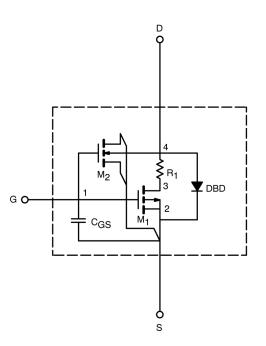


### **Vishay Siliconix**

## Dual P-Channel 1.8-V (G-S) MOSFET

#### **CHARACTERISTICS**

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit mode is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

#### SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{qd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.



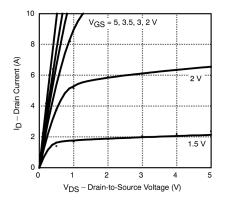
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

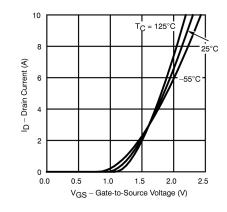
## **Vishay Siliconix**

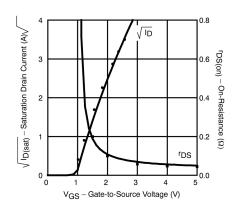
| SPECIFICATIONS (T <sub>J</sub> = 25°C UN      | LESS OTHERW         | ISE NOTED)                                                                                                                                                                            |                   |                  |      |
|-----------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------|
| Parameter                                     | Symbol              | Test Condition                                                                                                                                                                        | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                        |                     |                                                                                                                                                                                       |                   |                  |      |
| Gate Threshold Voltage                        | V <sub>GS(th)</sub> | $V_{DS}$ = $V_{GS}$ , $I_D$ = $-250\mu$ A                                                                                                                                             | 0.81              |                  | V    |
| On-State Drain Current <sup>a</sup>           | I <sub>D(on)</sub>  | $V_{DS} < -5V,  V_{GS} = -4.5V$                                                                                                                                                       | 43                |                  | А    |
| Drain-Source On-State Resistance <sup>a</sup> | r <sub>DS(on)</sub> | $V_{GS} = -4.5V, I_D = -3.4A$                                                                                                                                                         | 0.053             | 0.058            | Ω    |
|                                               |                     | $V_{GS} = -2.5V, I_D = -2.7A$                                                                                                                                                         | 0.085             | 0.090            |      |
|                                               |                     | $V_{GS} = -1.8V, I_D = -1A$                                                                                                                                                           | 0.129             | 0.131            |      |
| Forward Transconductance <sup>a</sup>         | g <sub>fs</sub>     | $V_{DS} = -5V, I_D = -3.4A$                                                                                                                                                           | 8.3               | 8                | S    |
| Diode Forward Voltage <sup>a</sup>            | V <sub>SD</sub>     | $I_{\rm S}$ = $-0.90$ A, $V_{\rm GS}$ = 0V                                                                                                                                            | - 0.80            | - 0.80           | V    |
| Dynamic <sup>b</sup>                          |                     |                                                                                                                                                                                       |                   |                  |      |
| Total Gate Charge                             | Qg                  | $V_{DS}$ = - 4V, $V_{GS}$ = - 4.5V, $I_D$ = - 3.4A                                                                                                                                    | 5.9               | 5.9              | nC   |
| Gate-Source Charge                            | Q <sub>gs</sub>     |                                                                                                                                                                                       | 1.3               | 1.3              |      |
| Gate-Drain Charge                             | Q <sub>gd</sub>     |                                                                                                                                                                                       | 1.4               | 1.4              |      |
| Turn-On Delay Time                            | t <sub>d(on)</sub>  | $\label{eq:V_DD} \begin{array}{l} V_{\text{DD}} = -  4 V, \ R_{\text{L}} = 4 \Omega \\ I_{\text{D}} \cong -  1 A, \ V_{\text{GEN}} = -  4.5 V, \ R_{\text{G}} = 6 \Omega \end{array}$ | 38                | 20               | • ns |
| Rise Time                                     | tr                  |                                                                                                                                                                                       | 68                | 70               |      |
| Turn-Off Delay Time                           | $t_{d(off)}$        |                                                                                                                                                                                       | 26                | 35               |      |
| Fall Time                                     | t <sub>f</sub>      |                                                                                                                                                                                       | 35                | 35               |      |
| Source-Drain Reverse Recovery Time            | t <sub>rr</sub>     | $I_F = -0.90A$ , di/dt = 100A/ $\mu$ s                                                                                                                                                | 33                | 30               |      |

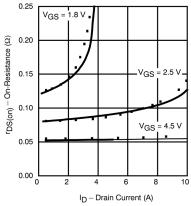
Notes

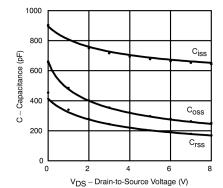
a. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.


VISHAY

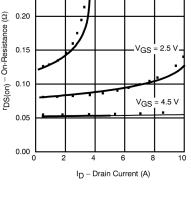


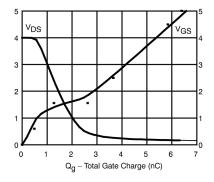


# **SPICE Device Model Si5915DC**


## Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°CUNLESS OTHERWISE NOTED)










Note: Dots and squares represent measured data.



