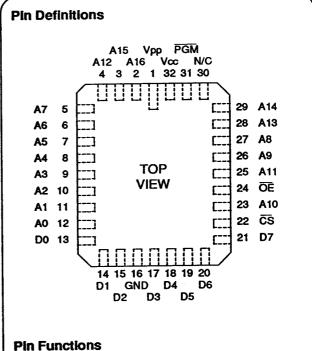
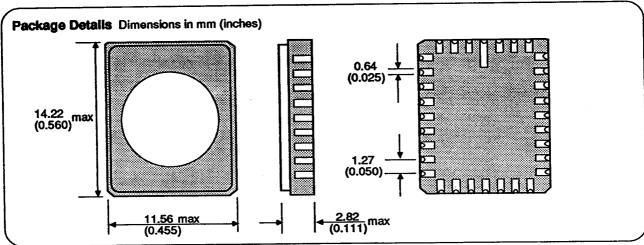


Semiconduct@31,072 x 8 CMOS High Speed UV EPROM Inc.

Features

Access Times of 170/200/250 ns Vpp Program Voltage 12.5V JEDEC 32 pad LCC Footprint and Pin-out Low Power Operation 50mW (typ.) Low Power Standby 5μW (typ.) High Performance Programming Available, including Page Mode Directly TTL compatible May be Processed to MIL-STD-883C(suffix MB)


Block Diagram


128K x 8 UV EPROM Monolithic

MUM8128W-17/20/25

Issue 2.1: March 1989 **PRELIMINARY**

A0-A16	Address Inputs
D0-D7	Data Input/Output
ĊŚ	Chip Select
ŌĒ	Output Enable
Vpp	Programming Voltage
PGM	Programming Enable
NC	No Connect
Vcc	Power (+5V)
GND	Ground

Absolute Maximum Ratings (1)

Supply Voltage (2)	V _{cc}	-0.6 to +7	٧
Programming Voltage	V _{PP}	-0.6 to +13	٧
Input Voltage (2).(3)	Vin	-0.6 to +7	٧
Operating Temperature	т	-60 to +140	°C
Storage Temperature	Topr	-65 to +150	°C

Notes: (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of The deviceat those or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(2) Pulse Width:-1 v for 50ns

(3) With Respect to GND

Recommended Operating Conditions

		min	typ	max	
DC Logic Supply Voltage	V_{∞}	4.75	5.0	6.3	V
DC EPROM Program Voltage	VPP	12.2	-	12.5	V
Input High Voltage	V _{BH}	2.0	-	V _∞ +1	V
Input Low Voltage	V	0.3	-	8.0	V
Operating Temperature ⁽¹⁾	T,	0	-	70	℃
	Tai	-40	-	85	°C (8128I)
	T _{am}	-55	-	125	°C (8128M,8128MB)
Mades(4) Due sus series a series del series de					

Note:(1) Programming would normally take place at 25°C

Operating Modes

The Table below show the logic inputs required to control the operating modes of the MUM8128W EPROM.

Mode	<u>cs</u>	0E	PGM	Vpp	Vcc	Outputs
Read	0	0	1	5V	5V	Data out
Output Disable	0	1	1	5V	5V	Floating
Standby	1	X	X	5V	5V	Floating
Program	0	1	0	12.5V	6V	Data in
Program Verify	0	0	1	12.5V	6V	Data out
Page Data Latch	1	0	1	12.5V	6V	Data in
Page Program	1	1	0	12.5V	6V	Floating
Program Inhibit	0	0	0	12.5V	6V	
	0	1	1	12.5V	6V	
	1	0	0	12.5V	6V	Floating
	1	1	1	12.5V	6V	1

 $1 = V_{ih}$ $0 = V_{il}$ X = Don't Care

Device Identifier Mode

The Identifier Mode allows the reading out of binary codes, which identify manufacturer and type of device, from the outputs of this EPROM. By this mode, the device can be automatically matched to the correct programming algorithm using a suitable EPROM Programmer.

PINS	PGM	A 9	AO	D7	D6	D5	D4	D3	D2	D1	D0	HEX DATA
Manufacturer Code	V	12.0V	V	0	0	0	0	0	1	1	1	07
Device Code	Vih	12.00	V _{ih}	0	0	1	1	1	0	0	0	38

Note that pins A1 - A8, A10 - A16, $\overline{\text{CS}}$ and $\overline{\text{OE}}$ are all held at V_{II}

READ OPERATION

DC Electrical Characteristics	(T_=0 to±70°C,V_=5V±5%)
--------------------------------------	------------------------	---

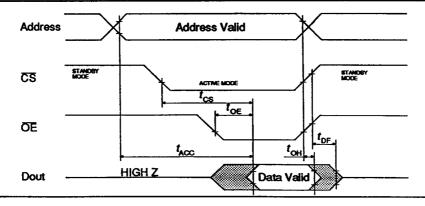
Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	l _{in}	V _{in} =5.25V	-	-	2	μА
Output Leakage Current	l _{out}	V _{out} =5.25V	-	-	2	μA
V _{PP} Leakage Current	I _{PP}	V _{PP} =5V	-	1	20	μA
Standby Power	I _{sb1}	CS = Vih	-	-	1	mA
Supply Current	I _{sb1}	CS=V _{cc} ±0.3V, I _{out} =0mA	-	1	20	μΑ
Operating Power	l _{cc1}	f=1MHz, l _{out} =0mA	-	_	15	mA
Supply Current	l‱2	f=5MHz, I _{out} =0mA	-	-	30	mA
nput Low Voltage	V,	Note (1)	-0.3	-	8.0	V
nput High Voltage	$V_{ih}^{"}$	Note (2)	2.0	-	V _∞ +1	V .
Output LowVoltage	V _{ol}	l _{al} =2.1mA	-	-	0.4	V
Output HighVoltage	V _{oh}	l _{oh} =-400μΑ	3.7	-	-	V

Notes (1) -1.0V for pulse width ≤ 50 ns

(2) Vcc+1.5V for pulse width ≤20 ns. If V_{th} is over the specified max. value, READ operation cannot be guaranteed.

Capacitance (T_=25°C,f=1MHz)

Parameter	Symbol	Test Condition	typ	max	Unit	
Input Capacitance:	C _{in}	V _{in} =0V	-	10	pF	
Output Capacitance:	C _{out}	V _{out} =0V	-	15	pF	


AC Timing Characteristics

		-17	7		-20		-25	
Parameter	Symbol	min	max	min	max	min	max	Unit
Address to Output Delay	t _{ACC}	-	170	-	200	-	250	ns
CS to Output Delay	tcs	-	170	-	200	-	250	ns
DE to Output Delay	to∈	10	70	10	70	10	100	ns
OE or CS High to Output Float	t _{of}	0	50	0	50	0	60	ns
Output Hold from Address, CS or OE (whichever occurred first)	t _{oH}	0	-	0	-	0	-	ns

AC Test Conditions

- * Input pulse levels: 0.45V to 2.4V.
- * Input rise and fall times: ≤ 20ns.
- * Input and Output timing reference levels: 0.8V and 2.0V.
- * Output load: 1 TTL gate plus 100 pF.

Read Cycle Timing Waveform

PROGRAMMING OPERATION

DC Electrical Characteristics ($T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$, $V_{cc} = 6\text{V} \pm 0.25\text{V}$, $V_{pp} = 12.5\text{V} \pm 0.3\text{V}$)

Parameter	Symbol	Test Condition	min	typ	max	Unit	
Input Leakage Current	I _{In}	V _{in} =5.25V	-	-	2	μА	
Operating Power Supply Current	f		_	_	30	mA	
V _{pp} Supply Current	'œ I	Single Byte Programming	-	-	40	mA	
V _{pp} cupply culture	'PP1 _{PP2}	Page Mode Programming	-	-	50	mA	
Input Low Voltage	٧,	Note (5)	-0.1	-	8.0	V	
Input High Voltage	V	Note (6)	2.2	- '	V _{cc} +0.5	V	
Output LowVoltage (Verify	/) V _{ol}	I _a =2.1mA	-	-	0.45	V	
Output HighVoltage (Verif	ý) V _{oh}	l _{oh} =-400μA	2.4	-	-	V	

Notes

(1) V_{cc} must be applied before V_{pp} and removed after V_{pp}.

(2) V_{pp} must not exceed 13V including overshoot.

(3) Device reliability may be affected if device is installed or removed while V_{pp}= 12.5V

(4) The transitions Vii to 12.5V or 12.5V to V_{1} are not allowed while CS = Low.

(5) -0.6V for pulse width \leq 20 ns.

(6) If V_{th} is over the specified maximum value, programming operation cannot be guaranteed.

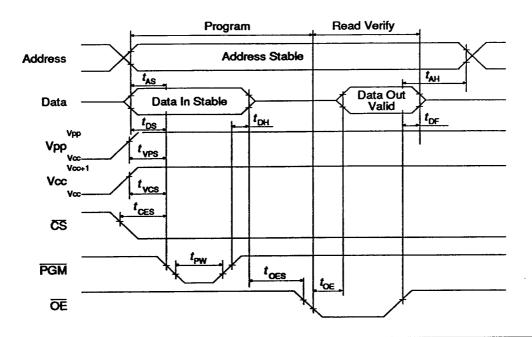
AC	Characteristics

rameter		Symbol	min	typ	max	Unit
dress Setup Time		t _{AS}	2	-	-	μs
Setup Time		t _{oes}	2	-	-	μs
Hold Time		t _{oeH}	2	-	-	μs
Setup Time		tos	2	-	-	μs
ess Hold Time		t _{AH}	0	-	-	μs
		t	2	-	-	μs
Hold Time		t _{DH}	2	-	-	μs
ligh to Output Float Delay	(1)	t _{of}	0	-	130	ns
Setup Time		t _{vps}	2	-	-	μs
Setup Time		t _{vcs}	2	-	-	μs
Initial Program Pulse Width	(2)	t _{PW}	0.19	0.2	0.21	ms
Overprogram Pulse Width	(3)	topw	0.19	-	5.25	ms
Valid from OE	` '	t _{oe}	0	-	150	ns
Pulse Rise Time During Progra	mmina	t _{PRT}	50	-	-	ns
A Setup Time		t _{PGMS}	2	-	-	μs
Setup Time		t _{CES}	2	-	-	μs
Hold Time		t _{CSH}	2	-	-	μs
Pulse Width during Data Latch		t _{LW}	1	-	-	μs

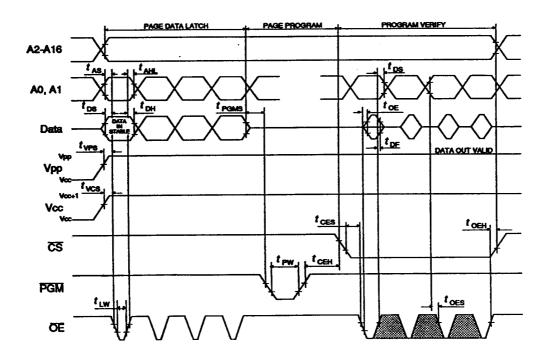
Notes (1) Defines the time at which the output achieves the open circuit condition and is no longer driven.

(2) Initial program pulse width tolerance is 0.2 ms± 5%.

(3) Length of this pulse may vary as a function of the iteration counter value n.


AC Test Conditions

* Input pulse levels: 0.45V to 2.4V


* Input rise and fall times: ≤ 20ns

* Input and Output timing reference levels: 0.8V and 2.0V

Single Byte Programming

Page Mode Programming

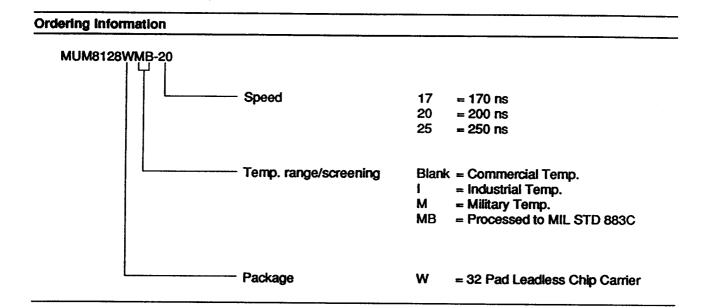
HIGH PERFORMANCE PROGRAMMING ALGORITHMS

The MUM8128W can be programmed using either of the alogorithms shown below. These allow faster programming times without stressing the device or causing deterioration in Data Retention Time. Two methods are described below, Single Byte and Page Mode, the selection of which are shown in the Truth Table on page 2.

Single Byte

When the Program logic conditions are satisfied, the location is designated by A0 - A16, and the data to be programmed is applied 8 bits in parallel on D0 - D7. In this state, Byte programming is completed when PGM is at a low level.

Page Mode


Page Mode allows 4 bytes of data to be simultaneously programmed. The destination address for a Page Programming operation must reside on the same page i.e. A2 - A16 must not change. When the logic conditions in the Truth Table are satisfied, Page Mode Programming is activated. The four locations in the same page are designated by A0 - A1, and the data is applied in parallel on D0 - D7. In this state the data latch (4 bytes) is completed, and the data is programmed when \overline{OE} is high. Programming is completed when \overline{PGM} is low.

ERASE

Erasure of the MUM8128 is performed by exposure to ultraviolet light of 2537 Å at a minimum intensity of 15WS/cm², for approximately 15 - 20 minutes.

Note that sunlight and flourescent light may contain sufficient ultraviolet light to erase the programmed information. For this reason, and anyway for any operation in the READ mode, the transparent lid of this device should be covered with an opaque label.

Military Screening Procedure

Component Screening Flow for high reliability product is in accordance with Mil-883C method 5004 and is detailed below:

MB COMPONENT SCREENING FLOW		
SCREEN	TEST METHOD	LEVE
Visual and Mechanical		
Internal visual	2010 Condition B or manufacturers equivalent	100%
High-temperature storage	1008 Condition C (24hrs @ +150°C)	100%
Temperature cycle	1010 Condition C (10 Cycles,-65°C to +150°C)	100%
Constant acceleration	2001 Condition E (Y, only) (30,000g)	100%
Pre-Burn-in electrical	Per applicable device specifications at Ta=+25°C	100%
Burn-in	Method 1015,Condition D,Ta=+125°C,160hrs min	100%
Final Electrical Tests	Per applicable Device Specification	
Charles (do)	a) @ Ta=+25°C and power supply extremes	100%
Static (dc)	b) @ temperature and power supply extremes	100%
	a) @ Ta=+25°C and power supply extremes	100%
Functional Punctional	b) @ temperature and power supply extremes	100%
		100%
Switching (ac)	a) @ Ta=+25°C and power supply extremes	100%
	b) @ temperature and power supply extremes	100%
Percent Defective allowable (PDA)	Calculated at post-burn-in at Ta=+25°C	5%
Hermeticity	1014	
•	Condition A	100%
Fine	Condition C	100%
Gross	Condition C	
External Visual	2009 Per vendor or customer specification	100%

The policy of the company is one of continuous development and while the information presented in this data sheet is believed to be accurate, no liability is assumed for any data contained within. The company reserves the right to make changes without notice at any time.

© 1988 This design is the property of Mosaic Semiconductor, Inc.

019980 🔨 🖂

7420 Carroll Road San Diego, CA 92121 Tel: (619) 271 4585 FAX: (619) 271 6058