

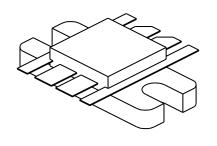
0104-100

100 Watts, 28 Volts, Class AB Defcom 100 - 400 MHz

GENERAL DESCRIPTION

The 0104-100 is a double input matched COMMON EMITTER broadband transistor specifically intended for use in the 100-400 MHz frequency band. It may be operated in Class AB or C. Gold metallization and silicon diffused resistors ensure ruggedness and high reliability.

ABSOLUTE MAXIMUM RATINGS


Maximum Power Dissipation @ 25°C 270 Watts

Maximum Voltage and Current

BVces Collector to Emiter Voltage 60 Volts
BVebo Emitter to Base Voltage 4.0 Volts
Ic Collector Current 16 A

Maximum Temperatures

Storage Temperature $-65 \text{ to } +150^{\circ}\text{C}$ Operating Junction Temperature $+150^{\circ}\text{C}$ CASE OUTLINE 55JT, Style 2

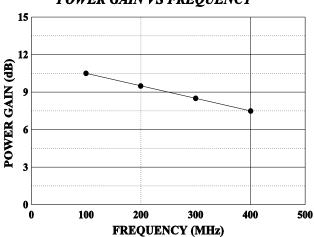
ELECTRICAL CHARACTERISTICS @ 25 °C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pin Pg ηc VSWR	Power Output Power Input Power Gain Efficiency Load Mismatch Tolerance	F = 400 MHz Vcc = 28 Volts	100 7.0	8.0 50	20 5:1	Watts Watts dB %

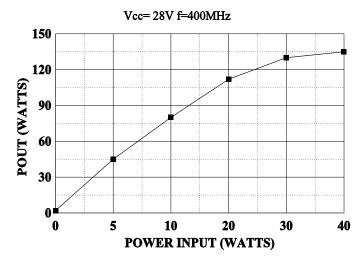
$\begin{array}{c} \textbf{BVebo}^1\\ \textbf{BVces}^1\\ \textbf{BVceo}^1\\ \textbf{Cob}^1\\ \textbf{h}_{\text{FE}}^{-1} \end{array}$	Emitter to Base Breakdown Collector to Emitter Breakdown Collector to Emitter Breakdown Output Capacitance DC - Current Gain	Ie = 5 mA Ic = 100 mA Ie = 100 mA Vcb = 28 V, F = 1 MHz Vce = 5 V, Ic = 1 A	4.0 60 32 20	70		Volts Volts Volts pF
$\theta_{\mathbf{jc}}$	Thermal Resistance	Vce = 5 V, Ic = 1 A	20		0.65	°C/W

Note 1: per side

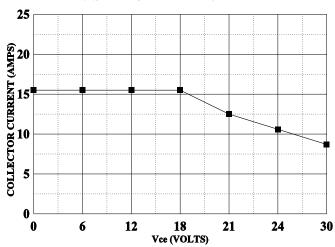
Issue August 1996


GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

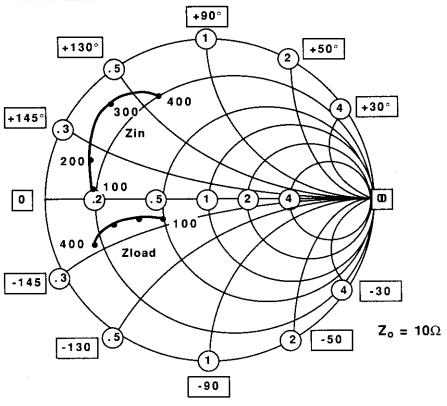
GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120



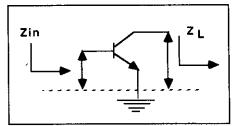
0104-100


POWER GAIN VS FREQUENCY

POWER OUTPUT vs POWER INPUT



DC SAFE OPERATING AREA



SMITH CHART

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

Typical series input and output impedances at rated power output conditions for single side normalized to 10 ohms.

REQUENCY MHz	Zin R JX		FREQUENCY MHz	Zload R JX	
MITZ	n.	- 			T
100	2.2	1.0	100	5.0	-2.5
200	1.4	2.7	200	4.0	-1.7
300	1.0	4.0	300	3.0	-1.5
400	1.8	5.5	400	1.8	-2.0