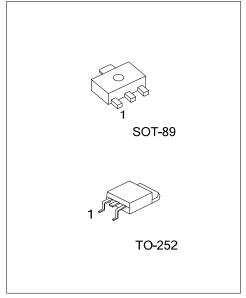
2SB1260

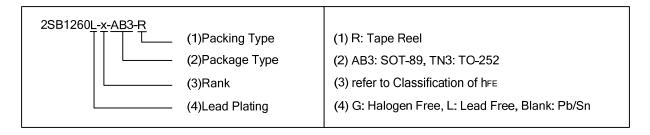
PNP SILICON TRANSISTOR


POWER TRANSISTOR

■ DESCRIPTION

The UTC **2SB1260** is a epitaxial planar type PNP silicon transistor.

■ FEATURES


- * High breakdown voltage and high current. BV_{CEO}= -80V, I_C= -1A
- * Good h_{FE} linearity.
- * Low $V_{\text{CE(SAT)}}$

Lead-free: 2SB1260L Halogen-free: 2SB1260G

ORDERING INFORMATION

Ordering Number			Package	Pin Assignment			Packing	
Normal	Lead Free	Halogen Free	Fackage	1	2	3	Facking	
2SB1260-x-AB3-R	2SB1260L-x-AB3-R	2SB1260G-x-AB3-R	SOT-89	В	С	E	Tape Reel	
2SB1260-x-TN3-R	2SB1260L-x-TN3-R	2SB1260G-x-TN3-R	TO-252	В	С	Е	Tape Reel	

<u>www.unisonic.com.tw</u>

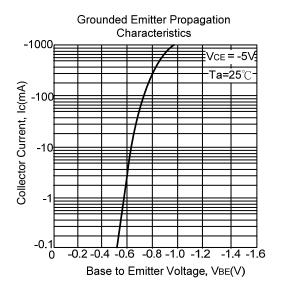
■ **ABSOLUATE MAXIUM RATINGS** (Ta = 25° C)

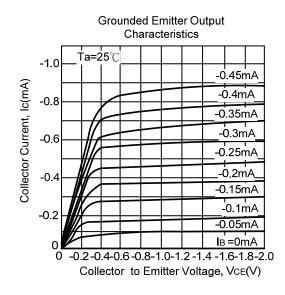
PARAMETER	SYMBOL	RATINGS	UNIT	
Collector -Base Voltage		V_{CBO}	-80	V
Collector -Emitter Voltage	V_{CEO}	-80	V	
Emitter -Base Voltage	V_{EBO}	-5	V	
Peak Collector Current (single pulse, Pw=100ms)	I _{CM}	-2	Α	
DC Collector Current		Ic	-1	Α
Dower Dissipation	SOT-89	D	0.5	W
Power Dissipation	TO-252	P_D	1.9	W
Junction Temperature	T_J	+150	$^{\circ}$ C	
Storage Temperature	T_{STG}	-40 ~ +150	$^{\circ}\!\mathbb{C}$	

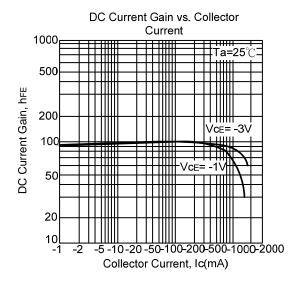
Note 1. Printed circuit board,1.7mm thick, collector copper plating 100mm² or larger.

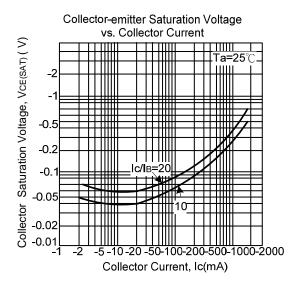
■ **ELECTRICAL CHARACTERISTICS** (Ta= 25°C, unless otherwise specified)

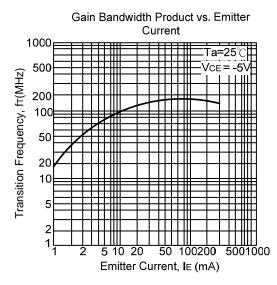
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector Base Breakdown Voltage	BV _{CBO}	I _C = -50 μ A	-80			V
Collector Emitter Breakdown Voltage	BV _{CEO}	I _C = -1mA	-80			V
Emitter Base Breakdown Voltage	BV _{EBO}	$I_E = -50 \mu$ A	-5			V
Collector Cut-Off Current	I _{CBO}	V _{CB} =-60V			-1	μ A
Emitter Cut-Off Current	I _{EBO}	V _{EB} =-4V			-1	μ A
DC Current Gain(Note 1)	h _{FE}	V _{CE} =-3V, I _{OUT} =-0.1A	82		390	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =-500mA, I _B =-50mA			-0.4	V
Transition Frequency	f _T	V_{CE} = -5V, I_E =50mA, f=30MHz		100		MHz
Output Capacitance	Cob	V _{CB} =-10V, I _E =0, f=1MHz		25		pF

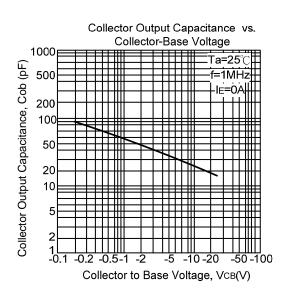

Note 1: Pulse test: P_W <300 μ s, Duty Cycle<2%

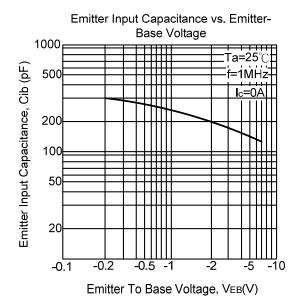

■ CLASSIFICATION OF h_{FE}

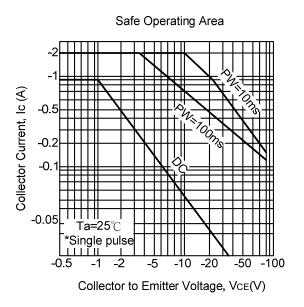

RANK	Р	Q	R		
RANGE	82 ~ 180	120 ~ 270	180 ~ 390		


^{2.} Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ TYPICAL CHARACTERICS







■ TYPICAL CHARACTERICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.