
Dual Bus Driver/Receiver with 4-to-1 Output Multiplexers

The MC10H332 is a Dual Bus Driver/Receiver with four–to–one output multiplexers. These multiplexers have common selects and output enable. When disabled, $(\overline{OE} = \text{high})$ the bus outputs go to –2.0 V. The parameters specified are with 25 Ω loading on the bus drivers and 50 Ω loads on the receivers.

- Propagation Delay, 1.5 ns Typical Data-to-Output
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible

DIP & PLCC PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

NOTE:

Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. Receiver outputs are terminated through a 50–ohm resistor to –2.0 volts dc. Bus outputs are terminated through a 25–ohm resistor to –2.0 volts dc.



http://onsemi.com

MARKING DIAGRAMS

CDIP-20 L SUFFIX CASE 732

PDIP-20 P SUFFIX CASE 738

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC10H332L	CDIP-20	18 Units/Rail
MC10H332P	PDIP-20	18 Units/Rail
MC10H332FN	PLCC-20	46 Units/Rail

MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
VEE	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to VEE	Vdc
l _{out}	Output Current – Continuous – Surge	50 100	mA
TA	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	−55 to +150 −55 to +165	°C °C

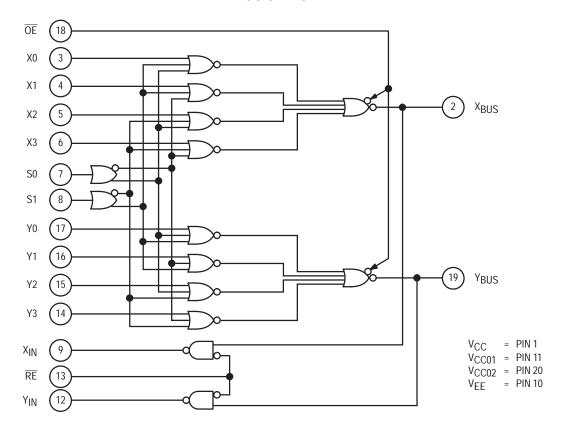
ELECTRICAL CHARACTERISTICS ($V_{EE} = -5.2 \text{ V} \pm 5\%$) (See Note 1.)

		0	0	2	5°	7	75°	
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
ΙE	Power Supply Current	_	115	_	110	-	115	mA
l _{inH}	Input Current High Pins 3,4,5,6,14, 15,16,17 Pins 7,8 Pins 13, 18		667 437 456		417 273 285		417 273 285	μА
l _{inL}	Input Current Low	0.5	_	0.5	_	0.3	-	μΑ
Vон	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
V _{OL}	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
VIH	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
VIL	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

AC PARAMETERS

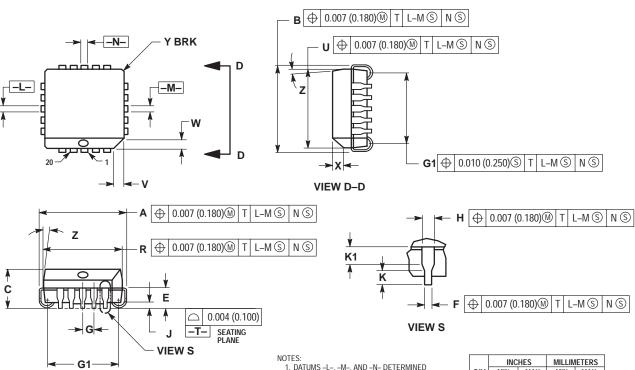
^t pd	Propagation Delay Data-to-Bus Output Select-to-Bus	0.8	3.0	0.8	3.0	0.8	3.2	ns
	Output	0.8	3.4	0.8	3.4	0.8	3.8	
	OE-to-Bus Output	0.8	2.4	0.8	2.4	0.8	2.6	
	Bus-to-Receiver	0.8	2.1	0.8	2.1	0.8	2.4	
	Select-to-Receiver	1.8	4.5	1.8	4.5	1.8	5.0	
	RE-to-Receiver	0.8	2.2	0.8	2.2	0.8	2.5	
	Data-to-Receiver	1.3	4.0	1.3	4.0	1.3	4.5	
t _r	Rise Time	0.5	2.0	0.5	2.0	0.5	2.1	ns
t _f	Fall Time	0.5	2.0	0.5	2.0	0.5	2.1	ns

^{1.} Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 Ifpm is maintained. Outputs are terminated through a 50–ohm resistor to –2.0 volts.


MULTIPLEXER TRUTH TABLE

OE	S 1	S0	X _{Bus}	Y _{Bus}
H L L	X L L H	X L H L	-2.0V X0 X1 X2 X3	-2.0V Y0 Y1 Y2 Y3

RECEIVER TRUTH TABLE


RE	Xin	Yin
Н	L	L
L	X _{Bus}	Y _{Bus}

LOGIC DIAGRAM

PACKAGE DIMENSIONS

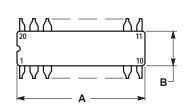
PLCC-20 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 775-02 **ISSUE C**

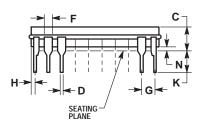
⊕ 0.010 (0.250)⑤ T L-M ⑤ N ⑤

- WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
- 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD.
- FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI
- 4. DIMENSIONING AND TOLERANCING FER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE
- PACKAGE BOTTOM BY UP TO 0.012 (0.300).
 DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
- INCLUDING ANY MISMAICH BE I WEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

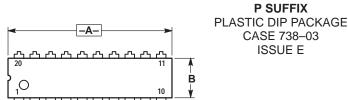

 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

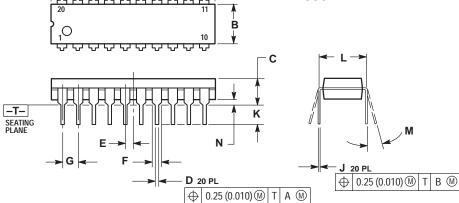

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
٧	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Υ		0.020		0.50
Z	2°	10°	2°	10°
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	

PACKAGE DIMENSIONS

CDIP-20 **L SUFFIX** CERAMIC DIP PACKAGE CASE 732-03 ISSUE E

PDIP-20





- NOTES:
 1. LEADS WITHIN 0.010 DIAMETER, TRUE
 POSITION AT SEATING PLANE, AT MAXIMUM
 MATERIAL CONDITION.
 2. DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
 3. DIMENSIONS A AND B INCLUDE MENISCUS.

	INC	HES		
DIM	MIN	MAX		
Α	0.940	0.990		
В	0.260	0.295		
С	0.150	0.200		
D	0.015	0.022		
F	0.055	0.065		
G	0.100	BSC		
Н	0.020	0.050		
J	0.008	0.012		
K	0.125	0.160		
L	0.300 BSC			
M	0°	15°		
N	0.010	0.040		

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.010	1.070	25.66	27.17	
В	0.240	0.260	6.10	6.60	
С	0.150	0.180	3.81	4.57	
D	0.015	0.022	0.39	0.55	
Е	0.050	BSC	1.27	BSC	
F	0.050	0.070	1.27	1.77	
G	0.100	BSC	2.54	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.140	2.80	3.55	
L	0.300	BSC	7.62 BSC		
M	0 °	15°	0°	15°	
N	0.020	0.040	0.51	1.01	

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

Fax Response Line: 303–675–2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.