

# Ultrafast SiGe Voltage Comparators

# ADCMP580/ADCMP581/ADCMP582

#### **FEATURES**

180 ps propagation delay
25 ps overdrive and slew rate dispersion
8 GHz equivalent input rise time bandwidth
100 ps minimum pulse width
37 ps typical output rise/fall
10 ps deterministic jitter (DJ)
200 fs random jitter (RJ)
-2 V to +3 V input range with +5 V/-5 V supplies
On-chip terminations at both input pins
Resistor-programmable hysteresis
Differential latch control
Power supply rejection > 70 dB

#### **APPLICATIONS**

Automatic test equipment (ATE)
High speed instrumentation
Pulse spectroscopy
Medical imaging and diagnostics
High speed line receivers
Threshold detection
Peak and zero-crossing detectors
High speed trigger circuitry
Clock and data signal restoration

#### **FUNCTIONAL BLOCK DIAGRAM**

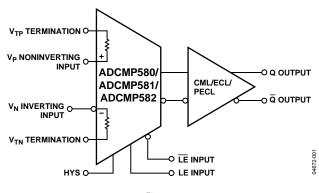



Figure 1.

www.DataSheet4U.com

#### **GENERAL DESCRIPTION**

The ADCMP580/ADCMP581/ADCMP582 are ultrafast voltage comparators fabricated on Analog Devices' proprietary XFCB3 Silicon Germanium (SiGe) bipolar process. The ADCMP580 features CML output drivers; the ADCMP581 features reduced swing ECL (negative ECL) output drivers; and the ADCMP582 features reduced swing PECL (positive ECL) output drivers.

All three comparators offer 180 ps propagation delay and 100 ps minimum pulse width for 10 Gbps operation with 200 fs random jitter (RJ). Overdrive and slew rate dispersion are typically less than 15 ps.

The  $\pm 5$  V power supplies enable a wide -2 V to +3 V input range with logic levels referenced to the CML/NECL/PECL outputs. The inputs have 50  $\Omega$  on-chip termination resistors with the optional capability to be left open (on an individual pin basis) for applications requiring high impedance input.

The CML output stage is designed to directly drive 400 mV into 50  $\Omega$  transmission lines terminated to ground. The NECL output stages are designed to directly drive 400 mV into 50  $\Omega$  terminated to -2 V. The PECL output stages are designed to directly drive 400 mV into 50  $\Omega$  terminated to  $V_{\rm CCO}-2$  V. High speed latch and programmable hysteresis are also provided. The differential latch input controls are also 50  $\Omega$  terminated to an independent  $V_{\rm TT}$  pin to interface to either CML or ECL or to PECL logic.

The ADCMP580/ADCMP581/ADCMP582 are available in a 16-lead LFCSP package.

# **TABLE OF CONTENTS**

| Specifications                               | Power/Ground Layout and Bypassing          |
|----------------------------------------------|--------------------------------------------|
| Timing Information 5                         | ADCMP58x Family of Output Stages           |
| Absolute Maximum Ratings 6                   | Using/Disabling the Latch Feature          |
| Thermal Considerations                       | Optimizing High Speed Performance          |
| ESD Caution                                  | Comparator Propagation Delay Dispersion 12 |
| Pin Configurations and Function Descriptions | Comparator Hysteresis                      |
| Typical Performance Characteristics          | Minimum Input Slew Rate Requirement        |
| Typical Application Circuits10               | Outline Dimensions                         |
| Application Information11                    | Ordering Guide14                           |

#### **REVISION HISTORY**

7/05—Revision 0: Initial Version

### **SPECIFICATIONS**

 $V_{\text{CCI}}$  = +5.0 V;  $V_{\text{EE}}$  = -5.0 V;  $V_{\text{CCO}}$  = +3.3 V;  $T_{\text{A}}$  = 25°C, unless otherwise noted.

Table 1.

| Parameter                           | Symbol                                | Condition                                    | Min                    | Тур      | Max                    | Unit  |
|-------------------------------------|---------------------------------------|----------------------------------------------|------------------------|----------|------------------------|-------|
| DC INPUT CHARACTERISTICS            |                                       |                                              |                        |          |                        |       |
| Input Voltage Range                 | $V_P, V_N$                            |                                              | -2.0                   |          | +3.0                   | V     |
| Input Differential Range            |                                       |                                              | -2.0                   |          | +2.0                   | V     |
| Input Offset Voltage                | Vos                                   |                                              | -10.0                  | ±4       | +10.0                  | mV    |
| Offset Voltage Tempco               | $\Delta V_{OS}/d_T$                   |                                              |                        | 10       |                        | μV/°C |
| Input Bias Current                  | I <sub>P</sub> , I <sub>N</sub>       | Open termination                             |                        | 15       | 30.0                   | μA    |
| Input Bias Current Tempco           | $\Delta I_B/d_T$                      |                                              |                        | 50       |                        | nA/°C |
| Input Offset Current                |                                       |                                              |                        | 2        | ±5.0                   | μΑ    |
| Input Resistance                    |                                       |                                              |                        | 47 to 53 |                        | Ω     |
| Input Resistance, Differential Mode |                                       | Open termination                             |                        | 50       |                        | kΩ    |
| Input Resistance, Common Mode       |                                       | Open termination                             |                        | 500      |                        | kΩ    |
| Active Gain                         | Av                                    |                                              |                        | 48       |                        | dB    |
| Common-Mode Rejection               | CMRR                                  | $V_{CM} = -2.0 \text{ V to } +3.0 \text{ V}$ |                        | 60       |                        | dB    |
| Hysteresis                          |                                       | R <sub>HYS</sub> = ∞                         |                        | 1        |                        | mV    |
| LATCH ENABLE CHARACTERISTICS        |                                       |                                              |                        |          |                        |       |
| Latch Enable Input Impedance        | Z <sub>IN</sub>                       | Each pin, V <sub>TT</sub> at ac ground       |                        | 47 to 53 |                        | Ω     |
| Latch to Output Delay               | t <sub>PLOH</sub> , t <sub>PLOL</sub> | $V_{OD} = 200 \text{ mV}$                    |                        | 175      |                        | ps    |
| Latch Minimum Pulse Width           | t <sub>PL</sub>                       | $V_{OD} = 200 \text{ mV}$                    |                        | 100      |                        | ps    |
| ADCMP580 (CML)                      |                                       |                                              |                        |          |                        |       |
| Latch Enable Input Range            |                                       |                                              | -0.8                   |          | 0                      | V     |
| Latch Enable Input Differential     |                                       |                                              | 0.2                    | 0.4      | 0.5                    | V     |
| Latch Setup Time                    | ts                                    | V <sub>OD</sub> = 200 mV                     |                        | 95       |                        | ps    |
| Latch Hold Time                     | t <sub>H</sub>                        | $V_{OD} = 200 \text{ mV}$                    |                        | -90      |                        | ps    |
| ADCMP581 (NECL)                     |                                       |                                              |                        |          |                        |       |
| Latch Enable Input Range            |                                       |                                              | -1.8                   |          | +0.8                   | V     |
| Latch Enable Input Differential     |                                       |                                              | 0.2                    | 0.4      | 0.5                    | V     |
| Latch Setup Time                    | t <sub>s</sub>                        | V <sub>OD</sub> = 200 mV                     |                        | 70       |                        | ps    |
| Latch Hold Time                     | t <sub>H</sub>                        | $V_{OD} = 200 \text{ mV}$                    |                        | -65      |                        | ps    |
| ADCMP582 (PECL)                     |                                       |                                              |                        |          |                        | '     |
| Latch Enable Input Range            |                                       |                                              | V <sub>cco</sub> – 1.8 |          | $V_{\text{CCO}} - 0.8$ | V     |
| Latch Enable Input Differential     |                                       |                                              | 0.2                    | 0.4      | 0.5                    | V     |
| Latch Setup Time                    | <b>t</b> s                            | V <sub>OD</sub> = 200 mV                     |                        | 30       |                        | ps    |
| Latch Hold Time                     | tн                                    | V <sub>OD</sub> = 200 mV                     |                        | -25      |                        | ps    |
| DC OUTPUT CHARACTERISTICS           |                                       |                                              |                        |          |                        | -     |
| ADCMP580 (CML)                      |                                       |                                              |                        |          |                        |       |
| Output Impedance                    | Z <sub>OUT</sub>                      |                                              |                        | 50       |                        | Ω     |
| Output Voltage High Level           | V <sub>OH</sub>                       | 50 Ω to GND                                  | -0.10                  | 0        | 0.03                   | V     |
| Output Voltage Low Level            | V <sub>OL</sub>                       | 50 Ω to GND                                  | -0.50                  | -0.40    | -0.35                  | V     |
| Output Voltage Differential         |                                       | 50 Ω to GND                                  | 340                    | 395      | 450                    | mV    |
| ADCMP581 (NECL)                     |                                       |                                              |                        |          |                        |       |
| Output Voltage High Level           | V <sub>OH</sub>                       | 50 Ω to -2 V, T <sub>A</sub> = 125°C         | -0.99                  | -0.87    | -0.75                  | V     |
| Output Voltage High Level           | V <sub>OH</sub>                       | 50 Ω to $-2$ V, $T_A = 25$ °C                | -1.06                  | -0.94    | -0.82                  | V     |
| Output Voltage High Level           | V <sub>OH</sub>                       | 50 Ω to -2 V, T <sub>A</sub> = -55°C         | -1.11                  | -0.99    | -0.87                  | V     |
| Output Voltage Low Level            | V <sub>OL</sub>                       | 50 Ω to -2 V, T <sub>A</sub> = 125°C         | -1.43                  | -1.26    | -1.13                  | V     |
| Output Voltage Low Level            | V <sub>OL</sub>                       | $50 \Omega$ to $-2 V$ , $T_A = 25$ °C        | -1.50                  | -1.33    | -1.20                  | V     |
| Output Voltage Low Level            | Vol                                   | $50 \Omega$ to $-2 V$ , $T_A = -55$ °C       | -1.55                  | -1.38    | -1.25                  | V     |
| Output Voltage Differential         |                                       | 50 Ω to -2.0 V                               | 340                    | 395      | 450                    | mV    |

| VOH VOH VOH VOL VOL VOL                               | $ \begin{array}{l} Vcco = 3.3 \ V \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = 125 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = 25 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = -55 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = 25 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = -55 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = -55 ^{\circ} C \\ 50 \ \Omega \ to \ Vcco - 2 \ V, T_A = -55 ^{\circ} C \\ \end{array} $ | Vcco - 0.99<br>Vcco - 1.06<br>Vcco - 1.11<br>Vcco - 1.43<br>Vcco - 1.50<br>Vcco - 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vcco - 0.87<br>Vcco - 0.94<br>Vcco - 0.99<br>Vcco - 1.26<br>Vcco - 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vcco - 0.75<br>Vcco - 0.82<br>Vcco - 0.87<br>Vcco - 1.13 | V<br>V                                                |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Voh<br>Voh<br>Vol<br>Vol                              | $50 \Omega \text{ to V}_{CCO} - 2 \text{ V, T}_{A} = 25^{\circ}\text{C}$ $50 \Omega \text{ to V}_{CCO} - 2 \text{ V, T}_{A} = -55^{\circ}\text{C}$ $50 \Omega \text{ to V}_{CCO} - 2 \text{ V, T}_{A} = 125^{\circ}\text{C}$ $50 \Omega \text{ to V}_{CCO} - 2 \text{ V, T}_{A} = 25^{\circ}\text{C}$ $50 \Omega \text{ to V}_{CCO} - 2 \text{ V, T}_{A} = -55^{\circ}\text{C}$                                                                                 | Vcco - 1.06<br>Vcco - 1.11<br>Vcco - 1.43<br>Vcco - 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CCO</sub> - 0.94<br>V <sub>CCO</sub> - 0.99<br>V <sub>CCO</sub> - 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $V_{CCO} - 0.82$<br>$V_{CCO} - 0.87$                     | V                                                     |
| V <sub>OL</sub><br>V <sub>OL</sub><br>V <sub>OL</sub> | $\begin{array}{l} 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = -55 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = 125 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = 25 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = -55 ^{\circ} C \end{array}$                                                                                                                                                                                      | V <sub>CCO</sub> - 1.11<br>V <sub>CCO</sub> - 1.43<br>V <sub>CCO</sub> - 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>CCO</sub> – 0.99<br>V <sub>CCO</sub> – 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{\text{CCO}} - 0.87$                                  |                                                       |
| V <sub>OL</sub><br>V <sub>OL</sub><br>V <sub>OL</sub> | $\begin{array}{l} 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = -55 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = 125 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = 25 ^{\circ} C \\ 50 \ \Omega \ to \ V_{CCO} - 2 \ V, T_A = -55 ^{\circ} C \end{array}$                                                                                                                                                                                      | V <sub>CCO</sub> – 1.43<br>V <sub>CCO</sub> – 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CCO</sub> – 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | V                                                     |
| V <sub>OL</sub>                                       | 50 Ω to $V_{CCO}$ – 2 V, $T_A$ = 25°C<br>50 Ω to $V_{CCO}$ – 2 V, $T_A$ = -55°C                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>cco</sub> – 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vcco - 1 13                                              |                                                       |
| V <sub>OL</sub>                                       | 50 Ω to $V_{CCO}$ – 2 V, $T_A$ = 25°C<br>50 Ω to $V_{CCO}$ – 2 V, $T_A$ = -55°C                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vcco – 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          | V                                                     |
| V <sub>OL</sub>                                       | $50 \Omega$ to $V_{CCO} - 2 V$ , $T_A = -55$ °C                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>CCO</sub> – 1.20                                  | V                                                     |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>CCO</sub> – 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>CCO</sub> – 1.25                                  | V                                                     |
| ton                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450                                                      | mV                                                    |
| † <sub>BD</sub>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
| LPIJ                                                  | V <sub>OD</sub> = 500 mV                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | ps                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | ps/°C                                                 |
| _ , , , , , ,                                         | V <sub>OD</sub> = 500 mV, 5 V/ns                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       | 50 mV < V <sub>OD</sub> < 1.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       | 10 mV < V <sub>OD</sub> < 200m V                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       | 2 V/ns to 10 V/ns                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       | 100 ps to 5 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | ps/V                                                  |
| $BW_{FO}$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | GHz                                                   |
|                                                       | $t_R = t_F = 25 \text{ ps}, 20/80$                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
|                                                       | >50% output swing                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | Gbps                                                  |
| DJ                                                    | V <sub>OD</sub> = 500 mV, 5 V/ns<br>PRBS <sup>31</sup> – 1 NRZ, 5 Gbps                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
| DJ                                                    | V <sub>OD</sub> = 200 mV, 5 V/ns<br>PRBS <sup>31</sup> – 1 NRZ, 10 Gbps                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
| RJ                                                    | V <sub>OD</sub> = 200 mV, 5 V/ns, 1.25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | ps                                                    |
| $PW_{MIN}$                                            | $\Delta t_{PD} < 5 \text{ ps}$                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | ps                                                    |
| $PW_{MIN}$                                            | $\Delta t_{PD} < 10 \text{ ps}$                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
| $t_{R_r}$ $t_{F}$                                     | 20/80                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ps                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
| $V_{CCI}$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +5.5                                                     | V                                                     |
| $V_{\text{EE}}$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4.5                                                     | V                                                     |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
| I <sub>VCCI</sub>                                     | $V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to GND}$                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                        | mA                                                    |
| I <sub>VEE</sub>                                      | $V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to GND}$                                                                                                                                                                                                                                                                                                                                                                                                             | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -34                                                      | mA                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | mW                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
| Ivccı                                                 | $V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } -2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                        | mA                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mA                                                    |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mW                                                    |
| . 5                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                       |
| Vcco                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +50                                                      | ٧                                                     |
|                                                       | $V_{ccl} = +5.0 \text{ V}. 50 \text{ O to } V_{cco} - 2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mA                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mA                                                    |
|                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mA                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | mW                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 330                                                      | dB                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | dВ                                                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | dB<br>dB                                              |
|                                                       | DJ  RJ  PW <sub>MIN</sub> PW <sub>MIN</sub> t <sub>R</sub> , t <sub>F</sub> V <sub>CCI</sub> V <sub>EE</sub>                                                                                                                                                                                                                                                                                                                                                    | $V_{OD} = 500 \text{ mV}, 5 \text{ V/ns}$ $50 \text{ mV} < V_{OD} < 1.0 \text{ V}$ $10 \text{ mV} < V_{OD} < 200 \text{ mV}$ $2 \text{ V/ns to } 10 \text{ V/ns}$ $100 \text{ ps to } 5 \text{ ns}$ $1.0 \text{ V/ns}, 15 \text{ MHz}, V_{CM} = 0.0 \text{ V}$ $V_{OD} = 0.2 \text{ V}, -2 \text{ V} < V_{CM} < 3 \text{ V}$ $0.0 \text{ V to } 400 \text{ mV input}$ $t_R = t_F = 25 \text{ ps, } 20/80$ $>50\% \text{ output swing}$ $DJ \qquad V_{OD} = 500 \text{ mV}, 5 \text{ V/ns}$ $PRBS^{31} - 1 \text{ NRZ}, 5 \text{ Gbps}$ $DJ \qquad V_{OD} = 200 \text{ mV}, 5 \text{ V/ns}$ $PRBS^{31} - 1 \text{ NRZ}, 10 \text{ Gbps}$ $RJ \qquad V_{OD} = 200 \text{ mV}, 5 \text{ V/ns, } 1.25 \text{ GHz}$ $PW_{MIN} \qquad \Delta t_{PD} < 5 \text{ ps}$ $PW_{MIN} \qquad \Delta t_{PD} < 10 \text{ ps}$ $t_R, t_F \qquad 20/80$ $V_{CCI} \qquad V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to GND}$ $P_D \qquad 50 \Omega \text{ to GND}$ $I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } -2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } -2 \text{ V}$ $V_{CCO} \qquad I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{CCO} \qquad I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{CCO} \qquad I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{CCO} \qquad I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $P_D \qquad 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $P_D \qquad 50 \Omega \text{ to } V_{CCO} -2 \text{ V}$ $V_{CCI} = 5.0 \text{ V} + 5\%$ $PSR_{VCCI} \qquad V_{CCI} = 5.0 \text{ V} + 5\%$ | $V_{OD} = 500 \text{ mV}, 5 \text{ V/ns}$ $50 \text{ mV} < V_{OD} < 1.0 \text{ V}$ $10 \text{ mV} < V_{OD} < 200 \text{ mV}$ $2 \text{ V/ns to } 10 \text{ V/ns}$ $100 \text{ ps to } 5 \text{ ns}$ $1.0 \text{ V/ns}, 15 \text{ MHz}, V_{CM} = 0.0 \text{ V}$ $V_{OD} = 0.2 \text{ V}, -2 \text{ V} < V_{CM} < 3 \text{ V}$ $0.0 \text{ V to } 400 \text{ mV} \text{ input}$ $t_R = t_F = 25 \text{ ps}, 20/80$ $> 50\% \text{ output swing}$ $DJ \qquad V_{OD} = 500 \text{ mV}, 5 \text{ V/ns}$ $PRBS^{31} - 1 \text{ NRZ}, 5 \text{ Gbps}$ $DJ \qquad V_{OD} = 200 \text{ mV}, 5 \text{ V/ns}$ $PRBS^{31} - 1 \text{ NRZ}, 10 \text{ Gbps}$ $RJ \qquad V_{OD} = 200 \text{ mV}, 5 \text{ V/ns}, 1.25 \text{ GHz}$ $PW_{MIN} \qquad \Delta t_{PD} < 5 \text{ ps}$ $PW_{MIN} \qquad \Delta t_{PD} < 5 \text{ ps}$ $PW_{MIN} \qquad \Delta t_{PD} < 10 \text{ ps}$ $t_R, t_F \qquad 20/80$ $V_{CCI} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to GND}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to GND}$ $I_{VCCI} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to GND}$ $I_{VCCI} \qquad V_{CEI} = +5.0 \text{ V}, 50 \Omega \text{ to } -2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } -2 \text{ V}$ $V_{DE} \qquad V_{CCO} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{CCO} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{CCO} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{CCO} \qquad V_{CCI} = +5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{CE} \qquad V_{CEI} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V}, 50 \Omega \text{ to } V_{CCO} - 2 \text{ V}$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V} + 5\%$ $V_{EE} \qquad V_{EE} = -5.0 \text{ V} + 5\%$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

<sup>&</sup>lt;sup>1</sup> Equivalent input bandwidth assumes a simple first-order input response and is calculated with the following formula:  $BW_{EQ} = 0.22/(tr_{COMP}^2 - tr_{N}^2)$ , where  $tr_{N}$  is the 20/80 transition time of a quasi-Gaussian input edge applied to the comparator input and  $tr_{COMP}$  is the effective transition time digitized by the comparator.

### **TIMING INFORMATION**

Figure 2 shows the ADCMP580/ADCMP581/ADCMP582 compare and latch timing relationships. Table 2 provides the definitions of the terms shown in the figure.

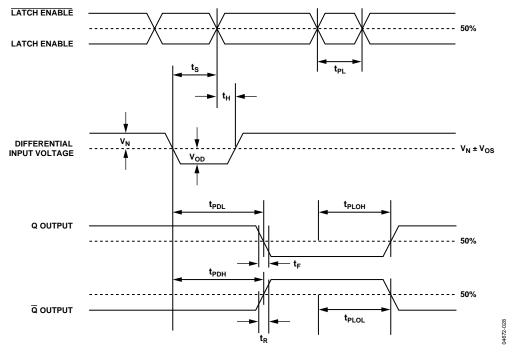



Figure 2. Comparator Timing Diagram

**Table 2. Timing Descriptions** 

| Symbol                   | Timing                            | Description                                                                                                                                                        |
|--------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>t</b> PDH             | Input to Output High Delay        | Propagation delay measured from the time the input signal crosses the reference (± the input offset voltage) to the 50% point of an output low-to-high transition. |
| t <sub>PDL</sub>         | Input to Output Low Delay         | Propagation delay measured from the time the input signal crosses the reference (± the input offset voltage) to the 50% point of an output high-to-low transition. |
| <b>t</b> <sub>PLOH</sub> | Latch Enable to Output High Delay | Propagation delay measured from the 50% point of the latch enable signal low-to-high transition to the 50% point of an output low-to-high transition.              |
| <b>t</b> <sub>PLOL</sub> | Latch Enable to Output Low Delay  | Propagation delay measured from the 50% point of the latch enable signal low-to-high transition to the 50% point of an output high-to-low transition.              |
| tн                       | Minimum Hold Time                 | Minimum time after the negative transition of the latch enable signal that the input signal must remain unchanged to be acquired and held at the outputs.          |
| <b>t</b> <sub>PL</sub>   | Minimum Latch Enable Pulse Width  | Minimum time that the latch enable signal must be high to acquire an input signal change.                                                                          |
| <b>t</b> s               | Minimum Setup Time                | Minimum time before the negative transition of the latch enable signal that an input signal change must be present to be acquired and held at the outputs.         |
| t <sub>R</sub>           | Output Rise Time                  | Amount of time required to transition from a low to a high output as measured at the 20% and 80% points.                                                           |
| t <sub>F</sub>           | Output Fall Time                  | Amount of time required to transition from a high to a low output as measured at the 20% and 80% points.                                                           |
| $V_N$                    | Normal Input Voltage              | Difference between the input voltages $V_P$ and $V_N$ for output true.                                                                                             |
| $V_{\text{OD}}$          | Voltage Overdrive                 | Difference between the input voltages $V_P$ and $V_N$ for output false.                                                                                            |

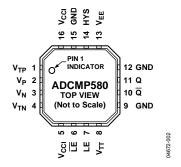
### **ABSOLUTE MAXIMUM RATINGS**

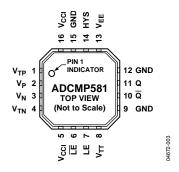
Table 3.

| Rating           |
|------------------|
|                  |
| -0.5 V to +6.0 V |
| -6.0 V to +0.5 V |
| -0.5 V to +6.0 V |
|                  |
| −3.0 V to +4.0 V |
| -2 V to +2 V     |
| −2.5 V to +5.5 V |
|                  |
| −5.5 V to +0.5 V |
| 1 mA             |
|                  |
| –25 mA           |
| −40 mA           |
| –40 mA           |
|                  |
| −40°C to +125°C  |
| 125°C            |
| −65°C to +150°C  |
|                  |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### THERMAL CONSIDERATIONS


The ADCMP580/ADCMP581/ADCMP582 LFCSP 16-lead package option has a  $\theta_{JA}$  (junction-to-ambient thermal resistance) of 70°C/W in still air.


#### **ESD CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



# PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS





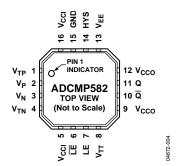



Figure 3. ADCMP580 Pin Configuration

Figure 4. ADCMP581 Pin Configuration

Figure 5. ADCMP582 Pin Configuration

**Table 4. Pin Function Descriptions** 

| Pin No.             | Mnemonic        | Description                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | V <sub>TP</sub> | Termination Resistor Return Pin for VP Input.                                                                                                                                                                                                                                                                                                                                  |
| 2                   | V <sub>P</sub>  | Noninverting Analog Input.                                                                                                                                                                                                                                                                                                                                                     |
| 3                   | V <sub>N</sub>  | Inverting Analog Input.                                                                                                                                                                                                                                                                                                                                                        |
| 4                   | V <sub>TN</sub> | Termination Resistor Return Pin for V <sub>N</sub> Input.                                                                                                                                                                                                                                                                                                                      |
| 5, 16               | Vccı            | Positive Supply Voltage.                                                                                                                                                                                                                                                                                                                                                       |
| 6                   | ĪĒ              | Latch Enable Input Pin, Inverting Side. In compare mode ( $\overline{\text{LE}} = \text{low}$ ), the output tracks changes at the input of the comparator. In latch mode ( $\overline{\text{LE}} = \text{high}$ ), the output reflects the input state just prior to the comparator being placed into latch mode. $\overline{\text{LE}}$ must be driven in complement with LE. |
| 7                   | LE              | Latch Enable Input Pin, Noninverting Side. In compare mode (LE = high), the output tracks changes at the input of the comparator. In latch mode (LE = low), the output reflects the input state just prior to the comparator being placed into latch mode. LE must be driven in complement with LE.                                                                            |
| 8                   | V <sub>TT</sub> | Termination Return Pin for the LE/LE Input Pins.                                                                                                                                                                                                                                                                                                                               |
|                     |                 | For the ADCMP580 (CML output stage), this pin should be connected to the GND ground.                                                                                                                                                                                                                                                                                           |
|                     |                 | For the ADCMP581 (ECL output stage), this pin should be connected to the –2 V termination potential.                                                                                                                                                                                                                                                                           |
|                     |                 | For the ADCMP582 (PECL output stage), this pin should be connected to the $V_{CCO}$ – 2 V termination potential.                                                                                                                                                                                                                                                               |
| 9, 12               | GND/Vcco        | Digital Ground Pin/Positive Logic Power Supply Terminal.                                                                                                                                                                                                                                                                                                                       |
|                     |                 | For the ADCMP580/ADCMP581, this pin should be connected to the GND pin.                                                                                                                                                                                                                                                                                                        |
|                     |                 | For the ADCMP582, this pin should be connected to the positive logic power V <sub>CCO</sub> supply.                                                                                                                                                                                                                                                                            |
| 10                  | Q               | Inverting Output. $\overline{Q}$ is logic low if the analog voltage at the noninverting input, $V_P$ , is greater than the analog voltage at the inverting input, $V_N$ , provided that the comparator is in compare mode. See the $LE/\overline{LE}$ descriptions (Pin 6 to Pin 7) for more information.                                                                      |
| 11                  | Q               | Noninverting Output. Q is logic high if the analog voltage at the noninverting input, $V_P$ , is greater than the <u>analog</u> voltage at the inverting input, $V_N$ , provided that the comparator is in compare mode. See the <u>LE/LE</u> descriptions (Pin 6 to Pin 7) for more information.                                                                              |
| 13                  | V <sub>EE</sub> | Negative Power Supply.                                                                                                                                                                                                                                                                                                                                                         |
| 14                  | HYS             | Hysteresis Control. Leave this pin disconnected for zero hysteresis. Connect this pin to the VEE supply with a suitably sized resistor to add the desired amount of hysteresis. Refer to Figure 9 for proper sizing of the HYS hysteresis control resistor.                                                                                                                    |
| 15                  | GND             | Analog Ground.                                                                                                                                                                                                                                                                                                                                                                 |
| Heat Sink<br>Paddle | N/C             | The metallic back surface of the package is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired.                                              |

### TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{\text{CCI}}$  = +5.0 V,  $V_{\text{EE}}$  = -5.0 V,  $V_{\text{CCO}}$  = +3.3 V,  $T_{\text{A}}$  = 25°C, unless otherwise noted.

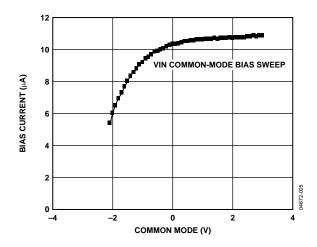



Figure 6. Bias Current vs. Common-Mode Voltage

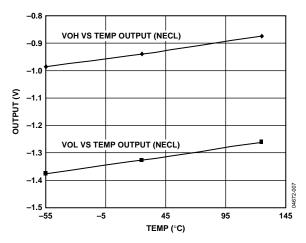



Figure 7. ADCMP581 Output Voltage vs. Temperature

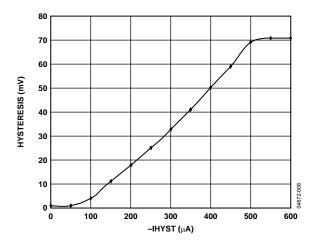



Figure 8. Hysteresis vs. –IHYST

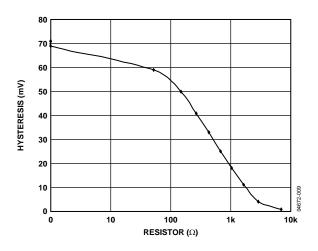



Figure 9. Hysteresis vs. R<sub>HYS</sub> Control Resistor

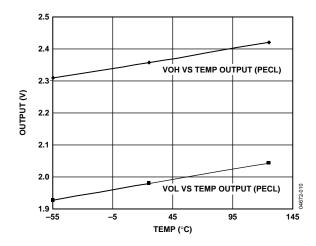



Figure 10. ADCMP582 Output Voltage vs. Temperature

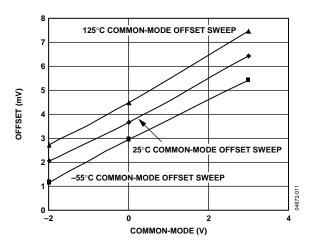



Figure 11. A Typical VOS vs. Common- Mode Voltage

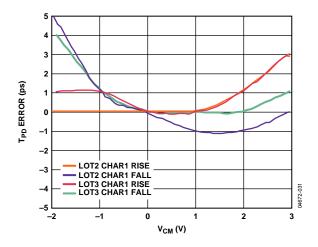



Figure 12. ADCMP580 Prop Delay vs. Common-Mode Voltage

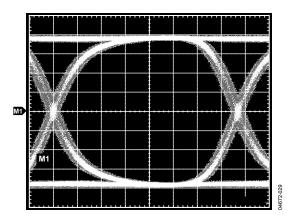



Figure 13. ADCMP580 Eye Diagram at 7.5 Gbps

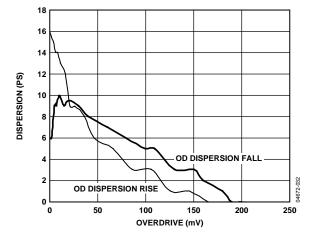



Figure 14. Dispersion vs. Overdrive

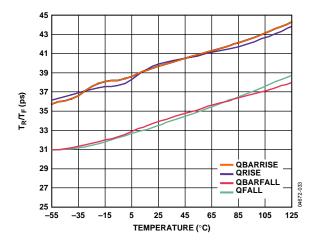



Figure 15. ADCMP581  $T_R/T_F$  vs. Temperature

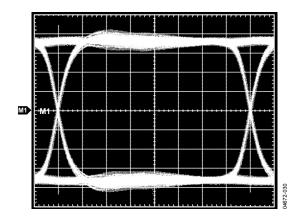



Figure 16. ADCMP582 Eye Diagram at 2.5 Gbps

### TYPICAL APPLICATION CIRCUITS

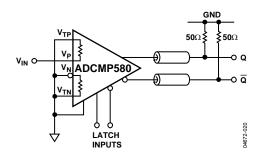



Figure 17. Zero-Crossing Detector with CML Outputs

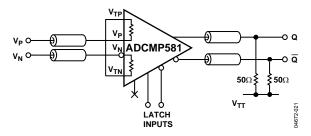



Figure 18. LVDS to a 50  $\Omega$  Back-Terminated (RS) ECL Receiver

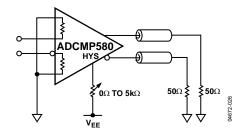



Figure 19. Adding Hysteresis Using the HYS Control

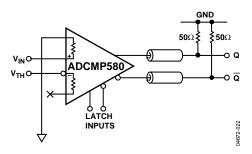



Figure 20. Comparator with -2 to +3 V Input Range

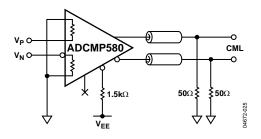



Figure 21. Disabling the Latch Feature on the ADCMP580

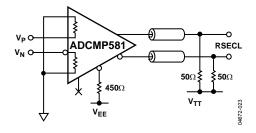



Figure 22. Disabling the Latch Feature on the ADCMP581

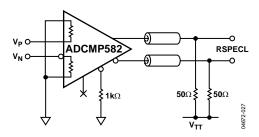



Figure 23. Disabling the Latch Feature on the ADCMP582

#### APPLICATION INFORMATION

#### POWER/GROUND LAYOUT AND BYPASSING

The ADCMP58x family of comparators is designed for very high speed applications. Consequently, high speed design techniques must be used to achieve the specified performance. It is critically important to use low impedance supply planes, particularly for the negative supply ( $V_{\rm EE}$ ), the output supply plane ( $V_{\rm CCO}$ ), and the ground plane (GND). Individual supply planes are recommended as part of a multilayer board. Providing the lowest inductance return path for the switching currents ensures the best possible performance in the target application.

It is also important to adequately bypass the input and output supplies. A 1  $\mu F$  electrolytic bypass capacitor should be placed within several inches of each power supply pin to ground. In addition, multiple high quality 0.1  $\mu F$  bypass capacitors should be placed as close as possible to each of the  $V_{\rm EE}, V_{\rm CCI}$ , and  $V_{\rm CCO}$  supply pins and should be connected to the GND plane with redundant vias. High frequency bypass capacitors should be carefully selected for minimum inductance and ESR. Parasitic layout inductance should be strictly avoided to maximize the effectiveness of the bypass at high frequencies.

#### **ADCMP58x FAMILY OF OUTPUT STAGES**

Specified propagation delay dispersion performance is achieved by using proper transmission line terminations. The outputs of the ADCMP580 family comparators are designed to directly drive 400 mV into 50  $\Omega$  cable or microstrip/stripline transmission lines terminated with 50  $\Omega$  referenced to the proper return. The CML output stage is shown in the simplified schematic diagram in Figure 24. Each output is back-terminated with 50  $\Omega$  for best transmission line matching. The outputs of the ADCMP581/ADCMP582 are illustrated in Figure 25; they should be terminated to -2 V for ECL outputs of ADCMP581 and V<sub>CCO</sub> - 2 V for PECL outputs of ADCMP582. As an alternative, Thevenin equivalent termination networks may also be used. If these high speed signals must be routed more than a centimeter, then either microstrip or stripline techniques are required to ensure proper transition times and to prevent excessive output ringing and pulse width-dependent propagation delay dispersion.

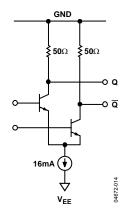



Figure 24. Simplified Schematic Diagram of the ADCMP580 CML Output Stage



Figure 25. Simplified Schematic Diagram of the ADCMP581/ADCMP582 ECL/PECL Output Stage

#### **USING/DISABLING THE LATCH FEATURE**

The latch inputs (LE/ $\overline{\text{LE}}$ ) are active low for latch mode and are internally terminated with 50  $\Omega$  resistors to the V<sub>TT</sub> pin. When using the ADCMP580, V<sub>TT</sub> should be connected to ground. When using the ADCMP581, V<sub>TT</sub> should be connected to -2 V. When using the ADCMP582, V<sub>TT</sub> should be connected externally to V<sub>CCO</sub> -2 V, preferably with its own low inductance plane.

When using the ADCMP580/ADCMP582, the latch function can be disabled by connecting the  $\overline{LE}$  pin to  $V_{EE}$  with an external pull-down resistor and leaving the LE pin disconnected. To prevent excessive power dissipation, the resistor should be 1.5 k $\Omega$  for the ADCMP580 and 1 k $\Omega$  for the ADCMP582. When using the ADCMP581 comparators, the latch can be disabled by connecting the LE pin to GND with an external 450  $\Omega$  resistor and leaving the  $\overline{LE}$  pin disconnected. The idea is to create an approximate 0.5 V offset using the internal resistor as half of the voltage divider. The  $V_{TT}$  pin should be connected as recommended.

#### **OPTIMIZING HIGH SPEED PERFORMANCE**

As with any high speed comparator, proper design and layout techniques are essential to obtaining the specified performance. Stray capacitance, inductance, inductive power, and ground impedances or other layout issues can severely limit performance and can cause oscillation. Discontinuities along input and output transmission lines can also severely limit the specified pulse width dispersion performance.

For applications in a 50  $\Omega$  environment, input and output matching have a significant impact on data-dependent (or deterministic) jitter (DJ) and pulse width dispersion performance. The ADCMP58x family of comparators provides internal 50  $\Omega$  termination resistors for both  $V_P$  and  $V_N$  inputs. The return side for each termination is pinned out separately with the  $V_{TP}$  and  $V_{TN}$  pins, respectively. If a 50  $\Omega$  termination is desired at one or both of the  $V_P/V_N$  inputs, the  $V_{TP}$  and  $V_{TN}$ pins can be connected (or disconnected) to (from) the desired termination potential as appropriate. The termination potential should be carefully bypassed using ceramic capacitors as discussed previously to prevent undesired aberrations on the input signal due to parasitic inductance in the termination return path. If a 50  $\Omega$  termination is not desired, either one or both of the V<sub>TP</sub>/V<sub>TN</sub> termination pins can be left disconnected. In this case, the open pins should be left floating with no external pull downs or bypassing capacitors.

For applications that require high speed operation but do not have on-chip 50  $\Omega$  termination resistors, some reflections should be expected, because the comparator inputs can no longer provide matched impedance to the input trace leading up to the device. It then becomes important to back-match the drive source impedance to the input transmission path leading to the input to minimize multiple reflections. For applications in which the comparator is less than 1 cm from the driving signal source, the source impedance should be minimized. High source impedance in combination with parasitic input capacitance of the comparator could cause undesirable degradation in bandwidth at the input, thus degrading the overall response. It is therefore recommended that the drive source impedance should be no more than 50  $\Omega$  for best high speed performance.

# COMPARATOR PROPAGATION DELAY DISPERSION

The ADCMP58x family of comparators has been specifically designed to reduce propagation delay dispersion over a wide input overdrive range of 5 mV to 500 mV. Propagation delay dispersion is a change in propagation delays, which results from a change in the degree of overdrive or slew rate (how far or fast the input signal exceeds the switching threshold). The overall result is a higher degree of timing accuracy.

Propagation delay dispersion is a specification that becomes important in critical timing applications, such as data communication, automatic test and measurement, instrumentation, and event-driven applications, such as pulse spectroscopy, nuclear instrumentation, and medical imaging. Dispersion is defined as the variation in the overall propagation delay as the input overdrive conditions are changed (see Figure 26 and Figure 27). For the ADCMP58x family of comparators, dispersion is typically <25 ps, as the overdrive varies from 5 mV to 500 mV, and the input slew rate varies from 1 V/ns to 10 V/ns. This specification applies for both positive and negative signals, because the ADCMP58x family of comparators has almost equal delays for positive- and negative-going inputs.

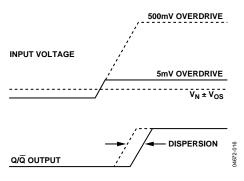



Figure 26. Propagation Delay—Overdrive Dispersion

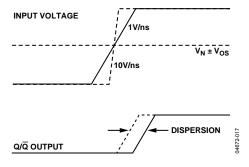



Figure 27. Propagation Delay—Slew Rate Dispersion

#### **COMPARATOR HYSTERESIS**

Adding hysteresis to a comparator is often desirable in a noisy environment or when the differential inputs are very small or slow moving. The transfer function for a comparator with hysteresis is shown in Figure 28. If the input voltage approaches the threshold from the negative direction, the comparator switches from a low to a high when the input crosses  $+V_{\rm H}/2$ . The new switching threshold becomes  $-V_{\rm H}/2$ . The comparator remains in the high state until the threshold  $-V_{\rm H}/2$  is crossed from the positive direction. In this manner, noise centered on 0 V input does not cause the comparator to switch states unless it exceeds the region bounded by  $\pm V_{\rm H}/2$ .

The customary technique for introducing hysteresis into a comparator uses positive feedback from the output back to the input. A limitation of this approach is that the amount of hysteresis varies with the output logic levels, resulting in hysteresis that is not symmetric about the threshold. The external feedback network can also introduce significant parasitics that reduce high speed performance and can even reduce overall stability in some cases.

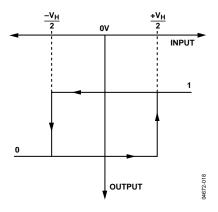
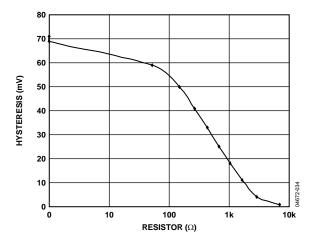


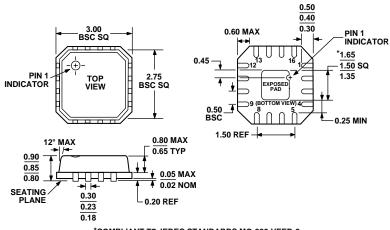

Figure 28. Comparator Hysteresis Transfer Function

The ADCMP58x family of comparators offers a programmable hysteresis feature that can significantly improve the accuracy and stability of the desired hysteresis. By connecting an external pull-down resistor from the HYS pin to  $V_{\text{EE}}$ , a variable amount of hysteresis can be applied. Leaving the HYS pin disconnected disables the feature, and hysteresis is then less than 1 mV, as specified. The maximum range of hysteresis that can be applied by using this method is approximately  $\pm 25$  mV.

Figure 29 illustrates the amount of applied hysteresis as a function of external resistor value. The advantage of applying hysteresis in this manner is improved accuracy, stability, and reduced component count. An external bypass capacitor is not required on the HYS pin and it would likely degrade the jitter performance of the device.

The hysteresis pin may also be driven by a current source. It is biased approximately 400 mV above  $V_{EE}$  and has an internal series resistance of approximately 600  $\Omega$ .





Figure 29. Comparator Hysteresis vs. R<sub>HYS</sub> Control Resistor

#### MINIMUM INPUT SLEW RATE REQUIREMENT

As with many high speed comparators, a minimum slew rate requirement must be met to ensure that the device does not oscillate as the input signal crosses the threshold. This oscillation is due in part to the high input bandwidth of the comparator and the feedback parasitics inherent in the package. A minimum slew rate of 50 V/ $\mu$ s should ensure clean output transitions from the ADCMP58x family of comparators.

The slew rate may be too slow for other reasons. The extremely high bandwidth of these devices means that broadband noise can be a significant factor when input slew rates are low. There is  $120~\mu V$  of thermal noise generated over the comparator's bandwidth by the two  $50~\Omega$  terminations at room temperature. With a slew rate of only  $50~V/\mu s$ , the inputs will be inside this noise band for over 2~ps, rendering the comparator's jitter performance of 200~fs irrelevant. Raising the slew rate of the input signal and/or reducing the bandwidth over which that resistance is seen at the input can greatly reduce jitter. We do not characterize the devices this way, but simply bypassing a reference input close to the package can reduce jitter 30% in low slew rate applications.

### **OUTLINE DIMENSIONS**



\*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2 EXCEPT FOR EXPOSED PAD DIMENSION.

Figure 30. 16-Lead Lead Frame Chip Scale Package [LFCSP\_VQ] (CP-16-3) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| M I I            | T                 | D 1 D 1 11          | D 1 0 1        | D !:     |
|------------------|-------------------|---------------------|----------------|----------|
| Model            | Temperature Range | Package Description | Package Option | Branding |
| ADCMP580BCP-WP   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO7      |
| ADCMP580BCP-R2   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO7      |
| ADCMP580BCP-RL7  | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO7      |
| ADCMP581BCP-WP   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO9      |
| ADCMP581BCP-R2   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO9      |
| ADCMP581BCP-RL7  | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GO9      |
| ADCMP582BCP-WP   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GOB      |
| ADCMP582BCP-R2   | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GOB      |
| ADCMP582BCP-RL7  | -40°C to +125°C   | 16-LEAD LFCSP-VQ    | CP-16-3        | GOB      |
| EVAL-ADCMP580BCP |                   | Evaluation Board    |                |          |
| EVAL-ADCMP581BCP |                   | Evaluation Board    |                |          |
| EVAL-ADCMP582BCP |                   | Evaluation Board    |                |          |

# **NOTES**

| A | $\mathbf{n}$ | A I | A # |   |    | ^ | ^ | / A | n | • |      | ın |    | Λ. | •  | / A |    | • |     |    |   |   | ^ | ^ |
|---|--------------|-----|-----|---|----|---|---|-----|---|---|------|----|----|----|----|-----|----|---|-----|----|---|---|---|---|
| Δ |              |     | VI  | μ | 'n | X | ш | /A  | ш |   | ٠N   | MΡ | רי | X  |    | lΔ  | ш  |   | : N | /  | μ | ำ | х | 7 |
| п |              | u   | w   |   | u  | u | u | , , | ш |   | ,,,, |    | u  | u  | ., |     | ш. | u | л 1 | ,, |   | u | u | _ |

**Preliminary Technical Data** 

# **NOTES**