

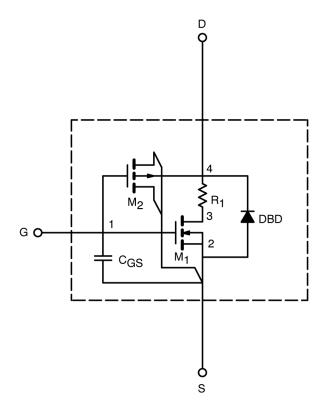
SPICE Device Model Si5404DC

Vishay Siliconix

N-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

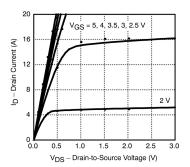
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

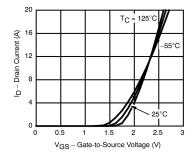
Document Number: 71573 www.vishay.com 07-Oct-99

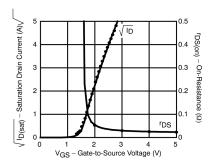
SPICE Device Model Si5404DC

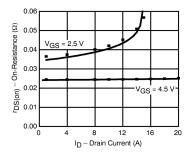
Vishay Siliconix

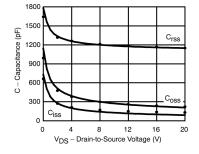
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.05	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	91	А
		V _{GS} = 4.5 V, I _D = 5.2 A	0.024	
		$V_{GS} = 2.5 \text{ V}, I_D = 4.3 \text{ A}$	0.036]
Forward Transconductance ^a	g _{fs}	$V_{DS} = 10 \text{ V}, I_D = 5.2 \text{ A}$	18	S
Diode Forward Voltage ^a	V _{SD}	I _S = 1.1 A, V _{GS} = 0 V	0.8	V
Dynamic ^b				
Total Gate Charge	Q_g	V _{DS} = 10 V, V _{GS} = 4.5 V, I _D = 5.2 A	11	nC
Gate-Source Charge	Q_{gs}		2.4	
Gate-Drain Charge	Q_{gd}		3.2	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = 10 \text{ V, } R_L = 10 \Omega$ $I_D \cong 1 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_G = 6 \Omega$ $I_F = 1.1 \text{ A, } \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	22	ns
Rise Time	t _r		31	
Turn-Off Delay Time	$t_{d(off)}$		34	
Fall Time	t _f		47	
Source-Drain Reverse Recovery Time	t _{rr}		26	

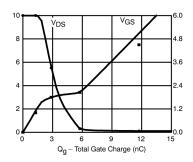

www.vishay.com Document Number: 71573 07-Oct-99


a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%.
b. Guaranteed by design, not subject to production testing.






COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71573 www.vishay.com 07-Oct-99