, page 25 of 46

5.2 Processing when Power Shutdown Occurs during Erase or Write
Operations

If power is shut down during erase or write processing, the following processing should be
executed.

(1) Execute a reset by activating the RES signal. (The peripheral circuitry will be initialized.)

(2) Perform erase/write processing again on any sector in which the data has been corrupted due to
erasing/writing when the power shutdown occurred.

(3) Read the good sector codes of all sectors, and perform erase/write processing again on any
other sectors that have become bad.

Note that the processing in (1) and (3) above can be eliminated by connecting an external Reset IC
(see figure 5.1). In this case, only the processing in (2) should be carried out.

5.3 When Power Shutdown Occurs during Reset, Read Transfer, or
Other Processing

Execute the processing in (1) and (3) above.

Note that this processing can be eliminated by connecting an external Reset IC.

5.4 If sectors in which a fault has occurred cannot be restored by means of the above
processing, processing should be carried out to prevent use of those sectors in the
system.

Rev. 2.0, 12/00, page 26 of 46

6 Examples of Sector Management Method

6.1 Flash Configuration

The flash configuration in the case of a 256-Mbit product is shown in figure 6.1. The (2048 + 64)
bytes constituting a sector are divided into four, giving (512 + 16) bytes as the minimum unit of
data. In this section, (512 + 16) bytes is called a sector, and (2048 + 64) bytes is called a block.

256-Mbit flash is composed of 16,384 blocks, with each block consisting of four (512 + 16)-byte
sectors.

For data writing, the Program (4) program command is used. An erase command is only used
when erasing data as a block.

Block 0
Block 1
Block 2
Block 3

Block 16382
Block 16383

(2048 + 64) bytes

(512 + 16) bytes

Sector 0

(512 + 16) bytes

Sector 1

(512 + 16) bytes

Sector 2

(512 + 16) bytes

Sector 3

4 sectors/block

Total number of blocks: 16,384
Capacity: (2048 + 64) bytes/block

Figure 6.1 Flash Configuration

Each sector is composed of a 512-byte data area, ECC bytes, and sector management bytes.

512 bytes
Data

16 bytes
ECC +

management
512 bytes

Data

16 bytes
ECC +

management
512 bytes

Data

16 bytes
ECC +

management
512 bytes

Data

16 bytes
ECC +

management

Rev. 2.0, 12/00, page 27 of 46

6.2 Block Management Method

The block configuration is shown in table 6.1.

Table 6.1 Block Configuration

Item Number of Blocks Used Description

Bad block
recording table

1 block Stores good/bad block information

Block
management table

16 blocks Manages correspondence between physical
block numbers and logical block numbers.
Logical block numbers are consecutive

Spare block
area (1)

m blocks Area reserved for bad blocks.

For 256-Mbyte flash, from Data Sheet, m =
16,384 × 0.98 × 0.018 ≈ 290 blocks

Spare block
area (2)

n blocks Area reserved for initial bad blocks. n = 0 to
328

Data block area 16384 –(m +n +16 +1) Area that can be used as data area. For 256-
Mbyte flash, min = 15,750 blocks, max = 16,078
blocks

Block information 1 block Stores total number of blocks in data block area

(1) Bad block recording table

This table performs management of good/bad flash blocks. The management information is
created when flash formatting is carried out. This data is saved as a backup for the initial
good/bad block information.

Good/bad information is stored as 1-bit data, and data is held for each physical block.

512 bytess: 4,096 blocks can be recorded 16 bytes

0 1 2 3 4 5 6

1 1 1 0

Good block Bad block

1 1 0 1

0 1 2 3 4 5 6 7

512…

… ECC
+ management

Physical
block number

Figure 6.2 Block Recording Table

Rev. 2.0, 12/00, page 28 of 46

(2) Block management table

This table manages the correspondence between physical block numbers and logical block
numbers for usable blocks. The management information is created when flash formatting is
carried out.

The table is updated whenever a bad block occurs during use.

The block information in the block management table is shown in figure 6.3. Two bytes of data
are provided for each logical block, holding the physical block number corresponding to the
logical block number. The effective capacity information bit indicates whether a logical block
corresponds to a data area.

512 bytes: 256 blocks can be recorded 16 bytes

0 1 2 3 4 5 6

0 1 2 3 XX 5 6

255…

…

Effective capacity information

Logical
block number

ECC
+ management

XX: Spare block number

Physical block number
(14 bits)

Blank

Corresponding physical block present : 0
No corresponding physical block : 1

Figure 6.3 Block Management Table

(3) Spare block areas

The spare block areas are spare areas in the event of a bad block.

Figure 6.4 shows the location of each area. The data area is located starting at flash physical block
number 0000H.

A bad block in the data area is switched to spare block area (1).

Starting from the highest physical block number, the bad block recording table, block management
table, and spare block areas, are located in that order. When there is a bad block, it is placed in the
lower good block. For example, if physical block number 3FFFH is a bad block, the bad block
recording table is placed at 3FFEH.

Rev. 2.0, 12/00, page 29 of 46

0000H

0 to 328 blocks

290 blocks

16 blocks

1 block

Data area

Spare block area (1)

Spare block area (2)

Block management table

Bad block recording table

Figure 6.4 Alternate Block Areas

Rev. 2.0, 12/00, page 30 of 46

6.3 Sector Management Codes

Sectors are managed by means of 16-byte management data

The management data consists of a sector identification code, block number, good sector
identification code, and ECC code.

512 bytes
Data

16 bytes
ECC

+ management

512 bytes
Data

16 bytes
ECC

+ management

16 bytes
ECC

+ management

16 bytes
ECC

+ management

512 bytes
Data

512 bytes
Data

Sector management bytes

ECC bytes Blank

Sector identification
Block identification

Block number Good block code

Figure 6.5 Sector Management Codes

(1) Good block code

Stores 3 bytes (1C71C7H) of the ex-factory good block code.

(2) Block number

Stores the logical block number to which the sector belongs.

(3) Block identification code

Indicates which area (data area, spare block area, block management table, or bad block
recording table) the block belongs to. The same code is stored for sectors within the same
block (see table 6.2).

(4) Sector identification

Indicates the sector status (in use or not used) (see table 6.3).

(5) ECC bytes

These bytes store the EEC code for 512 bytes of data.

Rev. 2.0, 12/00, page 31 of 46

Table 6.2 Examples of Block Identification Code

Block Type Example of Code

Data area 0FH

Spare block area (1) 01H

Substituted 10HSpare block area (2)

Not used 1FH

Block management table 00H

Bad block recording table F0H

Ex-factory bad block Undefined

Acquired bad block FFH

Table 6.3 Examples of Sector Identification Code

Sector Status Example of Data

In use 00H

Not used FFH

Rev. 2.0, 12/00, page 32 of 46

6.4 Sector Access Methods

Data area sectors are accessed by sector number. Sector numbers start from 0.

The quotient resulting from dividing a sector number by 4 is the flash logical block number, and
the remainder is the sector position within the block.

Figure 6.6 shows a comparison between physical block numbers and logical block numbers.

block 0
block 1
block 2

bad block (initial)
block 4
block 5

bad block (acquired)
block 7

block 0

Logical format

block 1
block 2
block 3

block 6

block 4
block 5

block 7

0
1
2
3

6

4
5

7

block 3

block 6

… …

…
…

Bad block recording table

Physical format

Spare block
area (2)

Block management table 16 blocks

Spare block
area (1)

Figure 6.6 Comparison of Physical and Logical Formats

With this sector management method, except for bad sectors, logical block number = physical
block number.

Therefore, a method whereby a sector is accessed by performing physical/logical block number
conversion, and a method whereby a sector is accessed by performing only bad block
physical/logical block number conversion, are possible.

Rev. 2.0, 12/00, page 33 of 46

Start Start

Access to data

Access method (1) Access method (2)

 Logical block number sector
position calculation

Logical block number calculation
from block management table

Access to data

Logical block number sector
position calculation

Sector management
information read

Good sector

Access to data

Bad sector

Logical block number calculation
from block management table

Figure 6.7 Sector Access Methods

If a sector error occurs, the block to which the relevant sector belongs is identified as a bad block,
and substitution is performed.

Rev. 2.0, 12/00, page 34 of 46

7 Some Common Questions

This section presents a number of technical questions that have been received concerning AND
flash memory, in a Q&A format.

7.1 Concerning Flash Memory

[Question]

What kind of memory is flash memory?

[Answer]

Flash memory is a kind of nonvolatile memory (NVM), which retains its data even if power is cut,
and features both a high level of integration and electrical programming functions.

Flash memory is broadly divided into two kinds: random access type and serial access type. AND
flash is serial access flash memory.

[Question]

What is the difference between AND flash and NAND flash?

[Answer]

Both are serial access type flash memory for data storage use, featuring large capacity and high-
speed reading, wiring, and erasing.

A major difference between the two relates to the write/erase units.

With AND flash, the write unit and erase unit are the same. For 256-Mbyte flash, this is the (2k +
64)-byte sector unit.

With NAND flash, the write unit and erase unit are different, with a (512 + 16)-byte page used for
writing, and an 8- to 16-kbyte block unit for erasing.

[Question]

What is MGM?

[Answer]

MGM is an abbreviation of Mostly Good Memory. 98% MGM refers to memory in which fewer
than 2% of all sectors are invalid (bad) when the product is shipped. This increases chip yield and
helps to lower costs.

Rev. 2.0, 12/00, page 35 of 46

[Question]

What is multi-level technology?

[Answer]

In contrast to the two threshold levels, 0 and 1, of conventional memory, this technology controls
four threshold levels, 00, 01, 10, and 11, enabling two memory cells' worth of data to be stored in
a single memory cell.

As multi-level technology enables twice the capacity of conventional technology to be achieved
with the same number of memory cells, it is effective in cutting costs by increasing capacity and
reducing chip size.

Conventional cell type Multi-level cell type

Memory cell distribution Memory cell distribution

M
em

or
y

ce
ll

th
re

sh
ol

d
le

ve
ls

M
em

or
y

ce
ll

th
re

sh
ol

d
le

ve
ls

Rev. 2.0, 12/00, page 36 of 46

7.2 Concerning the Interface

[Question]

Is it possible to design a system that can support future large-capacity products (512 Mbytes and
up)?

[Answer]

Yes. The functions, command system, and electrical characteristics are compatible with current
512-Mbyte flash, but the increase in addresses has to be taken into consideration. The package,
also, is identical to the 48-pin TSOP (I), and the pins necessary for control are also the same.

[Question]

How should AND flash be used?

[Answer]

The optimum method of use is determined by the requirements for the target system flash.
Generally speaking, there are two methods of use, involving a trade-off between mounting area
and performance:

1) Using a dedicated controller and a software driver for its interface (PC-ATA or IDE)

2) Incorporating the flash driver in the host CPU firmware, and performing direct control with a
CPU of adequate performance (SH-3 80 MHz level)

ROM

CPU
Firmware

Flash Driver

AND Flash

PC-ATA/IDE

CPU

Controller

AND Flash

(1) Using a dedicated controller (2) Direct control by the CPU

Rev. 2.0, 12/00, page 37 of 46

7.3 Concerning Power Shutdown

[Question]

Are there any points requiring attention when powering on and off?

[Answer]

The RES pin should be driven low before turning on the power.

When powering off, check that the chip is in the Ready state, then drive the RES pin low and cut
the power. Using this procedure will ensure that data is protected even if the input signal becomes
unstable when powering on or off

.

ViHR ViLRViLR

Don’t care

ViLR = VSS ±0.2 V
ViHR = VCC ±0.2 V

VCC

RES

Input signal

After power-on, the chip performs internal initialization processing, and automatically goes to the
standby state. Operation is possible as soon as the status changes to Ready.

[Question]

Won't data be lost if a power cut (momentary power interruption) occurs?

[Answer]

Data will not be lost if the flash status is Ready.

In addition, data will not be lost when the status is Busy during reading.

If the status is Busy during writing/erasing, operation is forcibly terminated before the memory
cells go to the normal write/erase state, and so the data in the relevant sector will be undefined.
For the sector recovery method in this case, see section 5, Power Shutdown Recovery Method.

Rev. 2.0, 12/00, page 38 of 46

7.4 Concerning Reset Operations

[Question]

Can operation be forcibly reset by issuing a reset command (FFH) in the Busy state?

[Answer]

No. No commands are accepted in the Busy state.

In the case of writing/erasing, it is possible to transit to the standby state by using a reset command
(FFH) during the setup state before a start command (writing: 40H, erasing: B0H) is issued.

[Question]

What happens if a hardware reset (RES: low) is performed in the Busy state?

[Answer]

All operations are forcibly terminated and a transition is made to the deep standby state.

In the case of writing/erasing, the data in the relevant sector will be undefined.

The recovery method for a sector with undefined data due to a hardware reset is the same as the
sector recovery method after power is cut. See section 5, Power Shutdown Recovery Method.

Rev. 2.0, 12/00, page 39 of 46

7.5 Concerning Write Operations

[Question]

How many times can Program (1) and (3) additional writes be performed?

[Answer]

There is no limit to the number of writes that can be performed with the additional write function.
However, an additional write should be counted as one rewrite (programming) operation.

For example, when performing additional writes with one sector (2 kbytes) divided into four 512-
byte units, the number of rewrite operations for that sector should be counted as 4.

[Question]

What is the difference between Program (1) and (3) additional writes and Program (4) rewriting?

[Answer]

An additional write can only be performed on FFH data (i.e. data in the erased state) in a sector.
Rewriting (programming) is a data contents update and overwrite function.

For details, see section 1, Hitachi AND Flash Write Commands.

[Question]

If writing is performed with Program (4) by specifying a column address, what happens to data
outside the specified range?

[Answer]

For data outside the specified range—that is, areas with no data input from outside—the data prior
to the write is retained.

Rev. 2.0, 12/00, page 40 of 46

7.6 Concerning Bad Sectors

[Question]

What is a bad sector (invalid sector) in AND flash?

[Answer]

AND flash memory is based on the MGM (Mostly Good Memory) concept, and allows the
existence of sectors that do not operate normally—that is, defective sectors—within the chip.
These defective sectors are called bad sectors.

Both bad sectors present when the product is shipped from the factory, and bad sectors that arise
later within the user system (acquired bad sectors), are permitted.

[Question]

How many bad sectors can be expected?

[Answer]

When flash is shipped from the factory, fewer than 2% of all sectors are bad. With 256-Mbyte
flash this means 16,384 × 2% ≈ 328 sectors.

[Question]

Do bad sectors occur during use in the system?

[Answer]

Yes. Of the 98% or more ex-factory good sectors, it is possible that 1.8% (with 256-Mbyte flash:
16,384 (total number of sectors) × 98% × 1.8% ≈ 290 sectors) may become bad.

[Question]

How are ex-factory bad sectors identified?

[Answer]

The data shown in the table below is written in good sectors. If column addresses 820H to 825H
are as shown in the table, the sector is good. Data in a bad sector is undefined.

Column
address

000H to
81FH 820H 821H 822H 823H 824H 825H

826H to
83FH

Data 00H 1CH 71H 17H 1CH 71H C7H FFH

Rev. 2.0, 12/00, page 41 of 46

[Question]

How can the occurrence of bad sectors be identified during use in the system?

[Answer]

An error during writing/erasing is identified by reading the status register.

After writing/erasing has been performed and the Ready state is entered, the relevant bit of the
status register (bit 4 for writing, bit 5 for erasing) is checked, and processing ends normally if the
bit is 0, or ends with an error if the bit is 1. In a normal end, the memory data values are as
expected.

Read errors should be detected using a method such as ECCs.

Mode Detection Method

Erase error Status register read

Write error Status register read

Read error ECC check, etc.

[Question]

When a sector that did not have a good sector code at the time of shipment was rewritten, the
processing ended normally. Can this sector be used as a good sector?

[Answer]

A sector that does not have a good sector code at the time of shipment is a bad sector. A bad
sector is one with a defect of some kind, or one that has a high probability of developing a defect.
Even if rewriting is performed normally, there is still a possibility of some kind of problem
arising, such as with the reliability of the data, for instance. Therefore, bad sectors should not be
accessed.

[Question]

When a bad sector is read, data of some kind is obtained. Will the same data be obtained however
many times that sector is read?

[Answer]

As data in a bad sector lacks reliability, there is no guarantee that the same data will be obtained
again.

Rev. 2.0, 12/00, page 42 of 46

7.7 Concerning Sector Information (Good/Bad Sectors)

[Question]

Is it possible to recover ex-factory sector information if it has been erased?

[Answer]

It is extremely difficult to do so. Ex-factory bad sectors are identified as the result of various tests
conducted during the manufacturing process. In addition to simple write/erase/read tests, a test
mode is also used that takes past experience into consideration.

There are many modes for the occurrence of a bad sector, and only some of these are tested in
ordinary write/erase tests.

It is important to save sector information in some way, and ensure that it is not lost.

[Question]

Is it OK for sector codes written at the time of shipment to be overwritten with different codes?

[Answer]

Yes, this is possible. As long as good/bad sector information can be saved, the method is
immaterial. The most appropriate method for the system should be used.

[Question]

Will any problems occur if ex-factory sector information is not used?

[Answer]

Bad sectors will be used. If a bad sector is used, the data in that sector will be unreliable. Even if
writing/erasing ends normally, there is a possibility of problems occurring such as data become
corrupted when left for a short while.

[Question]

Can bad sectors be managed by writing a bad sector code?

[Answer]

No. No data whatever can be written to a bad sector. Even if a write is performed successfully,
the data will be unreliable.

Rev. 2.0, 12/00, page 43 of 46

7.8 Concerning Sector Management

[Question]

What kind of management is necessary?

[Answer]

The following three kinds of management should be carried out.

(1) Preventing ex-factory bad sectors from being accessed

(2) Identifying bad sectors that occur during use in the system, and preventing their subsequent
access

(3) Performing sector replacement processing

[Question]

If a power interruption occurs after erasing is completed when rewriting data in the system, the
good sector code is lost, and when power is restored the relevant sector becomes a bad sector. Is
there any way of preventing this conversion to a bad sector?

[Answer]

One method is to hold a sector management table in the flash together with the good sector codes.

Rev. 2.0, 12/00, page 44 of 46

7.9 Concerning Error Handling and Sector Substitution Processing

[Question]

When a write error occurs, is it OK to perform a retry on the same sector?

[Answer]

There is a possibility of an error occurring again. The retry should be performed on a different
sector.

[Question]

How is the spare block decided when a sector error occurs and sector replacement is performed?

[Answer]

There is no fixed procedure.

A method appropriate to the system should be used, such as reserving a certain area as a spare
block area, or finding an empty sector when an error occurs and using that sector as the spare
block.

Rev. 2.0, 12/00, page 45 of 46

7.10 Concerning ECCs

[Question]

The sector data area is divided into four 512-byte units for use. Is a 3-bit ECC necessary for 512
bytes in this case?

[Answer]

Yes.

[Question]

Is it OK to write a code generated by the ECC function to a management area?

[Answer]

Yes, this can be done.

[Question]

Why are ECCs necessary?

[Answer]

They are used for detecting/correcting random bit errors due to data retention, and preventing read
errors.

A write error can easily be identified by checking the status, but a read error may occur due to data
retention after the write has ended normally. As flash outputs data without detecting changes that
may have occurred due to data retention, verification of read data is necessary on the system side.

7.11 Concerning Disturbance

[Question]

Are there any write patterns that are susceptible to disturbance?

[Answer]

No. There is no disturbance problem with good sectors.

Rev. 2.0, 12/00, page 46 of 46

8. Check List

When designing a system incorporating Hitachi AND flash memory, the specifications in the
following check list should be confirmed before starting the design work.

Item
Check

Column Remarks

M
us

t-
do

 it
em

s

H
ar

dw
ar

e
de

si
gn

B
as

ic
 o

pe
ra

tio
na

l c
on

di
tio

n
T

im
in

g

O
pe

ra
tio

n
co

m
m

an
d

se
tti

ng

S
ys

te
m

 r
el

ia
bi

lit
y

so
ftw

ar
e

de
si

gn
B

as
ic

so
ftw

ar
e

de
si

gn

Pin arrangement

Absolute ratings

Operating environment

VCC

Topr

E/W

ICC2 (Typ.)

VIH (Min.)

VIL (Max.)

tr/tf
Other

3.3 ± 0.3 V

0 to 70˚C

300K times

30 mA

2.0 V

VCC – 0.2 V

0.8 V

0.2 V

5 ns ↓

P1, 18

P17

P36 (290 alternate sectors when using 3-bit ECC)

P18 (f = 20 MHz)

P18

P18 ()

P18

P18 ()

P19

Mode setting

Power-on sequence

Manufacturer’s code read

Product code read

Status register read

Clear status register

Serial read

Programming

Recovery read

Recovery write

Power-off sequence

All timing items

Understood that this is MGM.
Possibility of up to 2% random bad sectors out of 16,384 sectors.

Only good sectors must be accessed.

System should not stop even if a good sector becomes a bad sector
when accessed.

Good sector code must not be deleted except in case of error occurrence.

If power supply (3.0 V min.) cannot be sustained, Hitachi’s recommended
power-off sequence must be executed.

Error provisions

(1) Provide alternate sectors (at least 290).

(2) Perform at least 3-bit ECC.
Power shutdown provisions
 In case of emergency, perform chip-internal processing with /RES
 signal before powering off.

If there is chain data, system must ensure that there is no problem
if chain is broken midway.

(1)

(2)

(1)

(2)

(3)

(4)

P6, 10, 11, 12

P23

P32

P32

P32

P35

P24, 25

P24, 25

P26, 27

P28

P29

P30, 31

P33

P34

P23

P19 to 22

Relevant Page of Data Sheet
(ADE-203-1178A(Z))

P3, 6

P17

Flash Application Design Guidelines

Publication Date: 1st Edition, March 2000
2nd Edition, December 2000

Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.

