

General Description

The QXpanderTM QX2011 is a bipolar analog stereo enhancement processor. This device is part of the QX chip family offered by QSound Labs, and uses the patented QXpanderTM technology to produce a spatially widened stereo image from ordinary left and right channel inputs.

This audio enhancement is achieved while using normal stereo signals and standard stereo audio equipment. No special initial encoding of the input signals is required, no additional speakers are required, and no special hardware is needed to produce QXpanded audio.

The 2011 has a TTL-compatible bypass control to select between QXpander enhancement and normal stereo audio. An analog "spread" control is provided to vary the amount of QXpander enhancement. The QX2011 is fabricated in bipolar technology, and is offered in plastic 22 pin SDIP and 24 pin SSOP packages.

Features

- Produce a wide sound image from normal stereo input.
- No encoding of input signals, no special equipment required to QXpand audio.
- TTL-compatible enhancement/bypass control.
- user adjustable enhancement level.

- Low noise: $60 \text{ uV}_{\text{RMS}}$.
- single supply voltage, internal reference.
- Few external components, low cost.

Applications

- Television sound systems (Stereo).
- Semi-professional audio equipment.
- Personal/portable audio.
- Multimedia applications for PCs and laptops.
- Multimedia speaker systems.
- Video Games.

Pin Assignment

RIN	1	\bigcirc	22	
VREF	2		21	🗌 LIN
FB1	3		20	🗌 BYP
FB2	4		19	🗌 FA1
FB3	5		18	🗌 FA2
FB4	6		17	🗌 FA3
FB5	7		16	🗌 FA4
FB6	8		15	🗌 FA5
FB7	9		14	🗌 FA6
FB8	10		13	🗌 LOUT
GND	11		12	🗌 ROUT

Figure 1: SDIP-22 Pin Assignment

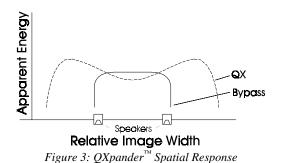
RIN	1 ()	24	□ vcc
VREF	2	23	🗌 LIN
FB1	3	22	🗌 BYP
FB2	4	21	🗌 FA1
FB3	5	20	🗌 FA2
FB4	6	19	🗌 FA3
FB5	7	18	🗌 FA4
FB6	8	17	🗌 FA5
FB7	9	16	🗌 FA6
NC1	10	15	🗌 NC2
FB8	11	14	LOUT
GND	12	13	ROUT

Figure 2: SSOP-24 Pin Assignment

Ref: 2011V011.DOC

Revision: 0.11

Preliminary Date: 97.03.26


Page 1 of 6

Note: The device data in these specifications are based on engineering samples, and are preliminary. QX2011 specifications are subject to change without notice.

Principles of Operation.

In ordinary stereo systems, the stereo image is formed between the left and right speakers, and is confined by the speaker positions (i.e., the "sound stage" is located between the two speakers). The QXpanderTM is designed to form the stereo image beyond the speakers, thus enlarging the "sound stage".

If the center channel is defined as the monaural or common component of the left and right channels, then Figure 3 shows the spatial response of the QXpanderTM when operating, and for normal stereo bypass.

The amount of QXpander[™] enhancement can be controlled with the FB7 and FB8 control pins. The "spread" control allows continuous variable adjustment from maximum QXpander enhancement down to stereo normal signal (bypass). Α potentiometer or a voltage divider/decoder pair (for digital systems) is used to set the enhancement (see Figure 5).

R _{VREF,FB8}	R _{FB7,FB8}	QXpander
0Ω	-	Minimum - Bypass
-	0Ω	Maximum

Table 1: Mode Selection

For simple QX/bypass selection, the BYP control input is TTL-compatible and can be directly driven by logic.

V _{BYP}	MODE
0 V	Bypass - Normal Stereo
≥2.1	QXpander enhanced

Table 2: Mode Selection

Normally, the QXpander^{TM} is used in the preamplifier stage between the stereo source and the amplifier stages used to drive the speakers. Figure 4 shows the functional elements of the QX2011.

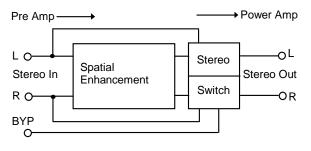
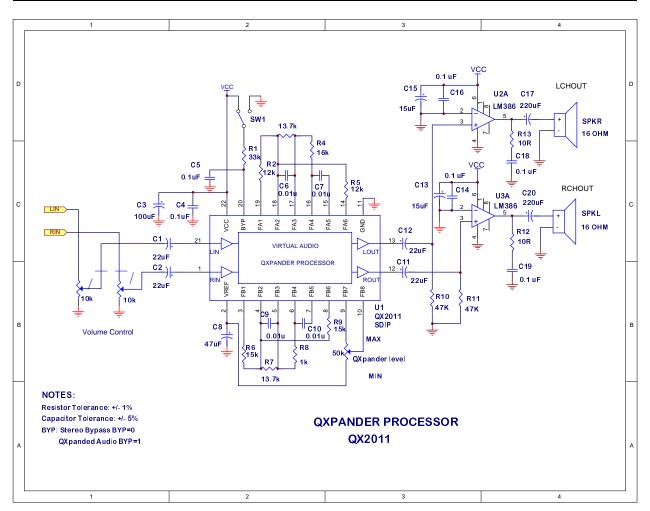


Figure 4: $QXpander^{TM}$ Simplified Block Diagram

QSound applications engineers can assist customers in integrating the QX2011 into their application designs.


Page 2 of 6

ioue bereenon

Preliminary Date: 97.03.26

Revision: 0.11

Note: The device data in these specifications are based on engineering samples, and are preliminary. QX2011 specifications are subject to change without notice.

Figure 5: QX2011 QXpander[™] *Typical Application*

Revision: 0.11	Date: 97.03.26	Page 3 of 6
Note: The device data in these specificati	ons are based on engineering samples, and are prelimin	ary. QX2011 specifications are
subject to change without notice.		

Preliminary

Absolute Maximum Ratings*

$$T_A = +25 \ ^\circ C$$

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{CC,max}	15	V
Input Voltage	V _{IN,max}	$GND \leq V_{IN} \leq V_{CC}$	V
Output Current	I _{O,max}	10	mA
Power dissipation, P22	Pd	800	mW
Power dissipation, S24	Pd	650	mW
Operating Temperature	T _{opr}	-20 ~ +75	°C
Storage Temperature	T _{stg}	-40 ~ +125	٥C

Warning: Operation of the device at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{CC,op}	4.5 ~ 12.0	V
Operating Temperature	T _{opr}	-20 ~ +75	°C

Analog Characteristics:

Revision: 0.11

 $(V_{CC} = 9V, T_A = +25 \text{ °C}, V_{bvp} = 5V, LIN=RIN=0V_{RMS}, unless otherwise specified.)$

Parameter	ТС	Sym	Min	Тур	Max	Unit
Supply Current		I _{CC}		16	21	mA
Input Impedance		RI	21	30	39	kΩ
Input Voltage, Analog,1	1	V _{in,1}	1.0	1.4		V_{RMS}
Input Voltage, Analog,2	2	V _{in,2}	0.5	0.7		V_{RMS}
Voltage Gain, QXpander,1	3	G _{qx,1}	3	4	5	dB
Voltage Gain, QXpander,2	4	G _{qx,2}	-1	0.5	2	dB
Voltage Gain, QXpander,3	5	G _{qx,3}	3	4	5	dB
Voltage Gain, QXpander,4	6	G _{qx,4}	-1	0.5	2	dB
Voltage Gain, Bypass,1	7	G _{by,1}	-5.6	-5.1	-4.6	dB
Voltage Gain, Bypass,2	8	G _{by,2}	-5.6	-5.1	-4.6	dB
Total Harmonic Distortion, QXpander	9	THD _{qx}		0.4	1.0	%
Total Harmonic Distortion, Bypass	10	THD _{by}		0.03	0.3	%
Output Noise Voltage, QXpander	11	V _{no,qx}		60	100	μV_{RMS}

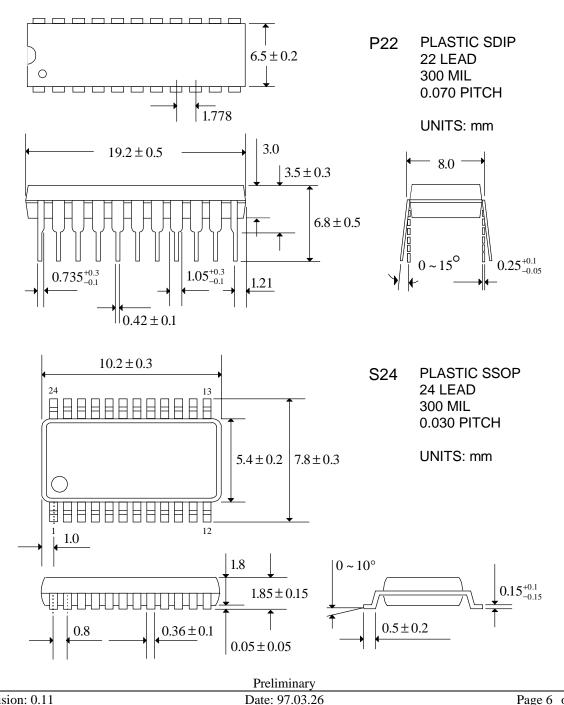
Preliminary Date: 97.03.26

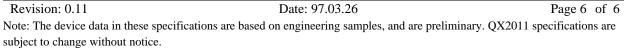
Page 4 of 6

Note: The device data in these specifications are based on engineering samples, and are preliminary. QX2011 specifications are subject to change without notice.

Page 5 of 6

Output Noise Voltage, Bypass	12	V _{no,by}		15	32	μV_{RMS}
Signal-Noise Ratio, QXpander		SNR	TBD	TBD		dB
Signal-Noise Ratio, Bypass		SNR	TBD	TBD		dB
Channel Balance	13	CB	-1.0	0	+1.0	dB
BYP Terminal Voltage, H	14	V _{by,h}	2.1			V
BYP Terminal Voltage, L	15	V _{by,I}			0.7	V
BYP Terminal Current, H	16	I _{by,h}			350	μΑ
BYP Terminal Current, L	17	I _{by,I}	-10			μA
Insertion Loss					TBD	dB
Power Supply Rejection Ratio		PSRR	TBD	TBD		dB
Output Voltage, Analog		V _{OUT}	TBD	TBD		V_{RMS}
Output Current, Analog		I _{OUT}			TBD	mA
Load Resistance		R _L	TBD			kΩ
Load Capacitance		CL			TBD	pF
Usable Bandwidth		BW	20		20000	Hz


Test Conditions:


- 1. f=1kHz, LIN and RIN 0° phase difference, and output voltage T.H.D. no greater than 1%.
- 2. f=1kHz, LIN and RIN 180° phase difference, and output voltage T.H.D. no greater than 1%.
- 3. LIN=1 V_{RMS}, 1 kHz, RIN=0 V, at LOUT.
- 4. LIN=1 V_{RMS}, 1 kHz, RIN=0 V, at ROUT.
- 5. LIN=0 V, RIN=1 V_{RMS} , 1 kHz, at ROUT.
- 6. LIN=0 V, RIN=1 V_{RMS} , 1 kHz, at LOUT.
- 7. LIN=1 V_{RMS} , 1 kHz, RIN=0 V, V_{BYP} =0V, at LOUT.
- 8. LIN=0 V, RIN=1 V_{RMS} , 1 kHz, V_{BYP} =0V, at ROUT.
- 9. Total Harmonic Distortion (THD) at LOUT and ROUT (QXpander active):
 - a) $LIN = 1 V_{RMS}$, RIN = 0 V.
 - b) LIN = 0 V, $RIN = 1 V_{RMS}$.
- 10. Test Condition 8, $V_{BYP} = 0V$ (Bypass)
- 11. BW = 20 ~ 20000 Hz, LIN = RIN = 0 V, A curve, QXpander active: at LOUT and ROUT.
- 12. BW = 20 ~ 20000 Hz, LIN = RIN = 0 V, A curve, V_{BYP} = 0 V (Bypass): at LOUT and ROUT.
- 13. $LIN = RIN = 1 V_{RMS}$, 1 kHz, $V_{BYP} = 0 V$ (Bypass), ROUT LOUT (R L).
- 14. High-level input voltage of BYP terminal, QXpander mode, maximum spread
- 15. Low-level input voltage of BYP terminal, Bypass mode, no spread (normal stereo).
- 16. Input current of BYP terminal, V_{BYP}=5V
- 17. Input current of BYP terminal, V_{BYP}=0V

Preliminary Date: 97.03.26

Package Data

Ordering Code	Package Code	Package Type
QX2011-P22C	P22	PLASTIC SDIP
QX2011-S24C	S24	PLASTIC SSOP

