

Monolithic Amplifier Chip 10 dB Gain Block On Chip Bias Network

## **Guaranteed Specifications\***

(From -55°C to +85°C Case Temp)

| Frequency Range                 | 2-8 GHz      |
|---------------------------------|--------------|
| Gain (+25°C) @4 GHz             | 8.0 dB Min   |
| Frequency Response              | ± 1.5 dB Max |
| Gain Variation with Temperature | ± 2.0 dB Max |
| VSWR                            | 2.5:1 Max    |

# **Typical Performance**

## **Operating Characteristics**

| Impedance                                                               |                   | 50 Ohms Nominal              |  |  |  |
|-------------------------------------------------------------------------|-------------------|------------------------------|--|--|--|
| Output Power (1                                                         | dB Compression)   | + 12 dBm Typ                 |  |  |  |
| Noise Figure                                                            |                   | 6.5 dB Typ                   |  |  |  |
| Reverse Transmi                                                         | ssion             | – 35 dB Typ                  |  |  |  |
| Maximum Rating<br>RF Input                                              |                   | +10 dBm Max                  |  |  |  |
| Intermodulation Intercept Point (for two-tone output power up to 0 dBm) |                   |                              |  |  |  |
| Second Order                                                            |                   | +30 dBm Typ                  |  |  |  |
| Third Order                                                             |                   | +25 dBm Typ                  |  |  |  |
| Bias Power                                                              |                   |                              |  |  |  |
| $V_{\mathrm{D1}}$                                                       | +3to +5VDC@3      | 5 mA Typ, 70 mA Max          |  |  |  |
| V <sub>D2</sub>                                                         | +3to +5VDC@4      | 5 mA Typ, 80 mA Max          |  |  |  |
| V <sub>G</sub>                                                          | -1 to -2 VDC @ 10 | $\mu$ A Typ, 200 $\mu$ A Max |  |  |  |
| Die Size                                                                |                   | 8 x 0.048 x 0.010 inch       |  |  |  |
|                                                                         | (1                | 1.45 x 1.20 x 0.25 mm)       |  |  |  |
| Environmental                                                           |                   |                              |  |  |  |

| hese units are designed to meet or exceed the following: |                                       |  |  |
|----------------------------------------------------------|---------------------------------------|--|--|
| Test                                                     | Notes                                 |  |  |
| Electrical                                               | 100% probing @25°C                    |  |  |
|                                                          | for selected parameters               |  |  |
| Visual Inspection                                        | 100% with reference to                |  |  |
|                                                          | MIL-STD-883 Method 2010, Condition B. |  |  |
| Lot Traceability                                         | Supplied on request.                  |  |  |

<sup>\*</sup>All specifications apply when operated at  $V_{D1} = V_{D2} = 4$  VDC,  $V_G = -1.5$  VDC, with 50 ohm source and load impedance connected to IC with 0.0007 inch Au wire bonds.

For mounting and bonding instructions, see page 85.





## **Schematic**

# **Ordering Information**

| Model No.               | Part No. | Connector | Unit Price<br>(1-24 Units) |
|-------------------------|----------|-----------|----------------------------|
| AM-260                  | 8950     | Chip      | \$75                       |
| Delivery is from stock. |          |           |                            |



ake the Connection . . .

80 Cambridge Street, Burlington, MA 01803 Fax (617) 273-1921

**COMPONENTS GROUP** 



# AM-260 Handling, Mounting, Bonding Procedure

## **Maximum Ratings**

A. Drain Voltages: +5 Vdc

B. Drain Currents: +80 mA

C. RF Input Power: +13dBm

D. Operating Temperature: +125°C

E. Storage Temperature: -65°C to +175°C



# BondPad Dimensions Inches (mm)

0.003 x 0.003 (0.080 x 0.080)

0.003 x 0.012

 $(0.080 \times 0.294)$ 

### Die Size Inches (mm)

 $0.058 \times 0.048 \times 0.010$ (1.47 x 1.22 x 0.25)

## **Handling Precautions**

Permanent damage to the AM-260 may occur if the following precautions are not adhered to:

- A. Cleanliness The AM-260 should be handled in a clean environment. DO NOT attempt to clean unit after the AM-260 is installed.
- B. Static Sensitivity All chip handling equipment and personnel should be DC grounded.
- C. Transients Avoid instrument and power supply transients while bias is applied to the AM-260. Use shielded signal and bias cables to minimize inductive pick-up.

## Mounting

The AM-260 is back-metallized with TiPtAu (300/1000/5000Å) metallization. It can be die-mounted with AuSn eutectic preforms or with thermally conductive epoxy. The package surface should be clean and flat before attachment.

Eutectic Die Attach:

- A. A 80/20 gold/tin preform is recommended with a work surface temperature of approximately 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be approximately 290 °C.
- B. DO NOT expose the AM-260 to a temperature greater than 320°C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach:

- A. Preheat assembly to 125-150°C. Apply a minimum amount of epoxy and place the AM-260 into position. A thin epoxy fillet should be visible around the perimeter of the chip.
- B. Cure epoxy per manufacturer's recommended schedule.
- C. Electrically conductive epoxy may be used but is not required.

## Wire Bonding

- A. Thermosonic wedge wire bonding of 0.001 diameter pure gold wire is recommended with a nominal stage temperature of 150°C and a bonding force of 18 to 22 grams.

  Ultrasonic energy and time should be adjusted to the minimum levels required to achieve reliable wirebonds.
- B. Wirebonds should be started on the chip and terminated on the package. RF bonds should be as short as possible; every ground pad should be bonded to the package.