

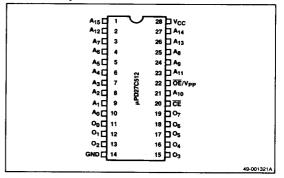
Description

The μ PD27C512 is an ultraviolet erasable, electrically programmable 524,288-bit ROM fabricated with an advanced CMOS process for substantial power savings. The device is organized as 64K words by 8 bits and operates from a single +5-volt power supply. All inputs and outputs are TTL-compatible. The device is available in a 28-pin cerdip package with quartz window.

Features

- ☐ 64K x 8-bit organization
- ☐ Ultraviolet erasable and electrically programmable
- ☐ High-speed programming mode
- ☐ Low power dissipation
 - 30 mA max (active)
 - 100 μA max (standby)
- ☐ TTL-compatible inputs and outputs
- ☐ Single +5-volt power supply
- ☐ Three-state outputs
- ☐ Advanced CMOS technology
- ☐ 28-pin cerdip with quartz window

Ordering Information

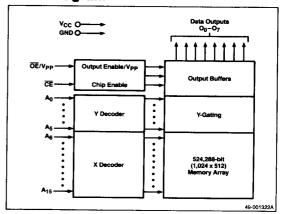

Part Number	Access Time (max)	Package
μPD27C512D-15	150 ns	28-pin cerdip with
D-20	200 ns	quartz window

Pin Identification

Function
Address inputs
Data outputs
Chip enable
Output enable/program voltage
Ground
Power supply

Pin Configuration

28-Pin Cerdip



Absolute Maximum Ratings

Output voltage, V _O	-0.6 to +7.0 V
Input voltage, V _I	0.6 to +7.0 V
Input voltage, A ₉	-0.6 to +13.5 V
Supply voltage, V _{CC}	-0.6 to +7.0 V
Supply voltage, V _{PP}	-0.6 to +13.5 V
Operating temperature, T _{OPR}	-10 to +80°C
Storage temperature, T _{STG}	−65 to +125°C

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Block Diagram

Mode Selection

Mode	CE	OE/V _{PP}	VCC	Outputs
Read	VIL	VIL	+5 V	D _{OUT}
Output disable	VIL	V _{IH}	+5 V	High-Z
Standby	VIH	Х	+5 V	High-Z
Program	VIL	V _{PP}	+6 V	D _{IN}
Program verify	VIL	V _{IL}	+6 V	D _{OUT}
Program inhibit	VIH	Vpp	+6 V	High-Z

Capacitance T_A = 25 °C; f = 1 MHz

			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input	C _{IN1}			6	pF	V _I = 0 V
capacitance	C _{IN2}			20	ρF	\overline{OE}/V_{PP} ; $V_I = 0 V$
Output capacitance	C _{OUT}			12	pF	V ₀ = 0 V

Notes:

(1) $X = V_{IL}$ or V_{IH}

DC Characteristics

 $T_A = 0$ to +70°C; $V_{CC} = 5.0 \text{ V} \pm 10\%$

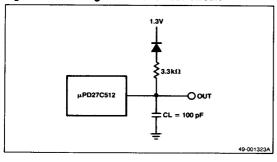
			Limits			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Read and Standby Mo	des					
Input voltage, high	V _{IH}	2.0		V _{CC} + 0.3	٧	
input voltage, low	V _{IL}	-0.3		0.8	٧	
Output voltage, high	V _{OH1}	2.4	<u>.</u> .		٧	$I_{OH} = -400 \mu A$
	V _{0H2}	V _{CC} - 0.7			٧	$I_{OH} = -100 \mu\text{A}$
Output voltage, low	V _{OL}			0.45	٧	$I_{OL} = 2.1 \text{ mA}$
Output leakage current	I _{LO}			10	μΑ	$V_0 = 0$ to V_{CC} ; $\overline{OE} = V_{IH}$
Input leakage current	lu			10	μΑ	$V_I = 0$ to V_{CC}
V _{CC} current, active	ICCA1			30	mA	$\overline{CE} = V_{IL}; V_I = V_{IH}$
	ICCA2			30	mA	$f = 5 MHz; I_{OUT} = 0 mA$
V _{CC} current, standby	lccs1			1	mA	CE = V _{IH}
	I _{CCS2}		1	100	μΑ	$\overline{CE} = V_{CC}; V_I = 0 \text{ to } V_{CC}$
Programming Modes $T_A = 25 \pm 5$ °C; $V_{CC} = 6.0 \pm 6$).25 V; V _{PP} = 12.5	±0.3 V				
Input voltage, high	V _{IH}	2.0		$V_{CC} + 0.3$	٧	
Input voltage, low	V _{IL}	-0.3		0.8	٧	
Input leakage current	l _{Ll}			10	μΑ	$V_I = V_{IL} \text{ or } V_{IH}$
Output voltage, high	V _{OH}	2.4			٧	$I_{OH} = -400 \mu A$
Output voltage, low	V _{OL}	A Company of the Comp		0.45	٧	I _{OL} = 2.1 mA
V _{PP} current	Ірр			30	mA	$\overline{CE} = V_{IL}; \overline{OE}/V_{PP} = V_{IH}$
V _{CC} current	Icc			30	mA	

AC Characteristics, Read and Standby Modes

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = 5.0 \text{ V} \pm 10\%$

		Limits					
		μ PD27	C512-15	μ₽ 027	C512-20		
Parameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Address to output delay	†ACC		150		200	ns	$\overline{CE} = \overline{OE}/V_{PP} = V_{IL}$
CE to output delay	t _{CE}		150		200	ns	$\overline{OE}/V_{PP} = V_{IL}$
OE/V _{PP} to output delay	toE		75		75	ns	CE = VIL
OE/V _{PP} high to output float	t _{DF}	0	60	0	60	ns	CE = VIL
Output hold from address, CE or OE, whichever transition occurs first	^t oн	0		0		ns	$\overline{CE} = \overline{OE}/V_{PP} = V_{IL}$

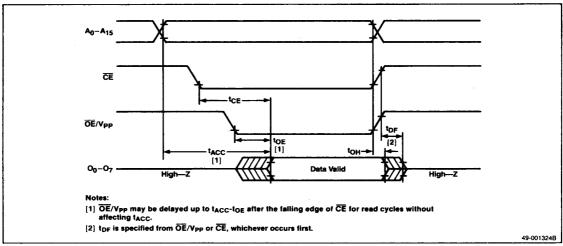
Notes:

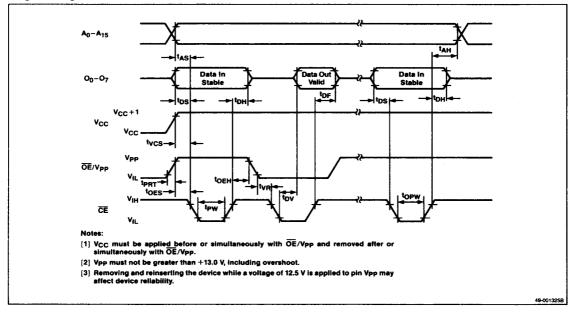

(1) Output load: see figure 1. Input rise and fall times ≤ 20 ns. Input pulse levels: 0.45 and 2.4 V. Timing measurement reference levels: inputs and outputs = 0.8 and 2.0 V

AC Characteristics, Programming Modes

 $T_A = 25 \pm 5$ °C; $V_{CC} = 6.0 \pm 0.25$ V; $V_{PP} = 12.5 \pm 0.3$ V

Parameter		Limits				
	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	tas	2			μS	
OE setup time	t _{OES}	2			μS	
Data setup time	tos	2			μS	
Address hold time	t _{AH}	2			μS	-
Data hold time	t _{DH}	2			μS	
CE to output float time	t _{DF}	0		130	ns	
V _{CC} setup time	tvcs	2			μS	
Initial program pulse width	tpw	0.95	1.0	1.05	ms	
Overprogram pulse width	topw	2.85		78.75	ms	
CE to output delay	t _{DV}		48.	1	μS	$\overline{OE}/V_{PP} = V_{IL}$
OE/V _{PP} hold time	toeh	2			μS	
OE/V _{PP} recovery time	t _{VR}	2			μS	
OE/V _{PP} rise time	tpRT	50			ns	


Figure 1. Loading Conditions Test Circuit



Timing Waveforms

Read Mode

Programming Mode

Programming Operation

High-Speed Programming Mode

Begin programming by erasing all data; this places all bits in the high-level (1) state. Enter data by programming a low-level (0) TTL signal into the chosen bit location.

Address the first location and apply valid data at the eight output pins. Raise V_{CC} to $+6~V \pm 0.25~V$; then raise \overline{OE}/V_{PP} to $+12.5~V \pm 0.3~V$. Apply a 1-ms ($\pm 5\%$) program pulse to \overline{CE} as shown in the programming mode timing waveform. The bit is verified and the program/no-program decision is made. If the bit is not programmed, apply another 1-ms pulse to \overline{CE} , up to a maximum of 25 times. If the bit is programmed within 25 tries, apply an additional overprogram pulse of "x" ms (where "x" equals the number of tries multiplied by 3) and input the next address. If the bit is not programmed in 25 tries, reject the device as a program failure.

Programming Inhibit Mode

Use the programming inhibit mode to program multiple $\mu\text{PD27C512s}$ connected in parallel. All like inputs (except $\overline{\text{CE}}$, but including $\overline{\text{OE}}/\text{Vpp}$) may be common. Program individual devices by applying a low-level (0) TTL pulse to the $\overline{\text{CE}}$ input of the $\mu\text{PD27C512}$ to be programmed. Applying a high level (1) to the $\overline{\text{CE}}$ input of the other devices prevents them from being programmed.

Program Verify Mode

Perform verification on the programmed bits to determine that the data was correctly programmed. The program verification can be performed with $\overline{\text{CE}}$ and $\overline{\text{OE}/V_{PP}}$ at low levels (0).

Erasure

Erase data on the μ PD27C512 by exposing it to light with a wavelength shorter than 400 nm. Exposure to direct sunlight or fluorescent light could also erase the data. Consequently, mask the window to prevent unintentional erasure by ultraviolet rays.

Data is typically erased by 254-nm ultraviolet rays. A minimum lighting level of 15 W sec/cm² (ultraviolet ray intensity multiplied by exposure time) is required to completely erase written data.

An ultraviolet lamp rated at 12,000 μ W/cm² takes approximately 15 to 20 minutes to complete erasure. Place the μ PD27C512 within 2.5 cm of the lamp tubes. Remove any filter on the lamp.