

AWU6608

HELP3™ Band 8/WCDMA

3.4 V/28.5 dBm Linear PA Module ADVANCED PRODUCT INFORMATION - Rev 0.2

FEATURES

- HSPA Compliant
- InGaP HBT Technology
- High Efficiency: (R99 waveform)
 - 40 % @ Pout = +28.5 dBm
 - 20 % @ Роит = +17 dBm
- Low Quiescent Current: 8 mA
- Low Leakage Current in Shutdown Mode: <1 μA
- · Internal Voltage Regulator
- Integrated "daisy chainable" directional couplers with CPLin and CPLout Ports
- Optimized for a 50 Ω System
- Low Profile Miniature Surface Mount Package
- RoHS Compliant Package, 260 °C MSL-3

APPLICATIONS

 WCDMA/HSPA 900 MHz Band Wireless Handsets and Data Devices

PRODUCT DESCRIPTION

The AWU6608 HELP3[™] PAis a 3rd generation WCDMA product for UMTS handsets. This PA incorporates ANADIGICS' HELP3[™] technology to provide low power consumption without the need for an external voltage regulator. A "daisy chainable" directional coupler is integrated in the module thus eliminating the need of external couplers. The device is manufactured on an advanced InGaP HBT MMIC technology offering

M45 Package
10 Pin 3 mm x 3 mm x 1 mm
Surface Mount Module

state-of-the-art reliability, temperature stability, and ruggedness. There are two selectable bias modes that optimize efficiency for different output power levels, and a shutdown mode with low leakage current, which increases handset talk and standby time. The self-contained 3 mm x 3 mm x 1 mm surface mount package incorporates matching networks optimized for output power, efficiency, and linearity in a 50 Ω system.

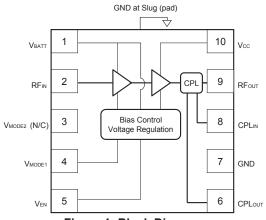


Figure 1: Block Diagram

www.DataSheet4U.com

AWU6608

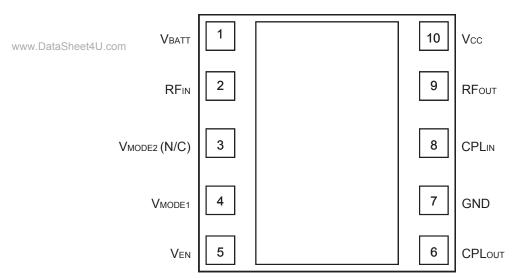


Figure 2: Pinout (X-ray Top View)

Table 1: Pin Description

PIN	NAME	DESCRIPTION
1	V_{BATT}	Battery Voltage
2	RFℕ	RF Input
3	V _{MODE2} (N/C)	No Connection
4	V _{MODE1}	Mode Control Voltage 1
5	V_{EN}	PA Enable Voltage
6	CPLout	Coupler Output
7	GND	Ground
8	CPL⋈	Coupler Input
9	RFout	RF Output
10	Vcc	Supply Voltage

ELECTRICAL CHARACTERISTICS

www.DataSheet4U.com

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (Vcc)	0	+5	V
Battery Voltage (VBATT)	0	+6	V
Control Voltages (VMODE1, VENABLE)	0	+3.5	V
RF Input Power (P _{IN})	-	+10	dBm
Storage Temperature (Tstg)	-40	+150	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Operating Ranges

Table 6. Operating Nanges					
PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
Operating Frequency (f)	880	-	915	MHz	
Supply Voltage (Vcc)	+3.2	+3.4	+4.2	٧	Роит <u><</u> +28.5 dBm
Enable Voltage (VENABLE)	+2.15 0	+2.4	+3.1 +0.5	V	PA "on" PA "shut down"
Mode Control Voltage (VMODE1)	+2.15 0	+2.4	+3.1 +0.5	>	Low Bias Mode High Bias Mode
RF Output Power (Pout) R99 WCDMA, HPM HSPA (MPR=0), HPM R99 WCDMA, LPM HSPA (MPR=0), LPM	28.0 ⁽¹⁾ 27.0 ⁽¹⁾ 16.5 ⁽¹⁾ 15.5 ⁽¹⁾	28.5 27.5 17 16	28.5 27.5 17 16	dBm	3GPP TS 34.121-1, Rel 7 Table C.11.1.3
Case Temperature (Tc)	-30	-	+90	°C	

The device may be operated safely over these conditions; however, parametric performance is guaranteed only over the conditions defined in the electrical specifications.

Notes:

(1) For operation at Vcc = +3.2 V, Pout is derated by 0.5 dB.

Table 4: Electrical Specifications (Tc = +25 °C. Vcc = +3.4 V. VBATT = +3.4 V. VENABLE = +2.4 V, 50 Ω system, R99 waveform)

MINI	TVD	144V		COMMENTS		
METER MIN TYP MAX UNIT		Роит	V _{MODE1}			
	27 15	-	dB	+28.5 dBm +17 dBm	0 V 2.4 V	
-	-41 -42	-38 -38	dBc	+28.5 dBm +17 dBm	0 V 2.4 V	
1 1	-55 -55	-48 -48	dBc	+28.5 dBm +17 dBm	0 V 2.4 V	
1 1	40 20	1 1	%	+28.5 dBm +17 dBm	0 V 2.4 V	
-	8	-	mA	V _{MODE1} = +2.4 V		
-	0.3	-	mA	through V _{MODE} pin, V _{MODE1} = +2.4		
ı	0.3	-	mA	through VENABLE pin		
1	3.0	-	mA	through VBATT pin, VMODE1 = +2.4		
1	<1	1	μΑ	V _{BATT} = +4.2 V, V _{CC} = +4.2 V, V _{ENABLE} = 0 V, V _{MODE1} = 0 V		
ı	-135	-	dBm/Hz	$P_{OUT} \le +28.5 \text{ dBm}, V_{MODE1} = 0V$		
-	-143	-	dBm/Hz	Роит <u><</u> 17 dBm, \	$I_{MODE1} = +2.4 \text{ V}$	
	-42 -50	-	dBc	Роит <u><</u> +28.5 dBm		
1	-	-	VSWR			
ı	20	ı	dB			
-	20	-	dB			
-	-	-70	dBc	Pour ≤ +28.5 dBm In-band load VSWR < 5:1 Out-of-band load VSWR < 10 Applies over all operating conditions		
8:1	_	_	VSWR	Applies over full operating range		
	MIN	MIN TYP - 27 15 -41 - -55 - 40 - 20 - 0.3 - 0.3 - 0.3 - -135 - -143 - -42 -50 - - 20 - 20 - - - 20 - - </td <td>MIN TYP MAX </td> <td>MIN TYP MAX UNIT - 27 15 - 38 - 38 dBc - 41 - 20 - 48 - 48 dBc - 38 - 40 - 20 - 48 - 48 mA - 39 - 20 - 38 - 38 mA - 30 - 30 - 100 - 100 mA - 30 - 31 - 100 - 100 mA - 135 - 143 - 143 - 100 - 143 dBm/Hz - 143 - 50 - 143 - 143 - 143 - 143 dBm/Hz - 143 - 50 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 144 - 144 - 144 - 144<br <="" td=""/><td>MIN TYP MAX UNIT Pout - 27 - dB +28.5 dBm +17 dBm - -41 -38 dBc +28.5 dBm +17 dBm - -55 -48 dBc +28.5 dBm +17 dBm - -55 -48 dBc +28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 20 - % +28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 0.3 - mA through VMoDE pIn - 0.3 - mA through VBATT pin - - - μA VBATT = +4.2 V, V V VENABLE = 0 V, VM - - - - - - - - - - - - - - - - - - -</td></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td>	MIN TYP MAX	MIN TYP MAX UNIT - 27 15 - 38 - 38 dBc - 41 - 20 - 48 - 48 dBc - 38 - 40 - 20 - 48 - 48 mA - 39 - 20 - 38 - 38 mA - 30 - 30 - 100 - 100 mA - 30 - 31 - 100 - 100 mA - 135 - 143 - 143 - 100 - 143 dBm/Hz - 143 - 50 - 143 - 143 - 143 - 143 dBm/Hz - 143 - 50 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 143 - 144 - 144 	MIN TYP MAX UNIT Pout - 27 - dB +28.5 dBm +17 dBm - -41 -38 dBc +28.5 dBm +17 dBm - -55 -48 dBc +28.5 dBm +17 dBm - -55 -48 dBc +28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 20 - % +28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 40 - - -28.5 dBm +17 dBm - 0.3 - mA through VMoDE pIn - 0.3 - mA through VBATT pin - - - μA VBATT = +4.2 V, V V VENABLE = 0 V, VM - - - - - - - - - - - - - - - - - - -	

Notes:

www.DataSheet4U.com

⁽¹⁾ ACLR and Efficiency measured at 897.5 MHz.

⁽²⁾ Noise measured at 925 MHz to 960 MHz.

APPLICATION INFORMATION

www.anadigics.com

Shutdown Mode

The power amplifier may be placed in a shutdown mode by applying logic low levels (see Operating Ranges table) to the Venable and Vmode1 voltages.

Bias Modes

The power amplifier may be placed in either a Low Bias mode or a High Bias mode by applying the appropriate

logic level (see Operating Ranges table) to V_{MODE1}. The Bias Control table lists the recommended modes of operation for various applications. V_{MODE2} is not necessary for this PA.

Two operating modes are available to optimize current consumption. High Bias/High Power operating mode is for Pout levels \geq 16 dBm. At around 17 dBm output power, the PA can be "Mode Switched" to Medium/Low power mode for lowest quiescent current consumption.

Table 5: Bias Control (UMTS)

APPLICATION	Pout LEVELS	BIAS MODE	VENABLE	V _{MODE1}	Vcc	V BATT
UMTS - med/low power (Low Bias Mode)	<u><</u> +17 dBm	Low	+2.4 V	+2.4 V	3.2 - 4.2 V	<u>></u> 3.2 V
UMTS - high power (High Bias Mode)	> +16 dBm	High	+2.4 V	0 V	3.2 - 4.2 V	<u>></u> 3.2 V
Optional lower Vcc in low power mode	<u><</u> +7 dBm	Low	+2.4 V	+2.4 V	1.5 V	≥ 3.2 V
Shutdown	-	Shutdown	0 V	0 V	3.2 - 4.2 V	≥ 3.2 V

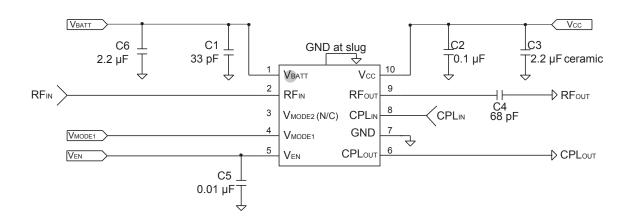
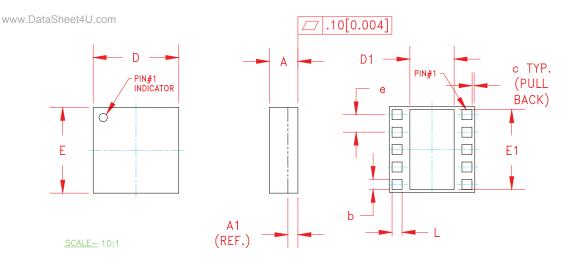



Figure 3: Application Circuit Schematic

PACKAGE OUTLINE

S _{YMBOL}	MILLIMETERS				NOTE			
LOF.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.91	1.03	1.13	0.035	0.041	0.044	-	
A1	PLEASE REFER TO LAMINATE CONTROL DRAWING							
b	0.32	0.35	0.40	0.013	0.014	0.016	3	
С	-	0.10	-	-	0.004	-	-	
D	2.88	3.00	3.12	0.113	0.118	0.123	_	
D1	1.45	1.50	1.57	0.057	0.059	0.062	3	
Е	2.88	3.00	3.12	0.113	0.118	0.123	-	
E1	2.70	2.75	2.85	0.106	0.108	0.112	3	
е		0.60			0.024		3	
L	0.32	0.35	0.40	0.013	0.014	0.016	3	

NOTES:

- 1. CONTROLLING DIMENSIONS: MILLIMETERS
- 1. CONTROLLING DIMENSIONS: MILLIMETERS
 2. UNLESS SPECIFIED TOLERANCE=±0.076[0.003].
 3. PADS (INCLUDING CENTER) SHOWN UNIFORM
 SIZE FOR REFERENCE ONLY.
 ACTUAL PAD SIZE AND LOCATION WILL
 VARY WITHIN MIN. AND MAX. DIMENSIONS
 ACCORDING TO SPECIFIC LAMINATE DESIGN.
 4. UNLESS SPECIFIED DIMENSIONS ARE
 SYMMETRICAL ABOUT CENTER LINES SHOWN.
- LAMINATE CONTROL DRAWING SPECIFIED BY PART NUMBER.

Figure 4: M45 Package Outline - 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module

TOP BRAND

NOTES:

1. ANADIGICS LOGO SIZE: NONE 2. PART NUMBER: 6608R

3. WAFER LOT NUMBER: LLLL = FOUR DIGIT LOT NUMBER

NN = TWO DIGIT WAFER NUMBER

4. PIN 1 INDICATOR: LASER DOT

BBB 5. B.O.M.#

6. COUNTRY CODE: CC = TH -for- THAILAND, TW -for- TAIWAN,

PH-for-PHILLIPINES, CH-for-CHINA, ID -for- INDONESIA, HK -for- HONG KONG

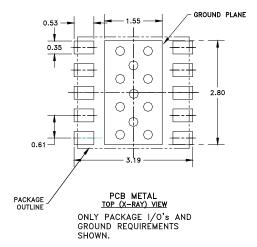
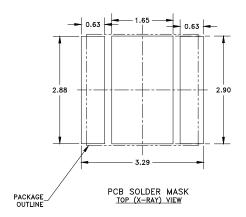

7. TYPE : ARIAL SIZE: 1.5-POINT COLOR: LASER

Figure 5: Branding Specification - M45 Package

www.DataSheet4U.com


PCB AND STENCIL DESIGN GUIDELINE

www.DataSheet4U.com

NOTES:

- (1) OUTLINE DRAWING REFERENCE: P8002478_E
- (2) UNLESS SPECIFIED DIMENSIONS
 ARE SYMMETRICAL ABOUT CENTER
 LINES SHOWN.
- (3) DIMENSIONS IN MILLIMETERS.
- (4) VIAS SHOWN IN PCB METAL VIEW ARE FOR REFERENCE ONLY.
 NUMBER & SIZE OF THERMAL VIAS REQUIRED DEPENDENT ON HEAT DISSIPATION REQUIREMENT AND THE PCB PROCESS CAPABILITY.
- (5) RECOMMENDED STENCIL THICKNESS: APPROX. 0.150mm (6 Mils)

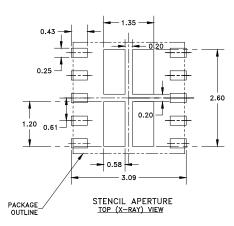
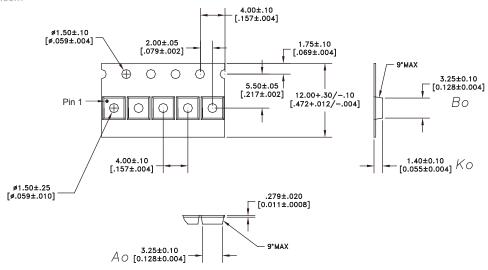



Figure 6: Recommended PCB Layout Information

COMPONENT PACKAGING

www.DataSheet4U.com

NOTES:

DIMENSIONS ARE IN MILLIMETERS [INCHES]

1. MATERIAL: 3000 (CARBON FILLED POLYCARBONATE) 100% RECYCLABLE.

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

Figure 6: Tape & Reel Packaging

Table 6: Tape & Reel Dimensions

PACKAGE TYPE	TAPE WIDTH	POCKET PITCH	REEL CAPACITY	MAX REEL DIA
3 mm x 3 mm x 1 mm	12 mm	4 mm	2500	7"

AWU6608

ORDERING INFORMATION

W	ORDER NUMBER RANGE		PACKAGE DESCRIPTION	COMPONENT PACKAGING
	AWU6608RM45Q7	-30 °C to +90 °C	RoHS Compliant 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module	Tape and Reel, 2500 pieces per Reel
	AWU6608RM45P9	-30 °C to +90 °C	RoHS Compliant 10 Pin 3 mm x 3 mm x 1 mm Surface Mount Module	Partial Tape and Reel

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

www.DataSheet4U.com

