
1/13February 2002

AN1473
APPLICATION NOTE

How to use the Write to Buffer feature
of the M58LW064 family of Flash Memories

INTRODUCTION

The M58LW064, a 64 Mbit (4Mb x16 or 2Mb x32) non-volatile
memory, is the first in a new family of leading-edge Flash mem-
ories from ST Microelectronics that uses multilevel cell technol-
ogy. It can be read, erased and reprogrammed using a single
low voltage (2.7V to 3.6V) core supply. Two version are avail-
able, the M58LW064A with a x16 bus and the M58LW064B
with a x16/x32 bus. The memory is offered in various packag-
es. The M58LW064A is available in TSOP56 (14 x 20 mm) and
TBGA64 (1mm pitch). The M58LW064B is available in
TBGA80 (1mm pitch).

The device has many advanced features: x16/x32 bus width,
synchronous burst read, individual block protection, a One
Time Programmable area and a Write to Buffer and Program
command to speed up the programming of the device.

This Application Note explains how to use the Write to Buffer
feature, emphasizing the Software Design considerations.

DESCRIPTION

The Write to Buffer and Program command is used to program
the memory array. The memory is divided into Blocks that can
be erased independently. When using the Write to Buffer com-
mand it is also useful to think of the memory as divided into
Buffers and Pages, where:

■ a Page is 4 Words (or 2 Double Words), with A22-A3 fixed,
and each Word within the Page is selected using A1 and A2.

■ a Buffer is 4 Pages (total of 16 Words or 8 Double Words)
with A22-A5 fixed, and each Page within the Buffer is
selected with addresses A3 and A4.

The Write Buffer allows the microprocessor to program from 4
to 16 Words (or from 2 to 8 Double Words) in parallel, both
speeding up the programming and freeing up the microproces-
sor to perform other work. Therefore the minimum buffer size
for a program operation is a 4 Word (or 2 Double Word) Page.
Any attempt to program less than 4 Words (or 2 Double Words)
inside the Page of a previously erased Block will result in the
correct programming of the Word, however all other Words in-
side the same Buffer will be set to FFFFh.

CONTENTS

■ INTRODUCTION

■ DESCRIPTION

■ USING THE WRITE TO
BUFFER AND PROGRAM
COMMAND

■ PROGRAMMING TIME

■ SUSPENDING A WRITE
TO BUFFER AND
PROGRAM COMMAND

■ STATUS REGISTER BITS

■ COMMON FLASH
INTERFACE

■ EXAMPLES

– Example 1: Programming
Four Words

– Example 2: Programming
Sixteen Words

AN1473 - APPLICATION NOTE

2/13

Any attempt to change the Buffer (change one of the addresses A22-A5) within the same Write to Buffer
command will be ignored. Only the first A22-A5 given for the first Program Address will be considered (see
Example 2).

Reprogramming

Once a Buffer (1 to 4 Pages) has been programmed it cannot be reprogrammed until the Block containing
that Buffer has been erased (regardless of the current data and the data to be programmed).

If a program operation is attempted in a Buffer which was not previously erased, the operation will abort
and the Program/Erase Controller will set the error bits in the Status Register. When the Status Register
error bits are set under these circumstances they cannot be reset by a Clear Status Register command.
In this case they can only be reset by a Hardware Reset or Power-Up sequence. No further write opera-
tions are possible until the Status Register has been reset.

To avoid the inconvenience of a Hardware Reset (which is generally not permitted on a board), it is sug-
gested to modify the write to buffer algorithm in the Software drivers to check if the Buffer has been pre-
viously erased. A read cycle should be added to check that the content of the Buffer is FFFFh, followed
by a Block Erase cycle if necessary, before starting the write to buffer sequence. This does not affect the
performance of the device as the delay introduced by this check is negligible compared to the program-
ming time. Refer to Figure 1 for the recommended flowchart and Appendix A for the recommended C-
code.

If the application does not require to reprogram the device then the standard flowchart shown in the
M58LW064 datasheet can be used.

USING THE WRITE TO BUFFER AND PROGRAM COMMAND

The Write to Buffer and Program command consists of (N+4) bus cycles, where (N+1) is the number of
Words to be programmed. The cycles must be asserted according to the timings described in the
datasheet.

As mentioned in the Reprogramming section above, it is recommended to check that the Buffer has been
pre-erased before issuing the Write to Buffer and Program command. Figure 1, Write to Buffer and Pro-
gram Flowchart, shows the suggested flowchart for using the Write to Buffer and Program command. It
includes a read cycle to check if the Buffer has been pre-erased and a Block Erase cycle to erase the Block
if necessary.

Once the check has been done four successive steps are required to issue the command.
1. One Bus Write operation is required to set up the Write to Buffer and Program Command. Issue the set

up command (E8h) with the selected memory Block Address (BA) where the program operation should
occur (any address in the block where the data will be programmed can be used). Any Bus Read oper-
ations will start to output the Status Register after the 1st cycle. Bit 7 of the Status Register can be
checked to verify if the Program/Erase Controller (P/E.C) is ready to receive the next cycle (Bit7 = 1).

2. Use one Bus Write operation to write the same block address (BA) along with the value N on the Data
Inputs/Output, where N+1 is the number of Words (x16 Bus Width) or Double Words (x32 Bus Width)
to be programmed.

3. Use N+1 Bus Write operations to load the address and data for each Word or Double Word into the
Write Buffer. See the constraints on the address combinations listed below. The addresses must have
the same A5-A22.

4. Finally, use one Bus Write operation to issue the final cycle to confirm the command (D0h) and start the
Program operation.

3/13

AN1473 - APPLICATION NOTE

After the program operation has started the Status Register can be read by toggling Output Enable (G) to
follow the progress of the operation. When Program/Erase Controller Bit 7 of the Status Register goes to
High the operation is finished.

Invalid address combinations or failing to follow the correct sequence of Bus Write cycles will set an error
in the Status Register and abort the operation without affecting the data in the memory array. The Status
Register should be cleared before re-issuing the command.

If the block being programmed is protected an error will be set in the Status Register and the operation
will abort without affecting the data in the memory array. The block must be unprotected using the Blocks
Unprotect command or by using the Blocks Temporary Unprotect feature of the Reset/Power-Down pin,
RP. See datasheet for more details.

Programming Time

The equivalent programming time for a number of Words N (N= 4 to 16) programmed within the same
Write to Buffer Command is:

(Buffer Program Time)/N

So if you program the whole buffer within the same command you will obtain an equivalent program time
per word of (Buffer Program Time)/16. To optimize the programming time using the Write to Buffer feature
the whole buffer should be programmed at once.

Please refer to the “Program, Erase Times and Program Erase Endurance Cycles” Table of the datasheet
for the buffer programming time.

AN1473 - APPLICATION NOTE

4/13

Figure 1. Write to Buffer and Program Flowchart

Write to Buffer E8h
Command, Block Address

AI06199

Start

Write Buffer Data,
Start Address

YES
X = N

End

NO

Write N(1),
 Block Address

X = 0

Write Next Buffer Data,
Next Program Address(2)

X = X + 1

Program Buffer to Flash
Confirm D0h

Read Status
Register

NO
b7 = 1

YES

Full Status
Register Check

Note 1. N+1 is number of Words or Double Words
to be programmed.

2. Next Program Address must have same
 A5-A22.

Read Buffer
 to be programmed

Buffer Data
= FFFFh

Write 20h

Write D0h
to Block Address

Read Status
Register

b7 = 1

Try again later

Write to Buffer
Timeout

YESYES

NO

NO

YES

NO

BLOCK ERASE

Full Status
Register Check

Any errors
 detected

Clear Status
Register

NO

YES

5/13

AN1473 - APPLICATION NOTE

SUSPENDING A WRITE TO BUFFER AND PROGRAM COMMAND

The M58LW064 features a Program/Erase Suspend command which can be used to pause a Write to
Buffer and Program operation to allow a Read operation in another block or pause an Erase operation to
perform a Program or Read operation in another block.

One Bus Write cycle is required to issue the Program/Erase Suspend command (B0h, Address Don’t
Care) and pause the Program/Erase Controller. To resume the operation the Erase Resume command
can be issued (D0h, Address Don’t Care). Please refer to the datasheet for further details.

STATUS REGISTER BITS

The Status Register provides information on the current or previous Program, Erase, Block Protect or
Blocks Unprotect operation. The various bits in the Status Register convey information and errors on the
operation. They are output on DQ7-DQ0.

Table 1 provides a summary of the Status Register bits associated with the Write to Buffer and Program
command.

Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether the
Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low, the
Program/Erase Controller is active and all other Status Register bits are High Impedance; when the bit is
High, the Program/Erase Controller is inactive, and the operation has ended or is suspended. The con-
tents of the entire Status Register should be checked for errors.

Program Status (Bit 4). The Program Status bit is used to identify a Program or Block Protect failure.
When the Program Status bit is Low, the memory has successfully verified that the Write Buffer has pro-
grammed correctly or the block is protected. When the Program Status bit is High, the Program or Block
Protect operation has failed. Depending on the cause of the failure other Status Register bits may also be
set to High.

■ If only the Program Status bit (bit 4) is set High, VOH, then the Program/Erase Controller has applied
the maximum number of pulses to the byte and still failed to verify that the Write Buffer has programmed
correctly or that the Block is protected.

■ If the failure is due to a program or block protect with VPP low, then VPP Status bit (bit 3) is also set High.

■ If the failure is due to a program on a protected block then Block Protection Status bit (bit 1) is also set
High.

■ If the failure is due to a program or erase incorrect command sequence then Erase Status bit (bit 5) is
also set High.

VPP Status (Bit 3). The VPP Status bit can be used to identify if a Program, Erase, Block Protection or
Block Unprotection operation has been attempted when VPP is Low. The VPP pin is only sampled at the
beginning of a Program or Erase operation.

When the VPP Status bit is Low, no Program, Erase, Block Protect or Blocks Unprotect operations have
been attempted with VPP Low, since the last Clear Status Register command, or hardware reset. When
the VPP Status bit is High, a Program, Erase, Block Protection or Block Unprotection operation has been
attempted with VPP Low.

Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation
has been suspended and is waiting to be resumed. The Program Suspend Status should only be consid-
ered valid when the Program/Erase Controller Status bit is High.

When the Program Suspend Status bit is Low, the Program/Erase Controller is active or has completed
its operation; when the bit is High, a Program/Erase Suspend command has been issued and the memory
is waiting for a Program/Erase Resume command.

When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.

AN1473 - APPLICATION NOTE

6/13

Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or
Erase operation has tried to modify the contents of a protected block.

When the Block Protection Status bit is Low, no Program or Erase operations have been attempted to pro-
tected blocks since the last Clear Status Register command or hardware reset; when the Block Protection
Status bit is High, a Program or Erase operation has been attempted on a protected block.

Once bits 4, 3 and 1 are set High, they can only be reset by a Clear Status Register command or a hard-
ware reset. Refer to the datasheet for the other bits in the Status Register.

Table 1. Summary of Status Register Bits Associated with Write to Buffer Command

COMMON FLASH INTERFACE

The M58LW064 supports the Common Flash Interface (CFI). The CFI is a JEDEC approved, standardized
data structure that can be read from the Flash memory device. It allows a system software to query the
device to determine various electrical and timing parameters, density information and functions supported
by the memory. The CFI contains information on the size of the Buffer and information on the typical tim-
eout for the Write to Buffer command. Refer to the datasheet for further information.

Status Register bits meaning

Bit 7=0 The internal P/E.C. is busy
All other bits are High Impedance

Bit 7=1 The internal P/E.C. is ready

Bit 4=1 Program error

Bit4=1
Bit1=1

Program Block protect failure

Bit4=1
Bit3=1

Program failure due to VPP error

Bit 7=1
Bit 2=1

Program suspended
Reading possible on another block

Bit 7=1
Bit 5=1

Erase suspended
Programming/Reading possible on another block

7/13

AN1473 - APPLICATION NOTE

EXAMPLES

Example 1: Programming Four Words

Table 2, shows the series of bus cycles required to program the data: 0101h (0000000100000001 in bi-
nary), 0A0Ah (0000101000001010), B1B1h (1011000110110001), CCCCh (1100110011001100) at the
first four addresses of a previously erased device, where the initial Status Register value is 80h (bit 7 = 1,
P/E.C inactive). Table 3 shows the results, all data are programmed correctly and no errors are signalled
in the Status Register. The equivalent programming time per word is: (Buffer programming time)/4.

Table 2. Example 1, Command Flow

Note: X = Don’t Care, SR = 80h = 10000000 i.e. bit 7 = 1, bits6-0 = 0.

Table 3. Example 1, Results

Note: SR = 80h = 10000000 i.e. bit 7 = 1, bits6-0 = 0.

Cycle
No. Bus cycle type Address Data Comment

1 Write 0000h E8h Write to Buffer set up command

2 Read 0000h Status Register
Toggle E to check SR. Bit7 must

be ‘1’ to proceed

3 Write 0000h 3h
Number of words to be
programmed minus one

4 Write 0000h 0101h Address, Content

5 Write 0001h 0A0Ah Address, Content

6 Write 0002h B1B1h Address, Content

7 Write 0003h CCCCh Address, Content

8 Write X D0h Confirm command

9 Read 0000h Status Register
Toggle E to check SR. If Bit7is ‘1’

the operation is finished

10 Write X FFh
Command to reset the memory to

the Read Array mode

11
Write
Read

X
X

70h
Status Register

Read SR to verify if the operation
completed successfully (SR=80h)

Address Initial Data Data to Program Final Data

0000h

FFFFh

0101h 0101h

0001h 0A0Ah 0A0Ah

0002h B1B1h B1B1h

0003h CCCCh CCCCh

Status Register 80h - 80h

AN1473 - APPLICATION NOTE

8/13

Example 2: Programming Sixteen Words

Table 4, shows the series of bus cycles required to program the data: 0000h, 0001h, 0002h, …, 000Fh
starting from address 0008h of a previously erased device, where the initial Status Register value is 80h
(bit 7 = 1, P/E.C inactive). Table 5 shows the results. At the end of the operation the Status Register will
output 80h, and so it appears as thought the program operation was successful. However this is not en-
tirely true as in this case, there is a change of buffer (change of address A5) which is ignored and so ad-
dresses 0010h to 0017h remain unchanged (FFFFh) while the programmed data from 0008h to 000Fh will
appear in the first addresses of the buffer.

The equivalent programming time per word is: (Buffer programming time)/16.

Table 4. Example 3, Command Flow

Note: X = Don’t Care, SR = 80h = 10000000 i.e. bit 7 = 1, bits6-0 = 0.

Cycle
No. Bus cycle type Address Data Comment

1 Write 0000h E8h Write to Buffer set up command

2 Read 0000h Status Register Toggle E to check SR. Bit7 must be
‘1’ to proceed

3 Write 0000h 3h Number of words to be
programmed minus one

4 Write 0008h 0000h Address, Content

5 Write 0009h 0001h Address, Content

6 Write 000Ah 0002h Address, Content

7 Write 000Bh 0003h Address, Content

8 Write 000Ch 0004h Address, Content

9 Write 000Dh 0005h Address, Content

10 Write 000Eh 0006h Address, Content

11 Write 000Fh 0007h Address, Content

12 Write 0010h 0008h Address, Content

13 Write 0011h 0009h Address, Content

14 Write 0012h 000Ah Address, Content

15 Write 0013h 000Bh Address, Content

16 Write 0014h 000Ch Address, Content

17 Write 0015h 000Dh Address, Content

18 Write 0016h 000Eh Address, Content

19 Write 0017h 000Fh Address, Content

20 Write X D0h Confirm command

21 Read 0000h Status Register
Toggle E to check SR. If Bit7is ‘1’

the operation is finished

22 Write X FFh
Command to reset the memory to

the Read Array mode

23
Write
Read

X
X

70h
Status Register

Read SR to verify if the operation
completed successfully (SR=80h)

9/13

AN1473 - APPLICATION NOTE

Table 5. Example 3, Results

Note:SR = 80h = 10000000 i.e. bit 7 = 1, bits6-0 = 0.

REVISION HISTORY

Table 6. Document Revision History

Address Initial Data Data to Program Final Data

0000h

FFFFh

- 0008h

0001h - 0009h

0002h - 000Ah

0003h - 000Bh

0004h - 000Ch

0005h - 000Dh

0006h - 000Eh

0007h - 000Fh

0008h 0000h 0000h

0009h 0001h 0001h

000Ah 0002h 0002h

000Bh 0003h 0003h

000Ch 0004h 0004h

000Dh 0005h 0005h

000Eh 0006h 0006h

000Fh 0007h 0007h

0010h 0008h FFFFh

0011h 0009h FFFFh

0012h 000Ah FFFFh

0013h 000Bh FFFFh

0014h 000Ch FFFFh

0015h 000Dh FFFFh

0016h 000Eh FFFFh

0017h 000Fh FFFFh

Status Register 80h - 80h

Date Version Revision Details

01-Feb-2002 -01 First Issue

AN1473 - APPLICATION NOTE

10/13

APPENDIX A. WRITE TO BUFFER AND PROGRAM C-CODE EXAMPLE

Below is an example for the function FlashProgram, which can be implemented in Software, in order to
reproduce the flowchart shown in Figure 1.

/***

Function: ReturnType FlashProgram(udword udMode, udword udAddrOff,

udword udNrOfElementsInArray, void *pArray)

Arguments: udMode changes between programming modes

udAddrOff is the address offset into the flash to be programmed

udNrOfElementsInArray holds the number of (double)words in the array. pArray

is a void pointer to the array with the contents to be programmed.

Return Value: The function returns the following conditions:

FLASH_SUCCESS successful operation

FLASH_ADDRESS_INVALID program range outside device

FLASH_BLOCK_PROTECTED block to program is protected

FLASH_DOUBLE_PROGRAMM_ATTEMPT the area to be programmed contains already

programmed (double)words

FLASH_PROGRAM_FAILED failure not covered below

FLASH_VPP_INVALID Vpp is not valid

Description: This function is used to program an array into the flash. It does

not erase the flash first and will fail if the block(s) are not erased first.

Note that the function always programs all addresses within the same page by

issuing a single program command, as is required by the device architecture.

Once the program command has completed the function checks the Status

Register for errors. Any errors are returned without any further attempts to

program other addresses of the device. The function returns FLASH_SUCCESS

when all addresses have successfully been programmed.

Note: Two program modes are available:

- udMode = 0, Normal Programming Mode

The number of elements (udNumberOfElementsInArray) contained in pArray

are programmed directly to the udAddrOff within the flash

- udMode > 0, Repeated Values Program Mode

udMode is now a number of Values, which is contained in pArray. These

numbers are repeatedly programmed according to the area defined by

udAddrOff and udNumberOfElementsInArray.

For Example: Values in pArray: 11,3,32 |1

udMode: 3 |1

udAddrOff: 100 |100

udNumberOfElementsInArray: 7 |7

Results in Memory: Addr:100: Content: 11 | 1

Addr:101: Content: 3 | 1

Addr:102: Content: 32 | 1

Addr:103: Content: 11 | 1

Addr:104: Content: 3 | 1

Addr:105: Content: 32 | 1

Addr:106: Content: 11 | 1

11/13

AN1473 - APPLICATION NOTE

Pseudo Code:

Step 1: Check whether the data to be programmed are are within the

Flash memory

Step 1a: Check whether the intended location is ready to program

Step 2: While there is more to be programmed

Step 3: Determine limits of current set of 4/2 pages (word/dword)

Step 4: Program within the next set of 4/2 pages (word/dword)

Step 5: Decision between direct and modulo programming

Step 6: Wait until the Program/Erase Controller is ready

Step 7: Check for any errors

Step 8: Clear Status Register and return to Read Array mode

Step 9: Return the error condition

***/

ReturnType FlashProgram(udword udMode, udword udAddrOff, udword udNrOfElementsIn

Array, void *pArray) {

ReturnType rRetVal = FLASH_SUCCESS; /* Return Value: Initially optimistic */

uCPUBusType *ucpArrayPointer; /* Use an uCPUBusType to access the array */

uCPUBusType start,end, a; /* Holds temp Variables for Step 1a */

udword udLastOff; /* Holds the last offset to be programmed */

udword udEndSet; /* Holds the end of the current set of pages */

uCPUBusType ucStatus; /* Holds the Status Register reads */

udword udNrOfElementsToPrg; /* Number of words/double-words to be

programmmed */

udword udModuloCounter = 0; /* Holds Counter for Repeated Programming

Mode */

/* Check whether the data to be programmed are are within the Flash memory

space*/

udLastOff = udAddrOff + udNrOfElementsInArray - 1;

if(udLastOff >= FLASH_SIZE)

return FLASH_ADDRESS_INVALID;

/* Step 1a: Check whether the intended location is ready to program */

start = udAddrOff;

end = udLastOff;

for (a = start; a<=end; a++) {

if (~FlashRead(a) != 0) { /* Only words/dwords set to 1 can be programmed

*/

return FLASH_DOUBLE_PROGRAM_ATTEMPT;

} /* Endif*/

} /* Next a */

/* Step 2: While there is more to be programmed */

ucpArrayPointer = (uCPUBusType *)pArray;

while(udAddrOff <= udLastOff && rRetVal == FLASH_SUCCESS) {

/* Step 3: Determine limits of current set of 4/2 pages (word/dword) */

udEndSet = udAddrOff | (FLASH_WRITE_BUFFER_SIZE - 1);

if(udEndSet > udLastOff)

udEndSet = udLastOff;

udNrOfElementsToPrg = udEndSet - udAddrOff + 1; /* Number of (double)words

to beprogrammed */

AN1473 - APPLICATION NOTE

12/13

/* Step 4: Program within the next set of 4/2 pages (word/dword) */

FlashWrite(ANY_ADDR, CMD(0x0050)); /* Clear Status Register */

/* NOTE ! CSR also clears bit 1 BPS as well as bits 3, 4 and 5 */

FlashWrite(udAddrOff, (uCPUBusType)CMD(0x00E8)); /* Program Setup */

FlashWrite(udAddrOff, CMD((uCPUBusType)(udNrOfElementsToPrg - 1))); /*

Number of (double)words */

/* Step 5: Decision between direct and modulo programming */

if (udMode == 0) {

while(udAddrOff <= udEndSet)

FlashWrite(udAddrOff++, *(ucpArrayPointer++)); /* Direct Value !!

Program value */

} else {

while(udAddrOff <= udEndSet)

FlashWrite(udAddrOff++, ucpArrayPointer[(udModuloCounter++) %

udMode]);

} /* Endif Programming Mode Check */

FlashWrite(ANY_ADDR, (uCPUBusType)CMD(0x00D0)); /* Confirm program */

/* Step 6: Wait until Program/Erase Controller is ready */

FlashTimeOut(0); /* Initialize TimeOut Counter */

do {

ucStatus = FlashRead(ANY_ADDR);

if (FlashTimeOut(5) == FLASH_OPERATION_TIMEOUT) {

FlashReset();

return FLASH_OPERATION_TIMEOUT;

} /* EndIf */

} while((ucStatus & CMDD(0x0080)) != CMDD(0x0080));

/* Wait until every Action is finished (StatusRegister Bit7 = 1) */

/* Step 7: Check for any errors */

if(ucStatus & CMDD(0x0008))

rRetVal = FLASH_VPP_INVALID;

else if(ucStatus & CMDD(0x0002))

rRetVal = FLASH_BLOCK_PROTECTED;

else if(ucStatus & CMDD(0x0020))

rRetVal = FLASH_PROGRAM_FAILED;

else if(ucStatus & CMDD(0x0010))

rRetVal = FLASH_PROGRAM_FAILED;

} /* EndWhile Main Program Loop */

/* Step 8: Clear Status Register and return to Read Array mode */

FlashWrite(ANY_ADDR, CMD(0x0050)); /* Clear Status Register */

/* NOTE ! CSR also clears bit 1 BPS as well as bits 3, 4 and 5 */

FlashReset(); /* Read Array Command */

/* Step 9: Return the error condition */

return rRetVal;

} /* EndFunction FlashProgram */

13/13

AN1473 - APPLICATION NOTE

If you have any questions or suggestion concerning the matters raised in this document please send them
to the following electronic mail address:

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners.

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada- China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -

Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

