

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1694GR$

GENERAL PURPOSE HIGH FREQUENCY WIDEBAND IC FOR FREQUENCY DOWN-CONVERTER

DESCRIPTION

The μ PC1694GR is Silicon monolithic IC for down-converter that is capable of operating up to 1 GHz.

This IC consists of double balanced mixer (DBM), local oscillator and IF amplifier. Furthermore, combination with the μ PC1663G (high-speed video amp) enables it to be applied to a FM demodulation circuit such as DBS tuner.

The package is 14-pin SOP suitable for surface mounting.

FEATURES

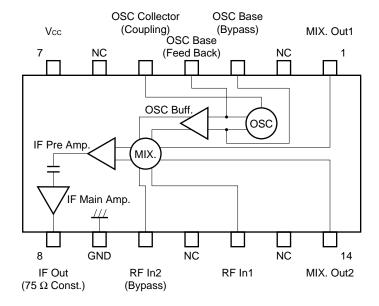
- Satisfactory 1% cross-modulation distortion characteristics: CM = 103 dB μ @ fdes = 200 MHz
- Wide band operation: f ≤ 1 GHz
- Easy to connect with varactor diode due to balanced amplifier oscillator
- Single-end push-pull IF amplifier suppresses fluctuation in output impedance
- Supply voltage: 5 V
- · Packaged in 14-pin SOP suitable for smaller mounting area

★ APPLICATIONS

· Tuners for TV and VCR

★ ORDERING INFORMATION

Part Number	Package	Supplying Form
μPC1694GR-E1	14-pin plastic SOP (225 mil)	Embossed tape 16 mm wide. Pin 1 indicates pull-out direction of tape.


Remark To order evaluation samples, please contact your local NEC office.

(Part number for sample order: μ PC1694GR)

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

INTERNAL BLOCK DIAGRAM

PIN CONFIGURATION

(Top View)

- 1 O 14
 2 13
 3 12
 4 11
 5 10
 6 9
 7 8
- 1. MIX output 1
- 2. GND (Non Connection)
- 3. OSC base (bypass)
- 4. OSC base (feedback)
- OSC collector (coupling) (MIX/IF Amp. switch)
- 6. GND (Non Connection)
- 7. Vcc
- 8. IF output (75 Ω)
- 9. GND
- 10. RF input 2 (bypass)
- 11. GND (Non Connection)
- 12. RF input 1
- 13. GND (Non Connection)
- 14. MIX output 2

★ ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Conditions		Rating	Unit
Supply Voltage	Vcc			6.0	V
Power Dissipation	Po	T _A = +85°C	Note	325	mW
Operating Ambient Temperature	TA			-40 to +85	°C
Storage Temperature	Tstg			-65 to +150	°C

Note Mounted on $50 \times 50 \times 1.6$ -mm epoxy glass PWB, with copper patterning on both sides.

★ RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = 5 V)

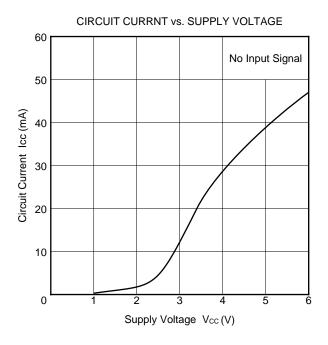
Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Circuit Current 1	Icc1	No input signal	Note 1	32	40	48	mA
Mixer Output Voltage	Vміх	1-14 pin voltage, No input signal	Note 1	-30	0	+30	mV
Conversion Gain 1	CG1	f _{RF} = 55 to 470 MHz, f _{IF} = 50 MHz P _{RF} = -40 dBm RF Input Terminal: Non Tuned	Note 2	14	18	21	dB
Conversion Gain 2	CG2	f _{RF} = 470 to 890 MHz, f _{IF} = 50 MHz P _{RF} = -40 dBm RF Input Terminal: Non Tuned	Note 3	14	18	21	dB
Noise Figure 1	NF1	f _{RF} = 55 to 470 MHz, f _{IF} = 50 MHz RF Input Terminal: Non Tuned	Note 2	_	12.5	15.0	dB
Noise Figure 2	NF2	f _{RF} = 470 to 890 MHz, f _{IF} = 50 MHz RF Input Terminal: Non Tuned	Note 3	_	13.5	16.0	dB
Output Power 1	Po(sat)1	fr= 470 MHz, fr= 50 MHz, Pr= 0 dBm	Note 2	+8	+10	_	dBm
Output Power 2	Po(sat)2	fr= 890 MHz, fr= 50 MHz, Pr= 0 dBm	Note 3	+8	+10	_	dBm
Circuit Current 2 (U/IF)	Icc2	No input signal	Note 1	32	40	48	mA
Power Gain (U/IF)	G₽	f _{in} = 50 MHz, P _{in} = -40 dBm	Note 2	17	21	24	dB
Noise Figure 3 (U/IF)	NF3	fin = 50 MHz	Note 2	_	12.0	15.0	dB

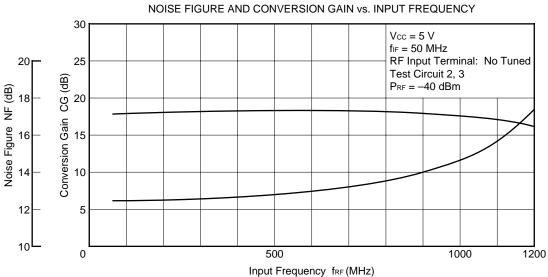
Notes 1. By test circuit 1

2. By test circuit 2

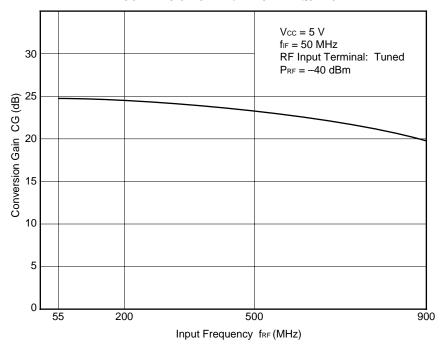
3. By test circuit 3

Data Sheet P12965EJ3V0DS00

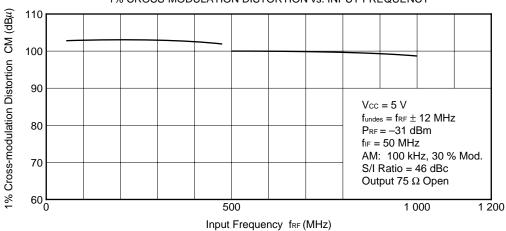

STANDARD CHARACTERISTICS (FOR REFERENCE) (TA = +25°C, Vcc = 5 V)

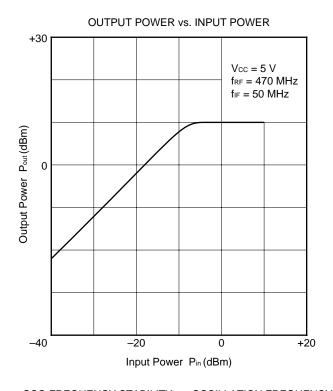

Parameter	Symbol	Test Conditions		Reference Value	Unit
Conversion Gain 3	CG3	f _{RF} = 55 MHz, f _{IF} = 50 MHz, P _{RF} = -40 dBm RF Input Terminal: Tuned Note 1		24.5	dB
Conversion Gain 4	CG4	fre = 200 MHz, fre = 50 MHz, Pre = -40 RF Input Terminal: Tuned	0 dBm Note 1	24.5	dB
Conversion Gain 5	CG5	f _{RF} = 470 MHz, f _{IF} = 50 MHz, P _{RF} = -44 RF Input Terminal: Tuned	0 dBm Note 1	23.0	dB
Conversion Gain 6	CG6	fre = 890 MHz, fre = 50 MHz, Pre = -40 RF Input Terminal: Tuned	0 dBm Note 2	20.0	dB
1% Cross-modulation Distortion 1	CM1	fr= 55 to 470 MHz, fi= 50 MHz	Note 1, 3	103	dΒμ
1% Cross-modulation Distortion 2	CM2	fr= 470 to 890 MHz, fi= 50 MHz	Note 2, 3	100	$dB\mu$
1% Cross-modulation Distortion 3 (U/IF)	CM3	fr= 50 MHz	Note 1, 4	103	dΒμ
Oscillation Frequency Stability 1	f _{stb} 1	Vcc ± 10%, fosc = 100 to 520 MHz	Note 1	±100	kHz
Oscillation Frequency Stability 2	f _{stb} 2	Vcc ± 10%, fosc = 520 to 940 MHz	Note 2	±200	
Oscillation Stop (Start) Voltage 1	Vosc1	fosc = 100 to 520 MHz	Note 1	2.5	V
Oscillation Stop (Start) Voltage 2	Vosc2	fosc = 520 to 940 MHz	Note 2	3.0	

Notes 1. By test circuit 2

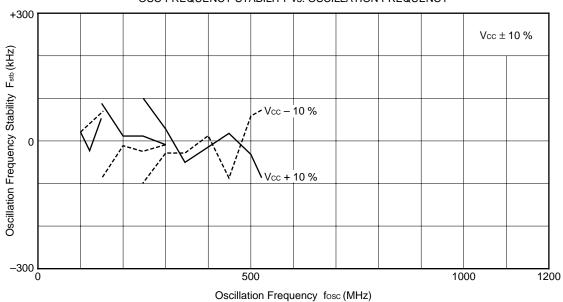

- 2. By test circuit 3
- 3. $f_{undes} = f_{RF} \pm 12$ MHz, $P_{RF} = -31$ dBm, $f_{IF} = 50$ MHz, AM: 100 kHz, 30%Mod., S/I Ratio = 46 dBc, Output 75 Ω Open
- **4.** $f_{\text{in}} = 50$ MHz, $f_{\text{undes}} = 62$ MHz, $P_{\text{in}} = -31$ dBm, AM: 100 kHz, 30% Mod., S/I Ratio = 46 dBc, Output 75 Ω Open

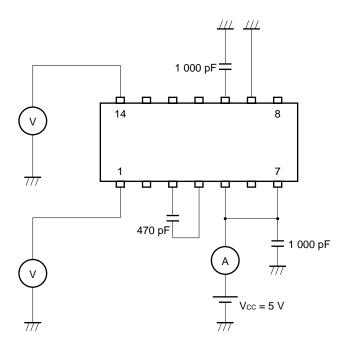
TYPICAL CHARACTERISTICS (TA = +25°C)



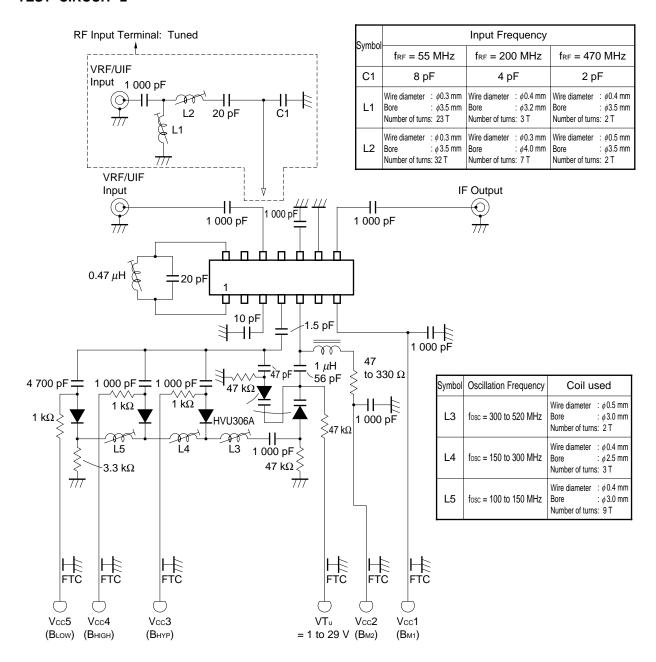


CONVERSION GAIN vs. INPUT FREQUENCY

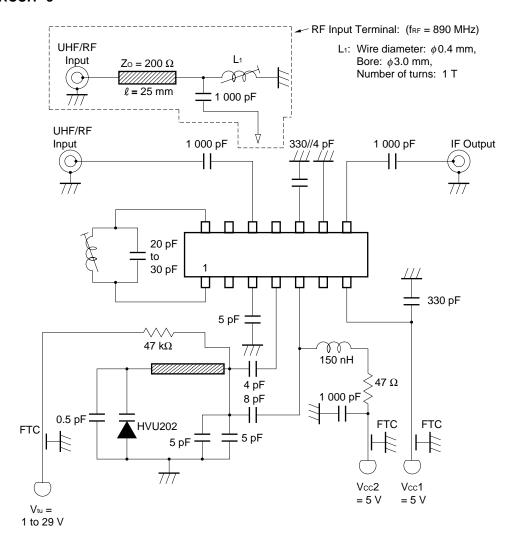




OSC-FREQUENCY STABILITY vs. OSCILLATION FREQUENCY

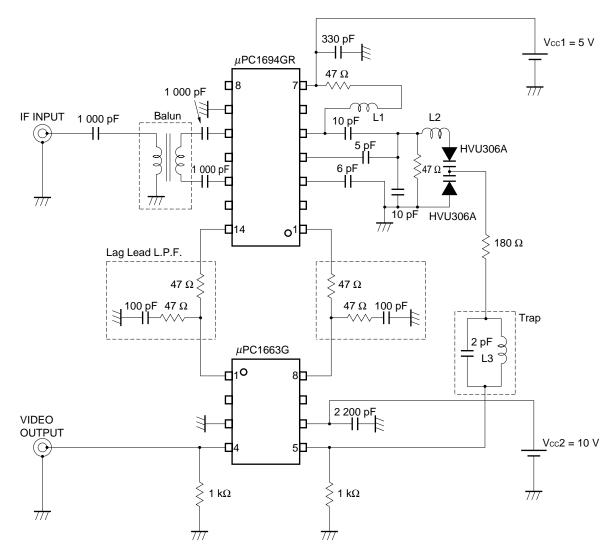

TEST CIRCUIT 1

When measuring circuit current with U/IF Amp, leave pin 5 open.



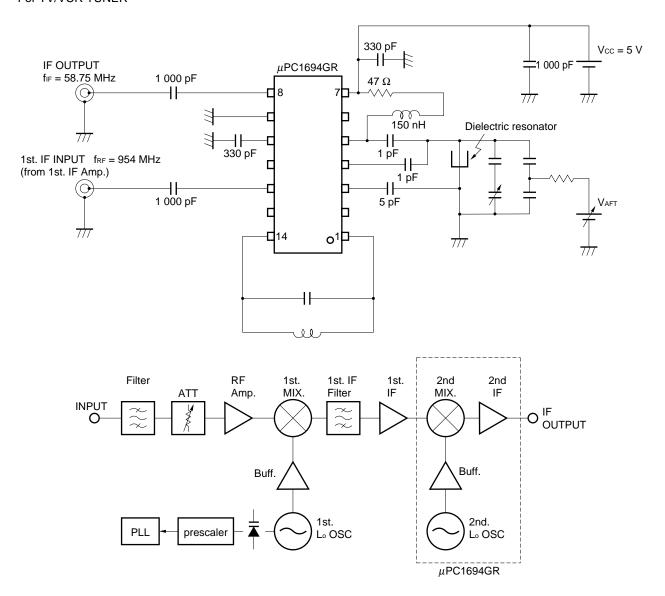
TEST CIRCUIT 2

	Vcc1 (Вм1)	Vcc2 (Вм2)	Vcc3 (Внур)	Vcc4 (Внідн)	Vcc5 (BLow)
VLOW	5 V	5 V	OPEN	OPEN	5 V
VHIGH	5 V	5 V	OPEN	5 V	OPEN
VHYPER	5 V	5 V	5 V	OPEN	OPEN
U/IF	5 V	OPEN	OPEN	OPEN	OPEN


TEST CIRCUIT 3

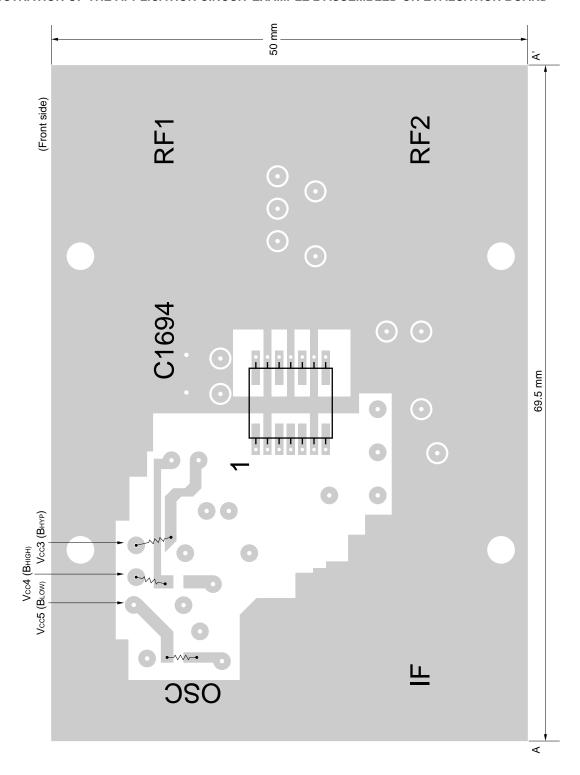
APPLICATION CIRCUIT EXAMPLE 1

For FM demodulator (Example using μ PC1694GR and μ PC1663G)


L1: Wire diameter: ϕ 0.3 mm, Bore: ϕ 1.5 mm, Number of turns: 13 T L2: Wire diameter: ϕ 0.4 mm, Bore: ϕ 3.5 mm, Number of turns: 2 T L3: Wire diameter: ϕ 0.3 mm, Bore: ϕ 1.8 mm, Number of turns: 7 T

Balun: TDK WBT5,5P5-C10129E

Data Sheet P12965EJ3V0DS00


APPLICATION CIRCUIT EXAMPLE 2

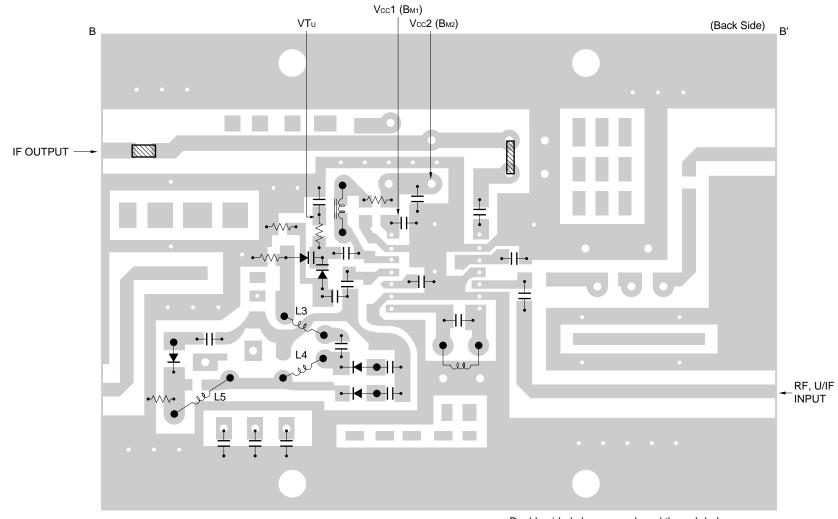
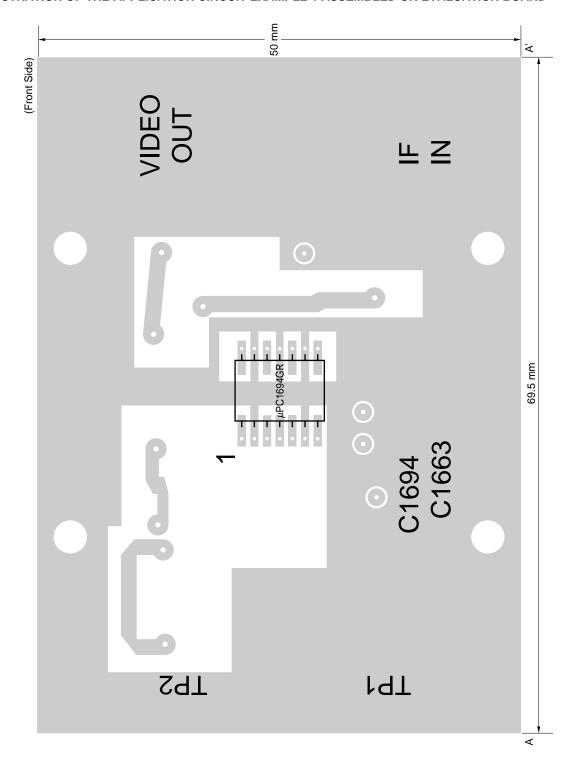
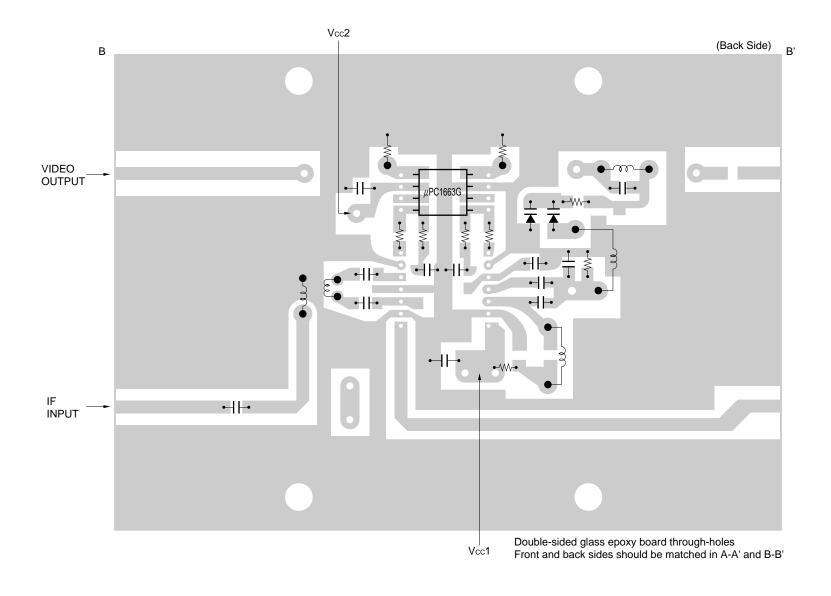

For TV/VCR TUNER

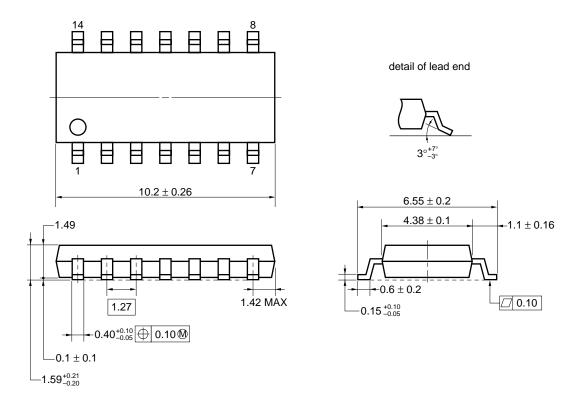
ILLUSTRATION OF THE APPLICATION CIRCUIT EXAMPLE 2 ASSEMBLED ON EVALUATION BOARD





Double-sided glass epoxy board through-holes Front and back sides should be matched in A-A' and B-B' ZZZ: short-circuited strip.

ILLUSTRATION OF THE APPLICATION CIRCUIT EXAMPLE 1 ASSEMBLED ON EVALUATION BOARD



★ PACKAGE DIMENSION

14 PIN PLASTIC SOP (225 mil)

NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

NOTE ON CORRECT USE

- (1) Since this IC uses high frequency process, care is required against the excessive input of static electricity, etc.
- (2) Use the shortest possible wiring for the GND pin.
- (3) Use the widest possible earth pattern to avoid increase of ground impedance (because it may cause abnormal oscillation).
- (4) Insert a bypass capacitor for the Vcc pin (example: 1 000 pF, 2 200 pF, etc.)
- (5) Abnormal oscillation may occur depending on the values of the choke coil and floating capacitance. Therefore, insert a resistor between the power supply and choke coil. (See the application circuit example.)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260 °C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	-

Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8