

TinyLogic[™] Low Voltage UHS SPDT Analog Switch /

2:1 Digital Multiplexer/Demultiplexer **General Description**

FAIRCHILD

NC7SB3157

Order

Number

SEMICONDUCTOR

The NC7SB3157 is a high performance, single-pole/double-throw (SPDT) Analog Switch / 2:1 Digital Multiplexer/ Demultiplexer from Fairchild's Ultra High Speed Series of TinyLogic™. The device is fabricated with advanced submicron CMOS technology to achieve high speed enable and disable times and low on resistance. The break before make select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to 5.5V V_{CC} operating range. The control input tolerates voltages up to 5.5V independent of the V_{CC} operating range.

Features

Useful in both analog and digital applications

January 2000

Revised November 2000

- Space saving SC70 6-lead surface mount package
- Low on resistance; < 10Ω on typ @ 3.3V V_{CC}
- Broad V_{CC} operating range; 1.65V to 5.5V
- Power down high impedance control input
- Overvoltage tolerance of control input to 7.0V

AAA = Product Code Top Mark - see ordering code.

Note: Orientation of Top Mark determines Pin One location, Read the top

product code mark left to right, Pin One is the lower left pin (see diagram).

Pin Descriptions

A, B ₀ , B ₁ Data Ports	Pin Names	Description
	A, B ₀ , B ₁	Data Ports
S Control Input	S	Control Input

GND

Function Table

Input (S)

L н

H = HIGH Logic Level

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS500326

Function B₀ Connected to A

B1 Connected to A

L = LOW Logic Level

www.fairchildsemi.com

NC7SB3157 TinyLogic™ Low Voltage UHS SPDT Analog Switch / 2:1 Digital Multiplexer/Demultiplexer

Supplied As

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V_S) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Voltage (V _{IN}) (Note 2)	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ (I _{IK}) V _{IN} < 0V	–50 mA
DC Output Current (I _{OUT})	128 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 3)

Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to V _{CC}
Switch Input Voltage (VIN)	0V to V _{CC}
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
Control Input $V_{CC} = 2.3V - 3.6V$	0 ns/V to 10 ns/V
Control Input $V_{CC} = 4.5V - 5.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	٦	Γ _A = +25°	C	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
VIH	HIGH Level	1.65 – 1.95	0.75 V _{CC}			0.75 V _{CC}		V	
	Input Voltage	2.3 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v	
VIL	LOW Level	1.65 – 1.95			0.25 V _{CC}		0.25 V _{CC}	V	
	Input Voltage	2.3 – 5.5			0.3 V _{CC}		0.3 V _{CC}	v	
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1	μA	$0 \le V_{IN} \le 5.5V$
I _{OFF}	OFF State Leakage Current	1.65 – 5.5			±0.1		±1	μA	$0 \le A, B \le V_{CC}$
R _{ON}	Switch ON Resistance	4.5		3	7		7	Ω	$V_{IN} = 0V, I_{O} = 30 \text{ mA}$
	(Note 4)			5	12		12	Ω	$V_{IN} = 2.4V, I_O = -30 \text{ mA}$
				7	15		15	Ω	$V_{IN} = 4.5V$, $I_O = -30$ mA
		3.0		4	9		9	Ω	$V_{IN} = 0V, I_{O} = 24 \text{ mA}$
				10	20		20	Ω	$V_{IN} = 3V, I_O = -24 \text{ mA}$
		2.3		5	12		12	Ω	$V_{IN} = 0V, I_O = 8 \text{ mA}$
				13	30		30	Ω	$V_{IN} = 2.3V$, $I_O = -8$ mA
		1.65		6.5	20		20	Ω	$V_{IN} = 0V, I_O = 4 \text{ mA}$
				17	50		50	Ω	$V_{IN} = 1.65V, I_O = -4 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5			1		10	μA	$V_{IN} = V_{CC}$ or GND
	All Channels ON or OFF	5.5					10	μΑ	$I_{OUT} = 0$
	Analog Signal Range	V _{CC}	0		V _{CC}	0	V _{CC}	V	
R _{RANGE}	ON Resistance	4.5					25		$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	Over Signal Range	3.0					50	Ω	$I_A = -24 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 8)	2.3					100	32	$I_A = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		1.65					300		$I_A = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
ΔR_{ON}	ON Resistance Match	4.5		0.15					$I_A = -30 \text{ mA}, V_{Bn} = 3.15$
	Between Channels	3.0		0.2				Ω	$I_A = -24 \text{ mA}, V_{Bn} 2.1$
	(Note 4)(Note 5)(Note 6)	2.3		0.5				22	$I_A = -8 \text{ mA}, V_{Bn} = 1.6$
		1.65		0.5					I _A = -4 mA, V _{Bn} = 1.15

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}		T _A = +25°C	;	$T_A = -40^{\circ}$	C to +85°C	Units	Conditions
Cymbol	i urumeter	(V)	Min	Тур	Max	Min	Max	onno	Conditions
R _{flat}	On Resistance Flatness	5.0		6					$I_A = -30 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
	(Note 4)(Note 5)(Note 7)	3.3		12				Ω	$I_A = -24 \text{ mA}, 0 \leq V_{Bn} \leq V_{CC}$
		2.5		28				32	$I_A = -8 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$
		1.8		125					$I_A = -4 \text{ mA}, \ 0 \leq V_{Bn} \leq V_{CC}$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports).

Note 5: Parameter is characterized but not tested in production.

Note 6: ΔR_{ON} = R_{ON} max – R_{ON} min measured at identical V_{CC} , temperature and voltage levels.

Note 7: Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions. Note 8: Guaranteed by Design.

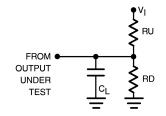
AC Electrical Characteristics

Cumb al	Parameter	V _{cc}		T _A = +25°0	C	$T_{A} = -40^{\circ}$	C to +85°C	Units	Conditions	Fig. No.
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PHL}	Propagation Delay	1.65 – 1.95								
t _{PLH}	Bus to Bus	2.3 – 2.7			1.2		1.2	ns	V _I = OPEN	Figures
	(Note 10)	3.0 - 3.6			0.8		0.8	115	VIEOPEN	1, 2
		4.5 – 5.5			0.3		0.3			
t _{PZL}	Output Enable Time	1.65 – 1.95	7		23	7	24			
t _{PZH}	Turn on Time	2.3 – 2.7	3.5		13	3.5	14	ns	$V_I = 2 \times V_{CC}$ for t_{PZL}	Figures
	(A to B _n)	3.0 – 3.6	2.5		6.9	2.5	7.6	115	$V_I = 2 x V_{CC}$ for t_{PZL} $V_I = 0V$ for t_{PZH}	1, 2
		4.5 – 5.5	1.7		5.2	1.7	5.7			
t _{PLZ}	Output Disable Time	1.65 – 1.95	3		12.5	3	13			
t _{PHZ}	Turn Off Time	2.3 – 2.7	2		7	2	7.5	ns	$V_I = 2 \times V_{CC}$ for t_{PLZ}	Figures
	(A Port to B Port)	3.0 – 3.6	1.5		5	1.5	5.3	115	$V_I = 0V$ for t_{PHZ}	1, 2
		4.5 – 5.5	0.8		3.5	0.8	3.8			
t _{B-M}	Break Before Make Time	1.65 – 1.95	0.5			0.5				
	(Note 9)	2.3 – 2.7	0.5			0.5		ns		Eiguro 2
		3.0 – 3.6	0.5			0.5		115		Figure 3
		4.5 – 5.5	0.5			0.5				
Q	Charge Injection (Note 9)	5.0		7				pC	$C_L = 0.1 \text{ nF}, V_{GEN} = 0 \text{V}$	Figure 4
		3.3		3				μC	$R_{GEN} = 0\Omega$	Figure 4
OIRR	Off Isolation (Note 11)	1.65 – 5.5		-57				dB	$R_L = 50\Omega$	Figure 5
								uБ	f = 10MHz	Figure 5
Xtalk	Crosstalk	1.65 – 5.5		-54				dB	$R_L = 50\Omega$	Figure 6
								uВ	f = 10MHz	i igule o
BW	-3dB Bandwidth	1.65 – 5.5		250				MHz	$RL = 50\Omega$	Figure 9

Note 9: Guaranteed by Design.

Note 10: This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Note 11: Off Isolation = $20 \log_{10} [V_A / V_{Bn}]$

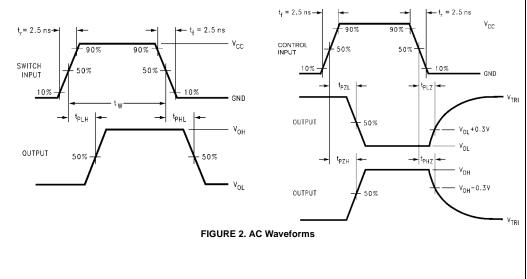

NC7SB3157

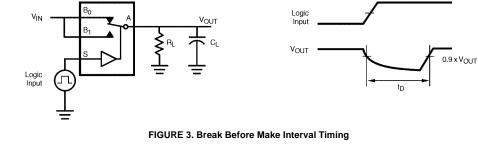
NC7SB3157

Capao	(Note 12)					
Symbol	Parameter	Тур	Max	Units	Conditions	Figures
CIN	Control Pin Input Capacitance	2.3		pF	$V_{CC} = 0V$	
C _{IO-B}	B Port Off Capacitance	6.5		pF	$V_{CC} = 5.0V$	Figure 7
C _{IOA-ON}	A Port Capacitance when switch is enabled	18.5		pF	$V_{CC} = 5.0V$	Figure 8
Nets 40. TA	0500 f 1 Mile Organization of the sector is a base of		e man desettere			

Note 12: TA = $+25^{\circ}$ C, f = 1 MHz, Capacitance is characterized but not tested in production.

AC Loading and Waveforms




Note: Input driven by 50Ω source terminated in 50Ω

Note: $\mathbf{C}_{\mathbf{L}}$ includes load and stray capacitance

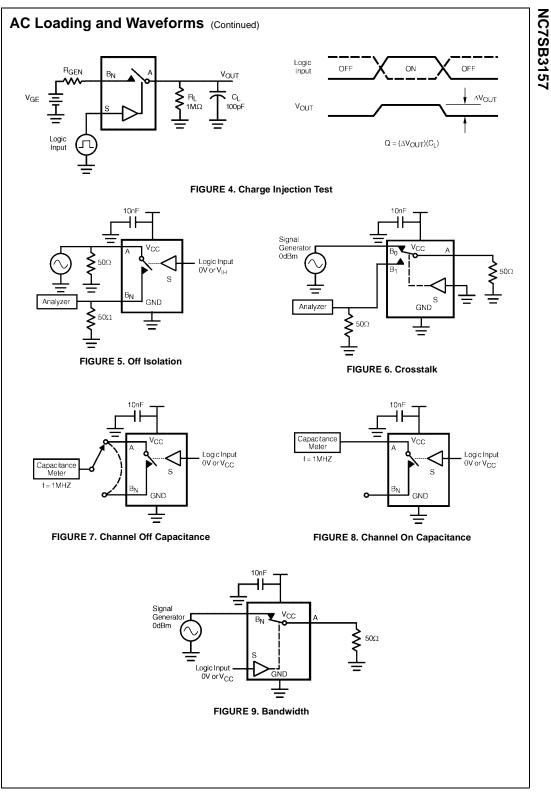
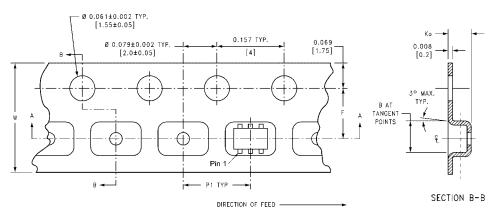
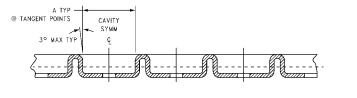

Note: Input PRR = 1.0 MHz; $t_W = 500 \mbox{ ns}$

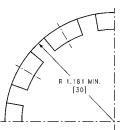
FIGURE 1. AC Test Circuit

4

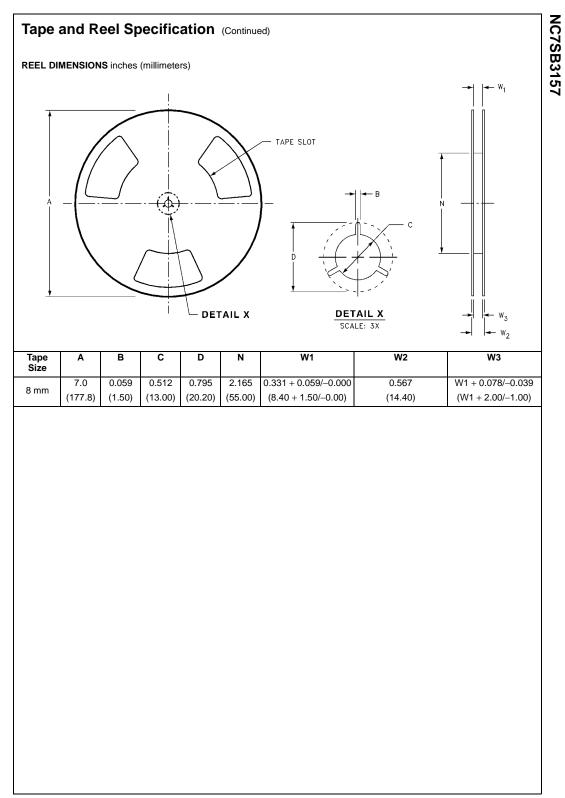

www.fairchildsemi.com



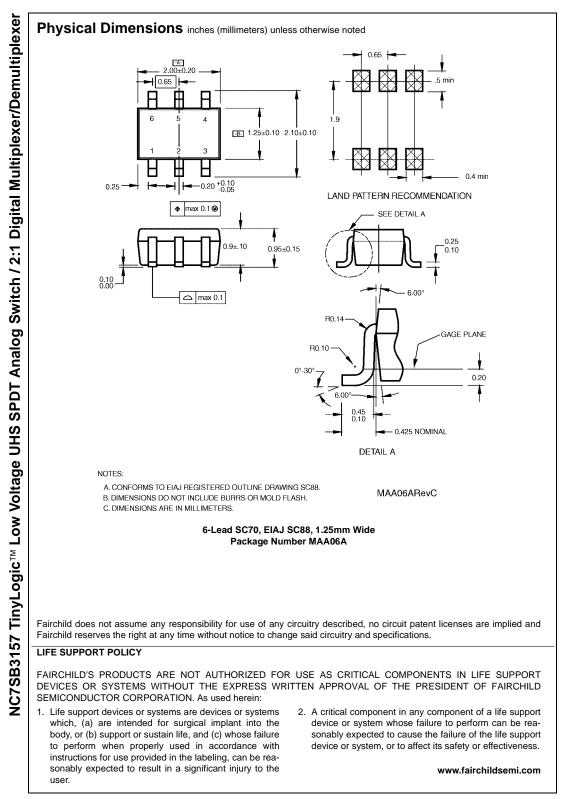
Tape and Reel Specification


TAPE FORMAT				
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)



SECTION A-A



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
5070-0	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
							-

www.fairchildsemi.com

