AN561 APPLICATION NOTE
 WIDE BAND DESIGN OF PULSED POWER UHF AMPLIFIERS

1. REQUIRED.

A pulsed power amplifier with the following specifications: minimum peak power of 250 W at 435 MHz , bandwidth of $30 \mathrm{MHz}(420$ to 450 MHz), maximum passband flatness of $\pm 0.05 \mathrm{~dB}$, pulse width up to 1 msec ., 15% duty factor and input and output ($Z_{\text {in }}$ and $Z_{\text {out }}$) impedances of 500 hms .

2. PROCEDURE.

First, a transistor must be selected. Then, the circuit Q requirement(s) must be determined. The imaginary terms (if any) of the transistor input and output is then reduced to zero (0) at band center. Then the Chebyshev (low pass) matching filters required for a discrete component circuit must be computed. And last, the distributed component circuit elements are computed.

Note: For this design, a teflon-fiberglass board $1 / 32$-inch thick having a dielectric constant of 2.5 will be employed.

2.1. Step 1.

STMicroelectronics' type SD1563 was selected for its broad bandwidth, low thermal resistance, and ruggedness. From the datasheet for a typical amplifier with 40 V Vcc, the impedances are given as:

$$
\begin{align*}
Z_{\text {in }} & =2+j 3.2 \tag{and}\\
Z_{\text {out }} & =1.8+j 0.7
\end{align*}
$$

2.2. Step 2.

Circuit bandwidth required to limit roll-off at band edges to 0.5 dB is approximately three times the 3 dB bandwidth (BW). Then:

$$
\begin{gathered}
B W 3 d B=450-420 \quad \text { or } \quad \begin{array}{r}
30 \mathrm{MHz} \\
B W 0.5 d B=3 \times 30 \quad \text { or } \\
90 \mathrm{MHz}
\end{array} \\
\text { bandcenter }=f_{0}=\sqrt{450 \times 420}=435 \mathrm{MHz} \\
Q_{\max }=\frac{f_{0}}{B W 0.5 d B}=\frac{435}{90}=4.8
\end{gathered}
$$

Examine the selected device thus:

$$
\begin{gathered}
Q_{z i n}=\frac{X_{L}}{R}=\frac{3.2}{2}=1.6 \\
Q_{\text {zout }}=\frac{X_{L}}{R}=\frac{0.7}{1.8}=0.39
\end{gathered}
$$

Since $Q_{\max }=4.8>Q_{z i n}>Q_{z o u t}$, the Q requirements are met.

2.3. Step 3.

The inductance presented by the input of the transistor is resonated out by shunting with a capacitor C_{z} whose value is:

$$
\begin{gathered}
C_{z}=\frac{X_{i n}}{(2 \pi f)\left(R_{i n}{ }^{2}+X_{i n}{ }^{2}\right)} \\
C_{z}=\frac{3.2}{\left(2 \pi 435 \times 10^{6}\right)\left(2.0^{2}+3.2^{2}\right)} \\
C_{z}=82 \times 10^{-12} \quad 82 p F
\end{gathered}
$$

The value of $\mathrm{R}_{\text {in }}$, now that it is pure resistance, is:

$$
\begin{gathered}
R_{i n}^{\prime}=\frac{R_{i n}{ }^{2}+X_{i n}{ }^{2}}{R_{\text {in }}} \\
R_{\text {in }}^{\prime}=\frac{2.0^{2}+3.2^{2}}{2.0}=7.12 \mathrm{Ohms}
\end{gathered}
$$

Capacitor C_{z} ' required to resonate the inductance presented by the transistor output is determined to be 68.8 pF and $\mathrm{R}_{\text {out }}$ is 2.10 hms .

2.4. Step 4.

Chebyshev design tables require the input and output impedances to be real and:

$$
\begin{gathered}
w=\text { fractional bandwidth } \\
=\frac{2\left(f_{1}-f_{2}\right)}{f_{1}+f_{2}}=\frac{2(450-420)}{450+420}=0.0689 \\
r=\text { transformational ratio } \\
=\frac{R_{\text {source }}}{R_{\text {in }}^{\prime}}=\frac{50}{7.12}=7.02
\end{gathered}
$$

Inspection of Chebyshev tables show a single section ($\mathrm{n}=2$) filter will exhibit about 0.2 dB ripple; however, a two section ($n=4$) filter will limit ripple to less than 0.002 dB . The ($n=4$) filter will be employed.

Component values for the input filter compute to be:

$$
\begin{aligned}
& L_{1}=3.5 n H \\
& C_{2}=35.2 p F \\
& L_{3}=12.5 n H \\
& C_{4}=9.7 p F
\end{aligned}
$$

7.12 to 500 hms

The output matching filter is determined in the same manner where:

$$
\begin{gathered}
w=0.0689 \\
r=\frac{50}{2.1}=23.8
\end{gathered}
$$

Inspection of Chebyshev tables for a single section ($n=2$) filter shows that the ripple will exceed 0.22 dB . Again entering the two section ($n=4$) table, the ripple is found to be reduced to less than 0.001 dB .

Circuit Q influences the choice of filter sections, thus the maximum Impedance Transformation Ratio (each section) is limited to:

$$
Q^{2}+1=(4.8)^{2}+1=24.04
$$

Therefore, a single section ($n=2$) filter with a transformation ratio of 23.8 would be marginal in bandwidth.

Component values for the output filter compute to be:

$$
\begin{array}{ll}
L_{1}^{\prime} & =1.5 n H \\
C_{2}^{\prime} & =87.9 p F \\
L_{3}^{\prime} & =9.0 n H \\
C_{4}^{\prime} & =14.4 p F
\end{array} \quad 2.1 \text { to } 500 \mathrm{hms}
$$

The basic discrete component amplifier is shown in figure 1.

Figure 1: Basic Discrete Circuit

4.5. Step 5.

The Microstrip characteristic impedance is given as:

$$
Z_{0}=\frac{377 h}{\varepsilon_{r}^{1 / 2} W\left[1+1.735 \varepsilon_{r}^{-0.0724}(W / h)^{-0.836}\right]}
$$

where $\mathrm{W}=$ width, $\mathrm{H}=$ height, $\varepsilon_{\mathrm{r}}=$ Dielectric Constant.

For a teflon-fiberglass board 1/32-inch thick having a dielectric constant of 2.5 , the line width for 500 hms is found to be 0.09 inches.

The capacity of one (1) square inch of this circuit board is equal to:

$$
\begin{gathered}
C=\frac{0.224 \times 1.09 \varepsilon_{r} \times \text { Area }}{d(\text { thickness })} \\
=\frac{0.224 \times 1.09 \times 2.5 \times 1}{0.03125}=19 p F
\end{gathered}
$$

Capacities in the order of 90 pF required for this amplifier would occupy about four to five square inches of board area (a prohibitive use of real estate). Discrete capacitors will be employed.

The length of a Microstrip inductor is approximated as: $l=\frac{11.81 L}{Z_{0} \sqrt{\varepsilon_{r}}}$
Where $\mathrm{I}=$ length in inches and $\mathrm{L}=$ Inductance in nH .

For simplicity, a 500 hm line impedance was chosen for the inductors used in this amplifier. The line width is 0.09 inches and line lengths are as tabulated below:

Table 1: Microstrip Lines

Symbol	Value (nH)	Length (inches)
L_{1}	3.5	0.563
$\mathrm{~L}_{3}$	12.5	1.790
$\mathrm{~L}_{1}{ }^{\prime}$	1.5	0.244
$\mathrm{~L}_{3}$	9.0	1.360

The complete distributed amplifier is shown in figure 2.

Figure 2: Complete Distributed Amplifier (250W / 420-450MHz Pulsed Power)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All rights reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

