

AVPro® 5303B Universal 3-Input A/V Switch Interface

DATA SHEET

DECEMBER 2005

DESCRIPTION

The AVPro[®] 5303B device is a universal three input A/V switch interface IC designed for TV and general-purpose A/V applications. The device provides interfaces for three full sets of TV SCART input signals (Red, Green, Blue, CVBS, R, L, Fast Blanking, and TV Function) and also supports SCART SVHS video mode. In addition, the 5303B can be configured to support general-purpose A/V interface (YPrPb, SVHS, and CVBS) for TVs, DVD recorders, digital set-top boxes, and PVRs. Video and audio gains are programmable. All switching and function settings are controlled via I²C.

FEATURES

Three Input A/V Interface

- 3:1 video and audio mux
- Programmable gain video drivers
- 0/6 dB audio drivers
- TV SCART Interface
 - RGB+FB, SVHS and CVBS video modes
 - 12V TV Function pins mux
- General Purpose A/V Interface
 - YPrPb, SVHS and CVBS video modes

I²C Control

Power Down Mode

Configurable Device Address

- Picture-in-Picture Application
- Expandable Multi-function Inputs (up to 6 channels)

Power Supply

• +5V, +12V

Package

• 48-QFN

APPLICATIONS

- ✓ TV 3-SCART Interface
- ✓ TV A/V Interface (YPrPb/SVHS/CVBS)
- ✓ DVD Recorder A/V Interface
- ✓ Digital Set-Top Box A/V Interface
- ✓ PVR A/V Interface

Functional Description

The 5303B is an analog A/V interface IC designed for TV and general-purpose A/V applications. The device accepts up to three sets of SCART input signals (Red, Green, Blue, CVBS, R, L, Fast Blanking, and TV Function). By way of 3:1 mux, SCART 1, 2, or 3 signals can be selected at the device's output pins. The 5303B supports four SCART video modes: RGB/CVBS, RGB-only, CVBS-only and SVHS. The RGB and CVBS video driver gains are programmable from 2 to 1.4 in 0.2 steps, and the R/L audio driver gain can be 0dB or 6dB. The R/L audio drivers can accept signals from 0.5Vrms to 2Vrms.

For general-purpose A/V applications, video switches and drivers can be configured to support component video (YPrPb), S-Video (SVHS), and composite video (CVBS) signals.

All switching and programmable functions of the device are controlled through a standard I²C serial interface

DC Restore for RGB, Y, and CVBS: The device will generate a DC restore level on each video output based on timing referenced to a horizontal sync pulse. When the sync pulse is detected, the DC restore circuit will act to position the blank level to 1.2V at the respective RGB, Y, or CVBS output pin(s).

DC Restore for SVHS and YPrPb: In the SVHS mode, the CVBS pin is used as Luma input and the Red pin is used as Chroma input. The DC restore function for Luma signal is equivalent to CVBS signal. The DC restore circuit will position the output blank level to 1.2V at the respective Luma output pin. For the Chroma input, the on-chip clamp circuit will be used to position the output mid-scale DC level to 1.8V. In the YPrPb mode, the mid-scale DC level for Pr and Pb outputs will also be at 1.8V.

A/V Input Source Selection

The device accepts up to three sets of A/V input signals. Bits 0 & 1 of Register 0 determine which of the sets will be present at the device's output pins.

Video Mode Selection

The device supports four video modes for TV SCART applications: RGB/CVBS, RGB-only, CVBS-only, and SVHS. Bits 2, 3, & 4 set the active video mode. RGB/CVBS video mode is a default mode. For generalpurpose A/V applications, the device supports YPrPb/CVBS and CVBS/SVHS video modes.

RGB Gain

The gain of the RGB outputs can be adjusted to one of four different levels. Bits 0 & 1 Register 1 set the gain of the RGB output amplifiers according to the following table:

Bit 1	Bit 0	RGB Amplifier Gain
0	0	Gain = 2 V/V
0	1	Gain = 1.8 V/V
1	0	Gain = 1.6 V/V
1	1	Gain = 1.4 V/V

CVBS Gain

The gain of the CVBS output can be adjusted to one of four different levels. Bits 2 & 3 Register 1 set the gain of the CVBS output amplifier according to the following table:

Bit 3	Bit 2	CVBS Amplifier Gain
0	0	Gain = 2 V/V
0	1	Gain = 1.8 V/V
1	0	Gain = 1.6 V/V
1	1	Gain = 1.4 V/V

Audio Gain

The gain of the R/L audio amplifiers can be set to either 0dB or 6dB. Bit 4 of Register 1 sets the gain of the amplifiers according to the following table:

Bit 4	R/L Amplifier Gain
0	Gain = 0 dB
1	Gain = 6 dB

TV Function Input

The TV Function feature generally supports three-level logic signal required for SCART TV Function Switching:

Input Voltage	TV Function Switching Mode
0-2V	Broadcast TV
4.5-7V	16:9 Peritelevision Reproduction
9.5-12V	Normal Peritelevision Reproduction

In the AVPro® 5303B device, the TV Function feature works in pass through mode only. The three inputs, Func1, Func2 and Func3 support the pass through mode of the TV Function feature. A $100k\Omega$ load is recommended for typical operation at the Func_out pin.

Fast Blanking (FB) Input

The FB1, FB2 and FB3 inputs support two-level logic signal required for SCART Fast Blanking:

Logic	Input Voltage	Fast Blanking Mode
0	0-0.4V	CVBS Active
1	1-3V	RGB Active

Following a 3:1 input mux stage is a unity-gain FB video driver. The FB video driver is designed to match the video drivers of RGB in bandwidth and time delay and can support a minimum load of 300Ω .

Chip Power Down

The whole chip (except negligible on-chip biasing circuit) can be powered down by setting Pdwn pin to high (5V).

Configurable Device Address

Dev_Addr pin sets the address of the 5303B device. There are two possible device addresses that the 5303B can have:

Device Address	Description
10 01 000x	Dev_Addr pin left OPEN (Default)
10 10 000x	Dev_Addr pin connected to GND

In the case of picture-in-picture or 6-channel inputs application, a second device is required to have a different address from the first or original device. This can be done by connecting the Dev_Addr pin of the second device to GND while leaving the Dev_Addr pin of the first device OPEN or unconnected.

Serial Port Definition

Internal functions of the device are monitored and controlled by a standard inter-IC (I^2C)bus with data being transferred MSB first on the rising edge of the clock. The serial port operates in a slave mode only and can be written to or read from. The device uses 7-bit addressing, and does not support 10-bit addressing mode. The write register data is sent sequentially, such that if register 1 is to be programmed, then registers 0 and 1 need to be sent. If only register 0 needs to be programmed, then only registers 0 data needs to be sent. It will support standard and fast bus speed. The default address of the device is 1001000x (1001000 for Write and 10010001 for Read).

The 5303B includes a read register in which the upper four bits identify the specific chip within the AVPro[®] family. This allows a single application platform and software to work with a wide variety of AVPro[®] chips. The ID code for the 5303B is 0010.

Data Transfers

A data transfer starts when the SDATA pin is driven from HIGH to LOW by the bus master while the SCLK pin is HIGH. On the following eight clock cycles, the device receives the data on the SDATA pin and decodes that data to determine if a valid address has been received. The first seven bits of information are the address with the eighth bit indicating whether the cycle is a read (bit is HIGH) or a write (bit is LOW). If the address is valid for this device, on the falling SCLK edge of the eighth bit of data, the device will drive the SDATA pin low and hold it LOW until the next rising edge of the SCLK pin to acknowledge the address transfer. The device will continue to transmit or receive data until the bus master has issued a stop by driving the SDATA pin from LOW to HIGH while the SCLK pin is held HIGH

Write Operation: When the read/write bit (LSB) is LOW and a valid address is decoded, the device will receive data from the *SDATA* pin. The device will continue to latch data into the registers until a stop condition is detected. The device generates an acknowledge after each byte of data written.

Read Operation: When the read/write bit (LSB) is HIGH and a valid address is decoded, the device will transmit the data from the internal register on the following eight *SCLK* cycles. Following the transfer of the register data and the acknowledge from the master, the device will release the data bus.

Reset: At power-up the serial port defaults to the states indicated in boldface type. The device also responds to the system level reset that is transmitted through the serial port. When the master sends the address 00000000 followed by the data 00000110, the device resets to the default condition.

SERIAL PORT REGISTER TABLES

Read register Device Address = 10010001 (10100001 when Dev_Addr = 0)

Function	Bits	Description
Not Used	xxxx0000	Not Used
Device ID Code	0010xxxx	This code identifies the device type as the 5303B.

Write Registers: Device Address = 10010000 (10100000 when Dev_Addr = 0). Bold indicates default setting.

Register 0: Signal Source Selection

Register 0:

Video Mode	Bits		Descript	ion
BLUE Chroma/Pr/Pb enable	xxxxxxX0	E	Blue input set for C	hroma/Pr/Pb
	xxxxxxx1	Blue input s	set for Y or Blue(D	C Restore)
RED Chroma/Pr/Pb enable	xxxxxx 0 x	F	Red input set for C	hroma/Pr/Pb
	xxxxxx1x	Red	input set for Y or F	Red(DC Restore)
FB_OUT set to 0V	xxxxx 0 xx	FB_OUT for normal operation		
	xxxxx1xx		FB_OUT SET	TO 0V
GN_OUT set to 0V	xxxx 0 xxx	GN_OUT for normal operation		
	xxxx1xxx		GN_OUT SET	TO 0V
Audio/FUNC Source Selection	Bits	ROUT	LOUT	FUNC_OUT
	00xxxxxx	R1	L1	FUNC1
	01xxxxxx	R2	L2	FUNC2
	10xxxxxx	R3	L3	FUNC3
	11xxxxxx	Not Used Not Used Not Used		

Register 1: Audio/Video Gain Control

Function	Bits	Description
RBG Gain	xxxxxx00	2
	xxxxxx01	1.8
	xxxxxx10	1.6
	xxxxxx11	1.4
Function	Bits	Description
CVBS Gain	xxxx 00 xx	2
	Xxxx01xx	1.8
	Xxxx10xx	1.6
	Xxxx11xx	1.4
Function	Bits	Description
Audio Gain	xxx 0 xxxx	0 dB
	xxx1xxxx	6 dB

FB3

Not Used

Register 2: XXXX XXXX. User must write to register 2 (contents written are a don't care) prior to writing to register 3.

Register 3: Video Signal Source Selection

Video Mode	Bits	RED_OUT		
RED Source Selection	xxxxx x00	RD1		
	xxxxxx01		RD2	
	xxxxxx10		RD3	
	xxxxxx11		0V	
Video Mode	Bits		CVBS_OUT	
CVBS Source Selection	xxxx00xx		CVBS1	
	xxxx01xx		CVBS2	
	xxxx10xx		CVBS3	
	xxxx11xx		0V	
Video Mode	Bits		BLUE_OUT	
BLUE Source Selection	xx00xxxx	BL1		
	xx01xxxx		BL2	
	xx10xxxx		BL3	
	xx11xxxx		0V	
Video Mode	Bits	GN_OUT	FB_OUT	
GREEN Source Selection	00xxxxxx	GN1	FB1	
	01xxxxxx	GN2	FB2	

GN3

Not Used

10xxxxxx

11xxxxxx

PIN DESCRIPTIONS

Name	Pin	Туре	Description	
Analog Pins				
Func1	25	I	TV Function Input 1	
Func2	24	I	TV Function Input 2	
Func3	23	I	TV Function Input 3	
FB1	48	I	Fast Blanking Input 1	
FB2	5	I	Fast Blanking Input 2	
FB3	36	I	Fast Blanking Input 3	
Gn1	2	I	Green Input 1	
Gn2	7	I	Green Input 2	
Gn3	38	I	Green Input 3	
BI1	3	I	Blue Input 1	
BI2	8	I	Blue Input 2	
BI3	39	I	Blue Input 3	
Rd1	1	I	Red Input 1	
Rd2	6	I	Red Input 2	
Rd3	37	I	Red Input 3	
CVBS1	47	I	CVBS Input 1	
CVBS2	4	I	CVBS Input 2	
CVBS3	35		CVBS Input 3	
R1	14		Right Audio Input 1	
R2	16		Right Audio Input 2	
R3	18	-	Right Audio Input 3	
L1	15		Left Audio Input 1	
L2	17		Left Audio Input 2	
L3	19		Left Audio Input 3	
Func_out	22	0	TV Function Output	
FB_out	45	0	Fast Blanking Output	
Gn_out	41	0	Green Output	
BI_out	40	0	Blue Output	
Rd_out	44	0	Red Output	
CVBS_out	46	0	CVBS Output	
R_out	21	0	Right Audio Output	
L_out	13	0	Left Audio Output	

PIN DESCRIPTIONS (Continued)

Name	Pin	Туре	Description
Digital Pins		•	
Dev_Addr	29	I	Device Address Input
Pdwn	28	Ι	Chip Power Down
SCLK	30	I	Serial Clock Input: This pin accepts a serial port clock input signal.
SDATA	31	I/O	Serial Data Input/Output that can receive or transmit serial data.
Power/Grou	ind Pir	IS	
VCC	9, 33, 43	-	+5 VDC power supply pins.
VDD	27	-	+12 VDC power supply pin for function switching circuits.
Vref	20	-	Internal voltage reference, bypass pin. Add capacitor $0.1\mu F(1.0~\mu F$ for better PSRR) to ground.
GND	20, 26, 34, 42	-	Ground for all blocks.
Rbias	11	-	Bias point of internal current generator. Add resistor $10.0k\Omega(\pm 1\%)$ to ground.
Tgen	32	-	Reference point for internal timing circuit. Add capacitor 470pF to ground.
N/C	12	-	No connect.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Operation beyond the maximum ratings may damage the device

PARAMETER	RATING
Storage temperature	-55 to 150 °C
Junction operating temperature	+125 °C
5V supply voltage pins	-0.3 V < VCC < 6V
12V supply pin	-0.3 V < VDD < 13V
Voltage applied to Digital and Video Inputs	-0.3V to VCC+0.3 V
Voltage applied to video pins	-0.3V to VCC+0.3 V
Voltage applied to audio pins	-0.3 V < VDD < 13V
Voltage applied to FNC pin (input)	-0.3 V < VDD < 13V

SPECIFICATIONS: Unless otherwise specified: 0° < Ta < 70 $^{\circ}$ C; power supplies VCC = +5.0 V ±5%, VDD = 12.0 V ±5%.

Parameter	CONDITION	MIN	NOM	MAX	UNIT
Operating Characteristics					
Power Supply Currents	All outputs not loaded				
(Default register setting)	VCC (+5 VDC)		16.5	20	mA
	VDD (+12 VDC)		4	5	mA
Power Supply Currents	Pdwn = 1				
(Default register setting)	VCC (+5 VDC)		2.3	3	mA
	VDD (+12 VDC)		10	100	μA
PSRR	f _{in} = 100 Hz, 0.3 Vpp on VCC/ VDD	40			dB
Switch time	From serial data acknowledge		2.0		μs
Wake time	From Power Down Condition 5		μs		
Serial Port Timing (Set by I ² C co	ntroller)				
SCLK Input Frequency				400	kHz
SCLK LOW time (tcL)		1.3			μs
SCLK HIGH time (tch)		0.6			μS
Rise time (trt)	SCLK and SDATA			300	ns
Fall time (t _{FT})	SCLK and SDATA			300	ns
Data set-up time* (tpsu)	SDATA change to SCLK HIGH	100			ns
Data hold time* (tDH)	SCLK LOW to SDATA change	30			ns
Start set-up time (tssu)		0.6			μs
Start hold time (tsH)	0.6			μs	
Stop set-up time (tpsu)		0.6			μs
Glitch rejection	maximum pulse on SCLK and/or SDATA			50	ns
* These specifications also apply to an acknowledge generated by the device.					

Digital I/O Characteristics (SCLK, SDATA, Pdwn, Dev_Addr)					
Parameter	CONDITION	MIN	NOM	MAX	UNIT
High level input voltage		0.7* VCC		VCC+0.3	V
Low level input voltage		GND-0.3		0.3* VCC	V
High level input current (SCLK, Pdwn, Dev_Addr)	Vin = Vcc - 1.0V	-10		10	μA
High level input current (SDATA)	Vin = Vcc - 1.0V	-50		50	μA
Low level input current (SCLK, Pdwn)	Vin = 1.0V	-10		10	μA
Low level input current (Dev_Addr)	Vin = 1.0V	-300		10	μA
Low level input current (SDATA)	Vin = 1.0V	-50		50	μA
Low level output voltage (SDATA)	I _{OL} = 3 mA			0.4	V
Fall time (t _{FT}) V _{lhmin} to V _{lLmax} (SDATA)	Acknowledge or read with $C_L = 400 pF$			250	ns

SPECIFICATIONS (continued)

Serial Port Timing (Typical)

Video Characteristics - Unless otherwise noted, typical output loading on all video outputs is 150Ω . All video outputs are capable of withstanding a sustained 75Ω load to ground without damage.

PARAMETER	CONDITION	MIN	NOM	MAX	UNIT
Input Impedance	All video inputs	100			kΩ
Input Dynamic Range	f _{in} = 100 kHz, THD < 0.15%		1.5		Vpp
RGB Gain Control	1.0 Vpp input, f _{in} = 100 kHz;				
A ₀ = reading xx00xxxx gain	Register 1 = xxxxxx00	1.9	2.0	2.1	V/V
	Register 1 = xxxxx01	A ₀ –12%	A ₀ -10%	A ₀ –8%	V/V
	Register 1 = xxxxxx10	A ₀ –22%	A ₀ –20%	A ₀ –18%	V/V
	Register 1 = xxxxx11	A ₀ –33%	A ₀ –30%	A ₀ –27%	V/V
CVBS Gain Control	1.0 Vpp input, f _{in} = 100 kHz;				
A ₀ = reading xx00xxxx gain	Register 1 = xxxx00xx	1.9	2.0	2.1	V/V
	Register 1 = xxxx01xx	A ₀ –12%	A ₀ -10%	A ₀ –8%	V/V
	Register 1 = xxxx10xx	A ₀ –22%	A ₀ –20%	A ₀ –18%	V/V
	Register 1 = xxxx11xx	A ₀ –33%	A ₀ –30%	A ₀ –27%	V/V
Output Gain Inequality	RGB or SVHS output channel to channel	-2.5		2.5	%
Video Bandwidth	Amplitude loss measured at 10MHz, $A_0 = 2V/V$	1.0	0.7		dB
	$3dB, A_0 = 2V/V$		25		MHz
Output DC Level					
Blank level clamp voltage	RGB, CVBS or Luma output		1.2		V
Average level	Chroma, Pr or Pb output		1.8		V
Signal to Noise Ratio	1 Vpp input	58	75		dB
Cross Talk	f _{in} = 4.43 MHz, 1 Vpp		-65		dB
Output to Output Differential Delay	RGB signals, f _{in} = 100 kHz	-20		20	ns
Differential Phase	CVBS output	-2.5		2.5	Deg.
Differential Gain	CVBS output	-2.5		2.5	%

PARAMETER	CONDITION	MIN	NOM	MAX	UNIT
Input Impedance		110	160	210	kΩ
Output Impedance			1.6	5	Ω
Audio Gain Control	f _{in} = 1.0 kHz				
	Register 1 = xxx0xxxx		0		dB
	Register 1 = xxx1xxxx		6		dB
Frequency Response	0.5 Vrms input, Flat within	20			kHz
	± 0.3 dB				
	Measured -3 dB point	100			kHz
Dynamic Range	f _{in} = 1.0 kHz, 2.0 Vrms	90	100		dB
A Weighting filter					
Signal to Noise ratio	f _{in} = 1.0 kHz, 2.0 Vrms	90	100		dB
A Weighting filter					
Distortion (THD)	0.5 Vrms output			0.03	%
	2 Vrms output			0.1	%
DC Offset		-250		250	mV
Output Phase Matching	f _{in} = 1.0 kHz, 0.5 Vrms		0.5		Deg.
Cross Talk	f _{in} = 1.0 kHz, 2.0 Vrms	75	100		dB
Audio to video path skew	Video input = 1.0 Vpp @ 100 kHz Audio input = 0.5 Vrms @ 1.0 kHz		150		ns

Audio Characteristics - Unless otherwise noted, all audio outputs shall drive a load of 10.3 k Ω . All audio outputs will withstand a sustained 300 Ω to ground without damage.

TV Function Pin Characteristics

PARAMETER	CONDITION	MIN	NOM	MAX	UNIT
Output Load	@ Func_out	10			kΩ
Series Resistance	With Output Load, $10k\Omega$, Vin = 12V		290	500	Ω
	With Output Load, $10k\Omega$, Vin = 9.5V		350	500	Ω
	With Output Load, $10k\Omega$, Vin = 7V		220	500	Ω

Fast Blanking (FB) Pin Characteristics

PARAMETER	CONDITION	MIN	NOM	MAX	UNIT
Input Impedance	FB1, FB2, FB3	100			kΩ
Blanking Input Level	Input Logical "0"	0.0		0.4	V
	Input Logical "1"	1.0		3.0	V
Blanking Delay	FB to RGB Signals	-50		50	ns
Output Load	@ FB_out	300			Ω
FB Gain			1.0		V/V

Application Diagram: (For TV 2/3-SCART Application)

Application Diagram: (Dual AVPro® 5303B Application)

PACKAGE PIN DESIGNATION

(Top View)

MECHANICAL DRAWING 48QFN Package

ORDERING INFORMATION

PART DESCRIPTION	ORDER NO.	PACKAGE MARK
AVPro [®] 5303B Universal 3-Input A/V Switch Interface (48 QFN)	AVPro [®] 5303B-CM	AVPro [®] 5303B-CM
AVPro [®] 5303B Universal 3-Input A/V Switch Interface (48 QFN) Tape and Reel	AVPro [®] 5303B-CMR	AVPro [®] 5303B-CM
AVPro [®] 5303B Universal 3-Input A/V Switch Interface (48 QFN) Lead Free	AVPro [®] 5303B-CM/F	AVPro [®] 5303B-CM
AVPro [®] 5303B Universal 3-Input A/V Switch Interface (48 QFN) Lead Free, Tape and Reel	AVPro [®] 5303B-CMR/F	AVPro [®] 5303B-CM

This product is sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement and limitation of liability. TERIDIAN Semiconductor Corporation (TSC) reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that a data sheet is current before placing orders. TSC assumes no liability for applications assistance.

TERIDIAN Semiconductor Corporation, 6440 Oak Canyon Road, Irvine, CA 92618-5201 TEL (714) 508-8800, FAX (714) 508-8875, http://www.teridian.com

© 2005 TERIDIAN Semiconductor Corporation

12/16/05 - Rev 1.0