FEATURES

170 MSPS Update Rate
TTL/ High-Speed CMOS-Compatible Inputs
Wideband SFDR: 66 dB @ 2 MHz/ 50 dB @ 65 MHz
Pin-Compatible, Lower Cost Replacement for
Industry Standard AD9721 DAC
Low Power: 439 mW @ 170 MSPS
Fast Settling: 3.8 ns to $\mathbf{1 / 2}$ LSB
Internal Reference
Two Package Styles: 28-Lead SOIC and SSOP
APPLICATIONS
Digital Communications
Direct Digital Synthesis
Waveform Reconstruction
High Speed Imaging
5 MHz-65 MHz HFC Upstream Path

GENERAL DESCRIPTION

The AD 9731 is a 10-bit, 170 M SPS, bipolar D/A converter that is optimized to provide high dynamic performance, yet offer lower power dissipation and more economical pricing than afforded by previous bipolar high performance DAC solutions. T he AD 9731 was designed primarily for demanding communications systems applications where wideband spurious-free dynamic range (SFDR) requirements are strenuous and could previously only be met by using a high performance DAC such as the industry-standard AD 9721. The proliferation of digital communications into basestation and high volume subscriberend markets has created a demand for excellent DAC performance delivered at reduced levels of power dissipation and cost. The AD 9731 is the answer to that demand.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAM

O ptimized for direct digital synthesis (DDS) waveform reconstruction, the AD 9731 provides 50 dB of wideband harmonic suppression over a dc-to-65 M Hz analog output bandwidth. This signal bandwidth addresses the transmit spectrum in many of the emerging digital communications applications where signal purity is critical. N arrowband, the AD 9731 provides an SF DR of greater than 79 dB . This excellent wideband and narrowband ac performance, coupled with a lower pricing structure, make the AD 9731 the optimum high performance DAC value.
The AD 9731 is packaged in 28 -lead SOIC (same footprint as the industry standard AD 9721) and super space-saving 28-lead SSOP; both are specified to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/ 329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998

AD9731. SDEC|F|CATMNS $\begin{aligned} & \left(+V_{S}=+5 \mathrm{~V},-V_{S}=-5.2 \mathrm{~V}, \mathrm{CLOCK}=125 \mathrm{MHz}, \mathrm{R}_{\text {SET }}=1.96 \mathrm{k} \Omega \text { for } 20.4 \mathrm{~mA} \mathrm{I}_{\text {OUT }},\right. \\ & \mathrm{V}_{\text {REF }}=-1.25 \mathrm{~V} \text {, unless otherwise noted. }\end{aligned}$

Parameter	Temp	Test Level	Min	Typ	Max	Units
RESOLUTION				10		Bits
THROUGHPUT RATE	$+25^{\circ} \mathrm{C}$	IV	165	170		M Hz
DC ACCURACY Differential Nonlinearity Integral N onlinearity	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{I} \\ & \mathrm{VI} \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \\ & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \\ & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
INITIAL OFFSET ERROR Zero-Scale Offset Error Full-Scale Gain Error ${ }^{1}$ Offset Drift C oefficient	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \\ & 2.5 \\ & 2.5 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 70 \\ & 100 \\ & 5 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ \% FS \% FS $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
REFERENCE/CONTROL AMP Internal Reference Voltage ${ }^{2}$ Internal Reference V oltage D rift Internal Reference O utput Current ${ }^{3}$ Amplifier Input Impedance Amplifier Bandwidth	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { IV } \\ & \text { VI } \\ & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.35 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & \\ & 50 \\ & 2.5 \end{aligned}$	$\begin{aligned} & -1.15 \\ & +500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \\ & \mathrm{k} \Omega \\ & \mathrm{MHz} \end{aligned}$
REFERENCEINPUT ${ }^{4}$ Reference Input Impedance Reference M ultiplying Bandwidth5 ${ }^{5}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$		$\begin{aligned} & 4.6 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{MHz} \end{aligned}$
OUTPUT PERFORMANCE Output Current ${ }^{4,6}$ Output Compliance Output Resistance O utput C apacitance Voltage Settling Time to $1 / 2 \mathrm{LSB}\left(\mathrm{t}_{\text {ST }}\right)^{7}$ Propagation D elay $\left(\mathrm{t}_{\text {PD }}\right)^{8}$ G litch Impulse ${ }^{9}$ Output Slew R ate ${ }^{10}$ Output Rise Time ${ }^{10}$ Output Fall Time ${ }^{10}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { IV } \\ & \text { V } \end{aligned}$	-1.5	$\begin{aligned} & 20 \\ & 240 \\ & 5 \\ & 3.8 \\ & 2.9 \\ & 4.1 \\ & 400 \\ & 1 \\ & 1 \end{aligned}$	+3	mA V Ω pF ns ns pVs $\mathrm{V} / \mu \mathrm{s}$ ns ns
DIGITAL INPUTS Input C apacitance Logic "1" Voltage Logic "0" V oltage Logic "1" Current Logic " 0 " Current M inimum D ata Setup Time ($\left.\mathrm{t}_{\mathrm{s}}\right)^{11}$ M inimum D ata Hold Time $\left(\mathrm{t}_{\mathrm{H}}\right)^{12}$ Clock Pulsewidth Low ($\mathrm{pw}_{\text {Min }}$) Clock Pulsewidth High ($p w_{\mathrm{max}}$)	Full Full Full $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ Full $+25^{\circ} \mathrm{C}$ Full $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	IV VI VI VI VI IV IV IV IV IV IV	2.0	$\begin{aligned} & 2 \\ & \\ & 8 \\ & 30 \\ & 1.2 \\ & 1.5 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 50 \\ & 100 \\ & 2 \\ & 2.5 \\ & 1.0 \\ & 1.0 \end{aligned}$	pF V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ ns ns ns ns ns ns
```SFDR PERFORM ANCE (Wideband) \({ }^{13}\) 2 MHzA out 10 M HzA out 20 M HzA out 40 MHzA out 65 MHzA OUt \((\) Clock \(=170 \mathrm{M} \mathrm{Hz})\) 70 M Hz A OUT \((\) Clock \(=170 \mathrm{M} \mathrm{Hz})\)```	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		66 62 61 55 50 47		dB   dB   dB   dB   dB   dB


Parameter	Temp	Test Level	Min	Typ	Max	Units
```SFDR PERFORM ANCE (N arrowband)}\mp@subsup{}{}{13 2 M Hz; 2 M Hz Span 25 M Hz, 2 M Hz Span 10 M Hz, 5 M Hz Span (Clock = 170 M Hz)```	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 79 \\ & 61 \\ & 73 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
INTERMODULATION DISTORTION ${ }^{14}$ F1 $=800 \mathrm{kHz}, \mathrm{F} 2=900 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	V		58		dB
POWER SUPPLY ${ }^{15}$ Digital -V Supply Current Analog -V Supply Current Digital +V Supply Current Power D issipation PSRR	$+25^{\circ} \mathrm{C}$ Full $+25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \\ & 45 \\ & 45 \\ & 13 \\ & 15 \\ & 439 \\ & 449 \\ & 100 \end{aligned}$	$\begin{aligned} & 37 \\ & 42 \\ & 53 \\ & 66 \\ & 20 \\ & 22 \end{aligned}$	mA mA mA mA mA mA mW mW $\mu \mathrm{A} / \mathrm{V}$

NOTES
${ }^{1}$ M easured as an error in ratio of full-scale current to current through $\mathrm{R}_{\text {SET }}(640 \mu \mathrm{~A}$ nominal); ratio is nominally 32. DAC load is virtual ground.
${ }^{2}$ Internal reference voltage is tested under load conditions specified in Internal Reference Output current specification.
${ }^{3}$ Internal reference output current defines load conditions applied during Internal Reference Voltage test.
${ }^{4}$ F ull-scale current variations among devices are higher when driving REFERENCE IN directly.
${ }^{5}$ F requency at which a 3 dB change in output of DAC is observed; $\mathrm{R}_{\mathrm{L}}=50 \Omega ; 100 \mathrm{mV}$ modulation at midscale.
${ }^{6}$ Based on $I_{F S}=32$ (CONTROL AM P IN/R SET) when using internal control amplifier. DAC load is virtual ground.
${ }^{7} \mathrm{M}$ easured as voltage settling at midscale transition to $\pm 0.1 \% ; \mathrm{R}_{\mathrm{L}}=50 \Omega$.
${ }^{8} \mathrm{M}$ easured from 50% point of rising edge of CLOCK signal to $1 / 2$ LSB change in output signal.
${ }^{9}$ Peak glitch impulse is measured as the largest area under a single positive or negative transient.
${ }^{10} \mathrm{M}$ easured with $\mathrm{R}_{\mathrm{L}}=50 \Omega$ and DAC operating in latched mode.
${ }^{11}$ D ata must remain stable for specified time prior to rising edge of CLOCK.
${ }^{12}$ D ata must remain stable for specified time after rising edge of CLOCK.
${ }^{13}$ SF DR is defined as the difference in signal energy between the full-scale fundamental signal and worst case spurious frequencies in the output spectrum window. The frequency span is dc-to-N yquist unless otherwise noted.
${ }^{14}$ Intermodulation distortion is the measure of the sum and difference products produced when a two-tone input is driven into the DAC. The distortion products created will manifest themselves at sum and difference frequencies of the two tones.
${ }^{15}$ Supply voltages should remain stable within $\pm 5 \%$ for nominal operation.
Specifications subject to change without notice.

Figure 1. Timing Diagrams

ABSOLUTE MAXIMUM RATINGS*

Analog Output . - V $_{S}$ to $+V_{S}$

Digital Inputs . -0.7 V to $+\mathrm{V}_{\mathrm{S}}$
-V . 7 V
Analog Output C urrent . 30 mA
C ontrol Amplifier Input Voltage Range 0 V to -4 V
Reference Input Voltage Range 0 V to $-\mathrm{V}_{\mathrm{S}}$
M aximum Junction T emperature $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Internal Reference Output C urrent $500 \mu \mathrm{~A}$
Lead T emperature (10 sec Soldering) $+300^{\circ} \mathrm{C}$
Storage T emperature $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Control Amplifier Output Current $\pm 2.5 \mathrm{~mA}$
*Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure of absolute maximum rating conditions for extended periods of time may affect device reliability.

EXPLANATION OF TEST LEVELS

\(\left.$$
\begin{array}{l|l}\hline \text { Test Level } & \text { Definition } \\
\hline \text { I } & \begin{array}{l}100 \% \text { Production T ested. } \\
\text { The parameter is 100\% production tested at } \\
+25^{\circ} \mathrm{C} ; \text { sampled at temperature production. }\end{array} \\
\text { III } & \begin{array}{l}\text { Sample T ested Only. } \\
\text { IV }\end{array}
$$

Parameter is guaranteed by design and character-

ization testing.\end{array}\right]\)| Parameter is a typical value only. |
| :--- |
| VI | | All devices are 100\% production tested at $+25^{\circ} \mathrm{C} ;$ |
| :--- |
| guaranteed by design and characterization testing |
| for industrial temperature range devices. |,

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
AD 9731BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -L ead Wide B ody (SOIC)	R-28
AD 9731BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -Lead Shrink Small (SSOP)	RS-28
AD 9731-PCB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PCB	

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 9731 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN FUNCTION DESCRIPTION

Pin \#	Pin Name	Pin Description	
1	D 9(M SB)	M ost significant data bit of digital input word.	
2-9	D 8-D 1	Eight bits of 10-bit digital input word.	
10	D 0(LSB)	Least significant data bit of digital input word.	
11	CLOCK	T T L-compatible edge-triggered latch enable signal for on-board registers.	
12, 13	NC	No internal connection to this pin.	
14	DIGITAL $+\mathrm{V}_{5}$	+5 V supply voltage for digital circuitry.	
15, 18, 28	GND	C onverter Ground.	
16	DIGITAL - $\mathrm{V}_{\text {S }}$	-5.2 V supply voltage for digital circuitry.	
17	$\mathrm{R}_{\text {SET }}$	Connection for external reference set resistor; nominal $1.96 \mathrm{k} \Omega$. Full-scale output current $=$ 32 (Control Amp in V/R $\mathrm{R}_{\text {STT }}$).	
19	ANALOG RETURN	Analog Return. This point and the reference side of the DAC load resistors should be connected to the same potential (nominally ground).	
20	Iout	Analog current output; full-scale current occurs with a digital word input of all " 1 s ." With external load resistor, output voltage $=I_{\text {OUT }}\left(R_{\text {LOAD }} \\| R_{\text {Internal }}\right) . R_{\text {INTERNAL }}$ is nominally 240Ω.	
21	Ioutb	C omplementary analog current output; full-scale current occurs with a digital word input of all "Os."	
22	ANALOG - $\mathrm{V}_{\text {S }}$	N egative analog supply, nominally -5.2 V.	
23	REF IN	N ormally connected to CONTROL AM P OUT (Pin 24). Direct line to DAC current source network. Voltage changes (noise) at this point have a direct effect on the full-scale output current of the DAC. Full-scale current output $=32$ (CONT ROL AM P IN $/ R_{\text {SET }}$) when using the internal amplifier. DAC load is virtual ground.	
24	CONTROL AMP OUT	N ormally connected to REF IN (Pin 23). Output of internal control amplifier which provides a reference for the current switch network.	
25	REF OUT	N ormally connected to CONTROL AM P IN (Pin 26). Internal voltage reference, nominally -1.25 V .	
26	CONTROL AMPIN	N ormally connected to REF Out (Pin 25) if not connected to external reference.	
27	DIGITAL - $\mathrm{V}_{\text {S }}$	N egative digital supply, nominally -5.2 V.	

PIN CONFIGURATION

Figure 2. Narrowband SFDR (Clock $=170 \mathrm{MHz}$) vs. $A_{\text {out }}$ Frequency

Figure 3. Narrowband SFDR (Clock $=125 \mathrm{MHz})$ vs. $A_{\text {out }}$ Frequency

Figure 4. Wideband SFDR (170 MHz Clock) vs. $A_{\text {out }}$

Figure 5. SFDR vs. I IUT $\left(\right.$ Clock $\left.=125 \mathrm{MHz} / A_{\text {OUT }}=40 \mathrm{MHz}\right)$

Figure 6. Typical Differential Nonlinearity Performance (DNL)

Figure 7. Typical Integral Nonlinearity Performance (INL)
\square
AD9731

Figure 8. Wideband SFDR 2 MHz Aout; 125 MHz Clock

Figure 9. Wideband SFDR $10 \mathrm{MHz} A_{\text {out; }} 125 \mathrm{MHz}$ Clock

Figure 10. Wideband SFDR 20 MHz A out; 125 MHz Clock

Figure 11. Wideband SFDR 40 MHz A out; 125 MHz Clock

Figure 12. Wideband SFDR 65 MHz A out; 170 MHz Clock

Figure 13. Wideband SFDR 70 MHz A out; 170 MHz Clock

Figure 14. Wideband Intermodulation Distortion $F 1=800 \mathrm{kHz} ; F 2=900 \mathrm{kHz} ; 125 \mathrm{MHz}$ Clock; Span $=2 \mathrm{MHz}$

Figure 15. Wideband Intermodulation Distortion F1 = 800 kHz; F2 = 900 kHz; 125 MHz Clock; Span $=62.5 \mathrm{MHz}$

THEORY AND APPLICATIONS

The AD 9731 high speed digital-to-analog converter utilizes most significant bit decoding and segmentation techniques to reduce glitch impulse and deliver high dynamic performance on lower power consumption than previous bipolar DAC technologies.
The design is based on four main subsections: the decoder/ driver circuits, the edge-triggered data register, the switch network and the control amplifier. An internal bandgap reference is included to allow operation of the device with minimum external support components.

Digital Inputs/Timing

T he AD 9731 has T T L/high speed CM OS-compatible singleended inputs for data inputs and clock. The switching threshold is +1.5 V .
In the decoder/driver section, the three M SBs are decoded to seven "thermometer code" lines. An equalizing delay is included for the seven least significant bits and the clock signals. T his delay minimizes data skew and data setup and hold times at the register inputs.

The on-board register is rising-edge triggered and should be used to synchronize data to the current switches by applying a pulse with proper data setup and hold times as shown in the timing diagram. Although the AD 9731 is designed to provide isolation of the digital inputs to the analog output, some coupling of digital transitions is inevitable. Digital feedthrough can be minimized by forming a low-pass filter at the digital input by using a resistor in series with the capacitance of each digital input. This common high speed DAC application technique has the effect of isolating digital input noise from the analog output.

References

The internal bandgap reference, control amplifier and reference input are pinned out to provide maximum user flexibility in configuring the reference circuitry for the AD 9731. When using the internal reference, REF OUT (Pin 25) should be connected to CONTROL AMP IN (Pin 26). CONTROL AMP OUT (Pin 24) should be connected to REF IN (Pin 23). A 0.1μ F ceramic capacitor connected from Pin 23 to Analog $-\mathrm{V}_{5}$ (Pin 22) improves settling time by decoupling switching noise from the current sink baseline. A reference current cell provides feedback to the control amplifier by sinking current through $\mathrm{R}_{\text {SET }}$ (Pin 17).
Full-scale current is determined by CONTROL AM P IN and $\mathrm{R}_{\text {SET }}$ according to the following equation:

$$
I_{\text {OUT }}(F S)=32\left(C O N T R O L A M P I N / R_{\text {SET }}\right)
$$

The internal reference is nominally -1.25 V with a tolerance of $\pm 8 \%$ and typical drift over temperature of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If greater accuracy or temperature stability is required, an external reference can be used. The AD 589 reference features $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
T wo modes of multiplying operation are possible with the AD 9731. Signals with bandwidths up to 2.5 M Hz and input swings from -0.6 V to -1.2 V can be applied to the CONTROL AM P IN pin as shown in Figure 16. Because the control amplifier is internally compensated, the $0.1 \mu \mathrm{~F}$ capacitor discussed above can be reduced to maximize the multiplying bandwidth. H owever, it should be noted that output settling time, for changes in the digital word, will be degraded.

Figure 16. Low Frequency Multiplying Circuit

The REFERENCE IN pin can also be driven directly for wider bandwidth multiplying operation. The analog signal for this mode of operation must have a signal swing in the range of -3.3 V to -4.25 V . This can be implemented by capacitively coupling into REFERENCE IN a signal with a dc bias of -3.3 V (I IUT \approx 22.5 mA) to -4.25 V (I IUT $\approx 3 \mathrm{~mA}$), as shown in Figure 17 , or by dividing REFERENCE IN with a low impedance op amp whose signal swing is limited to the stated range.
NOTE: When using an external reference, the external reference voltage must be applied prior to applying $-\mathrm{V}_{\mathrm{S}}$.

Figure 17. Wideband Multiplying Circuit

Analog Output

The switch network provides complementary current outputs Iout and Ioutb. The design of the AD 9731 is based on statistical current source matching, which provides a 10-bit linearity without trim. Current is steered to either $\mathrm{I}_{\text {OUt }}$ or $\mathrm{I}_{\text {OUt }}$ in proportion to the digital input word. The sum of the two currents is always equal to the full-scale output current minus 1 LSB. The current can be converted to a voltage by resistive loading as shown in the block diagram. Both Iout and I I equally loaded for best overall performance. The voltage that is developed is the product of the output current and the value of the load resistor.

An operational amplifier can also be used to perform the I-to-V conversion of the DAC output. Figure 18 shows an example of a circuit that uses the AD 9617, a high speed, current feedback amplifier. The resistor values in Figure 18 provide a 4.096 V swing, centered at ground, at the output of the AD 9617 amplifier.

Figure 18. I-to-V Conversion Using a Current Feedback Amplifier

EVALUATION BOARD

The performance characteristics of the AD 9731 make it ideally suited for direct digital synthesis (DDS) and other waveform synthesis applications. The AD 9731 evaluation board provides a platform for analyzing performance under optimum layout conditions. The AD 9731 also provides a reference for high speed circuit board layout techniques.

$$
\begin{aligned}
& \text { 为菏 }
\end{aligned}
$$

CLOCK SWITCH MATRIX		
JUMPER	SOURCE	NOTES
E5 TO E7	CON 1 PIN 10	COMPUTER PROVIDES CLOCK
E6 TO E8	J1 BNC	REMOVE Y1
E6 TO E8	Y1	REMOVER12
E8 TO E10 EXT．CLK TO E7 EXT．GND TO E9	DG2020 DATA GENERATOR	

Figure 19．AD9731－PCB Evaluation Board Schematic

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
28-Lead SOIC Wide Body (SOIC)
(R-28)

28-Lead Shrink Small Outline (SSOP)
(RS-28)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

