

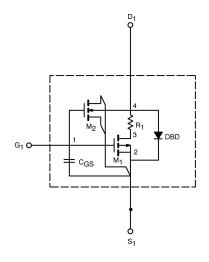
SPICE Device Model Si6969DQ

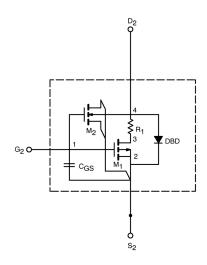
Vishay Siliconix

Dual P-Channel 1.8-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device(s).

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 71581
 www.vishay.com

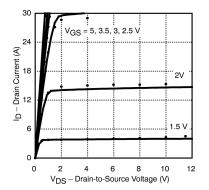
 04-Nov-98
 1

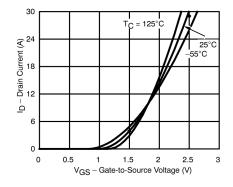
SPICE Device Model Si6969DQ

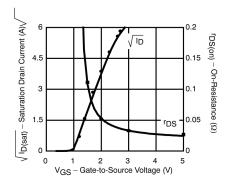
Vishay Siliconix

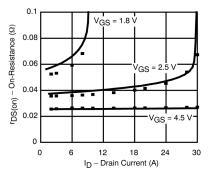
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = $-250~\mu A$	0.83	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -V$, $V_{GS} = -V$		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -V$, $I_D = -A$		Ω
		$V_{GS} = -V$, $I_D = -A$		
		$V_{GS} = -V$, $I_D = -A$		
Forward Transconductance ^a	g fs	$V_{DS} = -V$, $I_D = -A$		S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -A, V_{GS} = 0 V$		V
Dynamic ^b				
Total Gate Charge	Qg	$V_{DS} = -V$, $V_{GS} = -V$, $I_D = -A$		nC
Gate-Source Charge	Q_{gs}			
Gate-Drain Charge	Q_{gd}			
Turn-On Delay Time	t _{d(on)}	V_{DD} = - V, R_L = Ω $I_D \cong$ - A, V_{GEN} = - V, R_G = Ω		ns
Rise Time	t _r			
Turn-Off Delay Time	$t_{d(off)}$			
Fall Time	t _f			
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -A$, di/dt = 100 A/ μ s		

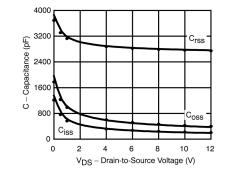
www.vishay.com Document Number: 71581

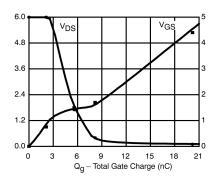

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.