GENERAL DESCRIPTION

MSM6545/6575/6545L/6575L is a 4-bit, low-power microcontroller manufactured in a CMOS silicon gate process. The microcontroller can be initialized and operated at a low supply voltage of 0.9 V .
This single device contains a crystal oscillator circuit, voltage converter circuits, a time base counter, a ROM, a RAM, a stack RAM, I/O ports, interrupt function components, a serial I/O port, a buzzer output circuit, and an updown counter.
This IC is driven by one battery and is well suited to products that need to be operated under low power consumption.

FEATURES

- The IC can be initialized and operated even at a low voltage of 0.9 V .
- Low power consumption
- ROM
: 4096 words $\times 17$ bits (MSM6545/6545L)
2048 words $\times 17$ bits (MSM6575/6575L)
- RAM : 256 words $\times 4$ bits (MSM6545/6545L)
- I/O port

Input-output port : 7 ports $\times 4$ bits
Input port $: 1$ port $\times 4$ bits

- Interrupt functions (real-time interrupt, external interrupt, and serial interrupt)
- Serial I/O port : 8-bit sync communication
- Buzzer output circuit
- 4-bit decimal updown counter
- 73 instructions
- Minimum instruction execution time : $61 \mu \mathrm{~s}$
- Operation under single 1.5 V power supply (MSM6545/6575)

A mask option allows the 3 V power supply to be used (MSM6545L/6575L)

- Built-in 32.768 kHz crystal oscillator circuit
- Package options:

44-pin plastic QFP (QFP44-P-910-0.80-K) : (Product name : MSM6545/6545L-××GS-K)
44-pin plastic QFP (QFP44-P-910-0.80-2K) : (Product name : MSM6545/6545L-××GS-2K)
44-pin plastic QFP (QFP44-P-910-0.80-K) : (Product name : MSM6575/6575L-××GS-K)
44-pin plastic QFP (QFP44-P-910-0.80-2K) : (Product name : MSM6575/6575L-××GS-2K) Chip

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

44-Pin Plastic QFP

Notes: 1. P6.3, P7.0 and P7.1 also function as serial port pins. P7.2, and P7.3 also function as updown counter pins.
2. P6.1 and P6.2 are not assigned pins.

PIN DESCRIPTIONS

Symbol	Type	Description			
PORTO (P0.0 to P0.3)	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor			
PORT1 (P1.1 to P1.3)	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor			
PORT2 (P2.0 to P2.3)	I/0	4-bit Input-output port, I/0 switchable, with/without input pull-down resistor	P2.0 to P2.3	External interrupt port	
PORT3 (P3.0 to P3.3)	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor			
$\begin{aligned} & \text { PORT4 } \\ & \text { (P4.0 to P4.3) } \end{aligned}$	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor			
PORT5 (P5.0 to P5.3)	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor			
PORT6 (P6.0 to P6.3)	I/0	4-bit Input-output port, I/O switchable, with/without input pull-down resistor	P6.3: $\overline{\text { SCLK }}$	Shared with serial port	
PORT7 (P7.0 to P7.3)	1	4-bit input port Tie to the negative pole of the battery when not used.	P7.0: SOUT P7.1: SIN P7.2: BU/D P7.3: CCLK		
BD	0	Buzzer output pin			
RESET	I	Reset pin with input pull-down resistor			
TEST1 TEST2 TEST3	I	Testing pins with input pull-down resistor Tie to the negative pole of the battery.			
XT	1	Connection pins for crystal oscillator			
XTB	0				
$V_{\text {DD }}$	-	0 V power supply pin			
$\mathrm{V}_{\text {S } 1}$	-	-1.5 V supply pin (power supply pin for -1.5 V operation)			
$V_{\text {SS2 }}$	-	-3.0 V supply pin (power supply pin for -3.0 V operation)			
$V_{\text {CP }}$	-	Connection pins for internal potential development capacitor			
$V_{\text {CM }}$					
$\mathrm{V}_{\text {EE }}$	-	Supply pin for internal logic (constant voltage circuit output pin)			

ABSOLUTE MAXIMUM RATINGS (MSM6545/6575, $1.5 \mathrm{~V}, \mathrm{BUF}$ = "0")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 1}=\right.$ battery voltage $)$				
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	$\mathrm{V}_{\text {SS1 }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-6.0 to +0.3	V
Input Voltage	VIN		$\mathrm{V}_{\text {SS } 1}-0.3$ to +0.3	
Output Voltage	$V_{\text {OUT }}$		$\mathrm{V}_{\text {SS } 1}-0.3$ to +0.3	
Storage Temperature	TSTG	-	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: The input of the constant voltage circuit is equal to the output of the voltage converter ($\mathrm{V}_{\mathrm{SS} 2}$).

RECOMMENDED OPERATING CONDITIONS (MSM6545/6575, 1.5 V, BUF = "0")

			$V_{D D}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 1}=\right.$ battery voltage $)$		
Parameter	Symbol	Condition	Range	Unit	
Operating Voltage	V_{op}	-	-1.75 to -0.9	V	
Operating Temperature	$\mathrm{T}_{0 \mathrm{p}}$	-	-20 to +70	${ }^{\circ} \mathrm{C}$	
Oscillation Frequency	$\mathrm{f}_{\mathrm{OSC}}$	-	32.768	kHz	

Note: The input of the constant voltage circuit is equal to the output of the voltage converter ($\mathrm{V}_{\mathrm{SS} 2}$).

ELECTRICAL CHARACTERISTICS (MSM6545/6575, 1.5 V, BUF = "0")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 1}=-1.5 \mathrm{~V}$ (battery voltage), $\mathrm{V}_{\mathrm{SS} 2}=-3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{X}}=35 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applied Pin
Power Supply Current	IDD	*1	-	3	-	$\mu \mathrm{A}$	-
Oscillation Start Voltage	- Vosc	Within 2 seconds	-	-	0.9	V	$V_{\text {SS } 1}$
Output Current 1	$-^{-10 H 1}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	150	-	-	$\mu \mathrm{A}$	PORTO to PORT6*2 SOUT, SCLK
	I0L1	$\mathrm{V}_{0}=-1.0 \mathrm{~V}$	150	-	-		
Output Current 2	$-\mathrm{I}_{\mathrm{OH} 2}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	20	-	-	$\mu \mathrm{A}$	BD
	IOL2	$\mathrm{V}_{0}=-1.0 \mathrm{~V}$	20	-	-		
Input Current 1	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, in the input state, with pull-down resistor	7	15	30	$\mu \mathrm{A}$	PORTO to PORT6 *2
Input Leakage Current		$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V},-1.5 \mathrm{~V}$, in the input state, without pull-down resistor	-	-	1	$\mu \mathrm{A}$	PORTO to PORT7*2 SIN, SOUT, SCLK
Input Current 3	ІІнз	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, with pull-down resistor	70	250	500	$\mu \mathrm{A}$	RESET TEST1 to TEST3
Input Voltage	$-\mathrm{V}_{\mathrm{IH}}$	-	-	-	0.3	V	All input pins
	$-\mathrm{V}_{\text {IL }}$		1.2	-	-		

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)
*2 $\mathrm{PORT}=\mathrm{P} 0.0$ to $\mathrm{P} 0.3, \mathrm{PORT1}=\mathrm{P} 1.0$ to $\mathrm{P} 1.3, \mathrm{PORT} 2=\mathrm{P} 2.0$ to $\mathrm{P} 2.3, \mathrm{PORT3}=\mathrm{P} 3.0$ to P 3.3, $\mathrm{PORT} 4=\mathrm{P} 4.0$ to $\mathrm{P} 4.3, \mathrm{PORT} 5=\mathrm{P} 5.0$ to $\mathrm{P} 5.3, \mathrm{PORT} 6=\mathrm{P} 6.0$ to $\mathrm{P} 6.3, \mathrm{PORT} 7=\mathrm{P} 7.0$ to P 7.3

Note: The input of the constant voltage circuit is equal to the output of the voltage converter ($\mathrm{V}_{\mathrm{SS} 2}$).

ABSOLUTE MAXIMUM RATINGS (MSM6545/6575, 1.5 V, BUF = "1")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 1}=\right.$ battery voltage $)$				
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	$\mathrm{V}_{\text {SS1 }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-6.0 to +0.3	V
Input Voltage	$\mathrm{V}_{\text {IN }}$		$\mathrm{V}_{\text {SS } 1}-0.3$ to +0.3	
Output Voltage	$V_{\text {OUT }}$		$\mathrm{V}_{\text {SS } 1}-0.3$ to +0.3	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: The input of the constant voltage circuit is directly connected to the power supply $\left(\mathrm{V}_{\mathrm{SS} 1}\right)$.

RECOMMENDED OPERATING CONDITIONS (MSM6545/6575, 1.5 V, BUF = "1")

			$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 1}=\right.$ battery voltage $)$	
Parameter	Symbol	Condition	Range	Unit
Operating Voltage	$V_{\text {op }}$	-	-1.75 to -0.9	V
Operating Temperature	$\mathrm{T}_{\text {op }}$	-	-20 to +70	${ }^{\circ} \mathrm{C}$
Oscillation Frequency	fosc	-	32.768	kHz

Note: The input of the constant voltage circuit is directly connected to the power supply $\left(\mathrm{V}_{\mathrm{SS} 1}\right)$.

ELECTRICAL CHARACTERISTICS (MSM6545/6575, 1.5 V, BUF = "1")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{S S 1}=-1.5 \mathrm{~V}$ (battery voltage), $\mathrm{V}_{S S 2}=-3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=32.768 \mathrm{kHz}, \mathrm{CX}_{\mathrm{X}}=35 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applied Pin
Power Supply Current	IDD	*1	-	1.5	-	$\mu \mathrm{A}$	-
Oscillation Start Voltage	- Vosc	Within 2 seconds	-	-	0.9	V	$V_{\text {SS } 1}$
Output Current 1	$-^{-10 H 1}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	150	-	-	$\mu \mathrm{A}$	PORT0 to PORT6*2SOUT, SCLK
	l0L1	$\mathrm{V}_{0}=-1.0 \mathrm{~V}$	150	-	-		
Output Current 2	$-^{-1} \mathrm{OH}_{2}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	20	-	-	$\mu \mathrm{A}$	BD
	I0L2	$\mathrm{V}_{0}=-1.0 \mathrm{~V}$	20	-	-		
Input Current 1	$\mathrm{I}_{\mathbf{H} 1}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, in the input state, with pull-down resistor	7	15	30	$\mu \mathrm{A}$	PORTO to PORT6 *2
Input Leakage Current	\| 1 IL	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V},-1.5 \mathrm{~V}$, in the input state, without pull-down resistor	-	-	1	$\mu \mathrm{A}$	$\begin{array}{\|c} \mid \text { PORTO to PORT7*2 } \\ \text { SIN, SOUT, SCLK } \end{array}$
Input Current 3	$\mathrm{I}_{\mathbf{H} 3}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, without pull-down resistor	70	250	500	$\mu \mathrm{A}$	RESET TEST1 to TEST3
Input Voltage	$-\mathrm{V}_{\text {IH }}$	-	-	-	0.3	V	All input pins
	$-\mathrm{V}_{\text {IL }}$		1.2	-	-		

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)
*2 $\mathrm{PORT} 0=\mathrm{P} 0.0$ to $\mathrm{P} 0.3, \mathrm{PORT1}=\mathrm{P} 1.0$ to $\mathrm{P} 1.3, \mathrm{PORT} 2=\mathrm{P} 2.0$ to $\mathrm{P} 2.3, \mathrm{PORT} 3=\mathrm{P} 3.0$ to P 3.3, $\mathrm{PORT} 4=\mathrm{P} 4.0$ to $\mathrm{P} 4.3, \mathrm{PORT} 5=\mathrm{P} 5.0$ to $\mathrm{P} 5.3, \mathrm{PORT} 6=\mathrm{P} 6.0$ to $\mathrm{P} 6.3, \mathrm{PORT} 7=\mathrm{P} 7.0$ to P 7.3
Note: The input of the constant voltage circuit is directly connected to the power supply $\left(\mathrm{V}_{\mathrm{SS} 1}\right)$.

ABSOLUTE MAXIMUM RATINGS (MSM6545L/6575L, 3.0 V, BUF = "0")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 2}=\right.$ battery voltage $)$				
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	$V_{\text {SS2 }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-6.0 to +0.3	V
Input Voltage	VIN		$\mathrm{V}_{\text {SS2 }}-0.3$ to +0.3	
Output Voltage	$V_{\text {OUT }}$		$\mathrm{V}_{\text {SS2 } 2}-0.3$ to +0.3	
Storage Temperature	TSTG	-	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: The input of the constant voltage circuit is equal to the output of the voltage converter ($\mathrm{V}_{\mathrm{SS} 1}$).

RECOMMENDED OPERATING CONDITIONS (MSM6545L/6575L, 3.0 V, BUF = "0")

			$V_{D D}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 2}=\right.$ battery voltage $)$		
Parameter	Symbol	Condition	Range	Unit	
Operating Voltage	V_{op}	-	-3.5 to -1.8	V	
Operating Temperature	T_{Op}	-	-20 to +70	${ }^{\circ} \mathrm{C}$	
Oscillation Frequency	$\mathrm{f}_{\mathrm{OSC}}$	-	32.768	kHz	

Note: The input of the constant voltage circuit is equal to the output of the voltage converter $\left(V_{\mathrm{SS} 1}\right)$.

ELECTRICAL CHARACTERISTICS (MSM6545L/6575L, 3.0 V, BUF = "0")

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applied Pin
Power Supply Current	IDD	*1	-	0.75	-	$\mu \mathrm{A}$	-
Oscillation Start Voltage	- $\mathrm{V}_{\text {OSC }}$	Within 2 seconds	-	-	1.8	V	$V_{\text {SS2 }}$
Output Current 1	$-^{-10 H 1}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	500	-	-	$\mu \mathrm{A}$	PORTO to PORT6* SOUT, SCLK
	l0L1	$\mathrm{V}_{0}=-2.5 \mathrm{~V}$	500	-	-		
Output Current 2	$-^{-1 \mathrm{OH} 2}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	20	-	-	$\mu \mathrm{A}$	BD
	IOL2	$\mathrm{V}_{0}=-2.5 \mathrm{~V}$	20	-	-		
Input Current 1	$\mathrm{I}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, in the input state, with pull-down resistor	50	100	200	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { PORT0 to } \\ & \text { PORT6 *2 } \end{aligned}$
Input Leakage Current	\| ${ }_{\text {ILI }}$ \|	$\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V},-3 \mathrm{~V}$, in the input state, without pull-down resistor	-	-	1	$\mu \mathrm{A}$	PORTO to PORT7*2 SIN, SOUT, SCLK
Input Current 3	ІНн	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, with pull-down resistor	200	750	1500	$\mu \mathrm{A}$	RESET TEST1 to TEST3
Input Voltage	$-\mathrm{V}_{\text {IH }}$	-	-	-	0.5	V	All input pins
	$-\mathrm{V}_{\text {IL }}$		2.5	-	-		

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)
*2 PORT0 $=\mathrm{P} 0.0$ to $\mathrm{P} 0.3, \mathrm{PORT1}=\mathrm{P} 1.0$ to $\mathrm{P} 1.3, \mathrm{PORT} 2=\mathrm{P} 2.0$ to $\mathrm{P} 2.3, \mathrm{PORT} 3=\mathrm{P} 3.0$ to P 3.3, $\mathrm{PORT} 4=\mathrm{P} 4.0$ to $\mathrm{P} 4.3, \mathrm{PORT} 5=\mathrm{P} 5.0$ to $\mathrm{P} 5.3, \mathrm{PORT} 6=\mathrm{P} 6.0$ to $\mathrm{P} 6.3, \mathrm{PORT7}=\mathrm{P} 7.0$ to P 7.3
Note: The input of the constant voltage circuit is equal to the output of the voltage converter $\left(\mathrm{V}_{\mathrm{SS} 1}\right)$.

ABSOLUTE MAXIMUM RATINGS (MSM6545L/6575L, 3.0 V, BUF = "1")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{\text {SS2 }}=\right.$ battery voltage $)$				
Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	VSS2	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-6.0 to +0.3	V
Input Voltage	VIN		$\mathrm{V}_{\text {SS2 }}-0.3$ to +0.3	
Output Voltage	$V_{\text {OUT }}$		$\mathrm{V}_{\text {SS2 } 2}-0.3$ to +0.3	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: The input of the constant voltage circuit is directly connected to the power supply ($\mathrm{V}_{\mathrm{SS} 2}$).

RECOMMENDED OPERATING CONDITIONS (MSM6545L/6575L, 3.0 V, BUF = "1")

				$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\left(\mathrm{~V}_{S S 2}=\right.$ battery voltage $)$		
Parameter	Symbol	Condition	Range	Unit		
Operating Voltage	V_{op}	-	-3.5 to -0.9	V		
Operating Temperature	T_{Op}	-	-20 to +70	${ }^{\circ} \mathrm{C}$		
Oscillation Frequency	$\mathrm{f}_{\mathrm{OSC}}$	-	32.768	kHz		

Note: The input of the constant voltage circuit is directly connected to the power supply $\left(\mathrm{V}_{\mathrm{SS} 2}\right)$.

ELECTRICAL CHARACTERISTICS (MSM6545L/6575L, 3.0 V, BUF = "1")

$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 1}=-1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS} 2}=-3.0 \mathrm{~V}$ (battery voltage), $\mathrm{f}_{\mathrm{OSC}}=32.768 \mathrm{kHz}, \mathrm{C}_{\mathrm{X}}=35 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applied Pin
Power Supply Current	IDD	*1	-	1.5	-	$\mu \mathrm{A}$	-
Oscillation Start Voltage	- $\mathrm{V}_{\text {OSC }}$	Within 2 seconds	-	-	0.9	V	$V_{\text {SS2 }}$
Output Current 1	$-^{-10 H 1}$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	500	-	-	$\mu \mathrm{A}$	PORTO to PORT6*2SOUT, SCLK
	l0L1	$\mathrm{V}_{0}=-2.5 \mathrm{~V}$	500	-	-		
Output Current 2	$-^{-1} \mathrm{H} 2$	$\mathrm{V}_{0}=-0.5 \mathrm{~V}$	20	-	-	$\mu \mathrm{A}$	BD
	I0L2	$\mathrm{V}_{0}=-2.5 \mathrm{~V}$	20	-	-		
Input Current 1	$\mathrm{I}_{\mathbf{H} 1}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, in the input state, with pull-down resistor	50	100	200	$\mu \mathrm{A}$	PORTO to PORT6 *2
Input Leakage Current	$\left\|I_{\text {IL }}\right\|$	$\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V},-3 \mathrm{~V}$, in the input state, without pull-down resistor	-	-	1	$\mu \mathrm{A}$	$\begin{array}{\|c} \mid \text { PORTO to PORT7*2 } \\ \text { SIN, SOUT, SCLK } \end{array}$
Input Current 3	1_{1+3}	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, with pull-down resistor	200	750	1500	$\mu \mathrm{A}$	RESET TEST1 to TEST3
Input Voltage	$-\mathrm{V}_{\text {IH }}$	-	-	-	0.5	V	All input pins
	- $\mathrm{VIL}^{\text {IL }}$		2.5	-	-		

*1 Depends on the program. (Values in the above table are applied in the case where the software duty is about 5%.)
*2 $\mathrm{PORT} 0=\mathrm{P} 0.0$ to $\mathrm{P} 0.3, \mathrm{PORT1}=\mathrm{P} 1.0$ to $\mathrm{P} 1.3, \mathrm{PORT} 2=\mathrm{P} 2.0$ to $\mathrm{P} 2.3, \mathrm{PORT} 3=\mathrm{P} 3.0$ to P 3.3 , $\mathrm{PORT} 4=\mathrm{P} 4.0$ to $\mathrm{P} 4.3, \mathrm{PORT} 5=\mathrm{P} 5.0$ to $\mathrm{P} 5.3, \mathrm{PORT} 6=\mathrm{P} 6.0$ to $\mathrm{P} 6.3, \mathrm{PORT7}=\mathrm{P} 7.0$ to P 7.3
Note: The input of the constant voltage circuit is directly connected to the power supply $\left(\mathrm{V}_{\mathrm{SS} 2}\right)$.

NOTES ON USE

Power Supply for 0.9 V Microcontroller Series (Backup Flag and Constant-Voltage Circuit)

The 0.9 V devices have a built-in constant-voltage circuit. The output of this constant-voltage circuit powers the microcontroller's internal logic circuits. Setting a backup flag (BUF) allows the input of the constant voltage circuit to be switched to either the battery or the output generated in the voltage converter, based on the battery voltage. A battery voltage of 1.5 V or 3.0 V can be selected.

The output (V_{EE}) of the constant-voltage circuit is set at approximately -1.3 V . This allows the current consumed by the internal logic to be limited, irrespective of the battery voltage. However, if the input of the constant voltage circuit is below this set value (approximately $1.3 \mathrm{~V})$, the output $\left(\mathrm{V}_{\mathrm{EE}}\right)$ is equal to the input. The 0.9 V microcontroller can be operated even if the internal voltage (output from the constant voltage circuit) falls to 0.9 V . Setting the backup flag allows a larger operating voltage margin despite changes in internal voltage due to noise. For example, for the 1.5 V specification, setting the backup flag at " 0 " supplies twice the battery voltage to the constant voltage circuit. Thus, even if the battery voltage falls to 0.9 V , the output voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ is maintained at -1.3 V , providing a larger margin of operating voltage of the internal logic circuits, because 1.8 V is applied to the input of the constant-voltage circuit. Figures 1 to 4 show the internal status depending on the backup flag settings for the battery, as well as status features.
(Figure 1) 1.5 V Operation (Backup Flag = 1)

Internal status	The battery level $\mathrm{V}_{\text {SS1 }}$ is applied to the input of the constant voltage circuit.
Operating range	-0.9 to -1.75 V
Current consumption	$1.5 \mu \mathrm{~A}^{*}$
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.

* When the software duty is about 5\%
(Figure 2) 1.5 V Operation (Backup Flag = 0)

Internal status	A doubled level of $\mathrm{V}_{\text {SS2 }}$ is applied to the input of the constant voltage circuit.
Operating range	-0.9 to -1.75 V
Current consumption	$3 \mu \mathrm{~A}^{\star}$
Feature	When the battery level is powered down, a larger operating voltage margin is gained, compared to the case of Figure 1.

* When the software duty is about 5\%
(Figure 3) 3.0 V Operation (Backup Flag = 1)

Internal status	The battery level $\mathrm{V}_{\text {SS2 }}$ is applied to the input of the constant voltage circuit.
Operating range	-0.9 to -3.5 V
Current consumption	$1.5 \mu \mathrm{~A}^{*}$
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.

* When the software duty is about 5%
(Figure 4) 3.0 V Operation (Backup Flag = 0)

Internal status	A doubled level of $\mathrm{V}_{\text {SS1 }}$ is applied to the input of the constant voltage circuit.
Operating range	-1.8 to -3.5 V
Current consumption	$0.75 \mu \mathrm{~A}^{*}$
Feature	When the battery level is powered down, a smaller operating voltage margin is gained, compared to the case of Figure 3.

[^0]
PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).
(Unit : mm)

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

[^0]: * When the software duty is about 5%

