

FILTER BOARD

INSTRUCTIONS FOR USE OF THE FILTER BOARD FOR TRIPATH AMPLIFIERS

Technical Information

Revised March 2000

Reference: Excerpt from Application Note 4

Copyright 1997-2000 Tripath Technology, Inc. All Rights Reserved

Tripath recommends the use of an output filter to remove displaced harmonics generated by the switching amplifier, which are present outside of the audio band. This Filter Board allows users to test THD and THD+N with equipment that lacks a 20kHz or 30kHz internal filter. The filter board should be placed between the test equipment and the amplifier output as follows:

- > Attach a load across the output jacks of one channel of the amplifier board.
- > Connect the IN+ and IN- terminals of the filter board across the load.
- Connect the filter board's power terminals to a dual 15V power supply. Connect a 5V supply to drive the onboard gain changing relay circuit.
 - Note: The 5V supply is not needed when testing a TA1101B or TA2020-020.
- Connect the THD+N test equipment to the 20kHz or 30kHz filter output.
- > Apply power to the Tripath component and then the filter board.
- > Apply test signals to the Tripath component.
- > Make the measurements at the output of the Tripath filter board.

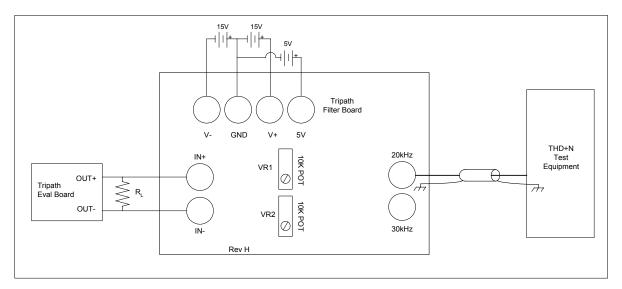


Figure 3: Recommended test setup for measuring a Class-T amplifier

There are two outputs on the filter card: 20kHz and 30kHz. The 20kHz output is the standard output. The 30kHz filter output has been included for compliance with the EIAJ testing standard. They will yield the similar results.

The filter board comes calibrated for use with the Tripath TA1101B or TA2020-020 amplifier. There are two variable resistors, VR1 and VR2, that the user may need to adjust when testing with TA101X based amplifiers:

- VR1 adjusts common mode rejection. This board comes calibrated from the factory, but if the input attenuation circuit is changed (when using power supplies greater than <u>+40V</u>), VR1 may need to be trimmed. To calibrate it, apply the same 1V rms sine wave in phase to both inputs. Look at the output with a scope and trim VR1 until the output is minimized.
- VR2 is a potentiometer that forms a voltage divider that allows the user to set the gain change trip point to maximize the performance of the filter board. The onboard relay allows for two different filter board gains depending on the input signal level at IN+. The first range is a fixed 6 dB attenuation caused by the combination of R100 and R102 on IN+, and R103 and R105 on IN-. The attenuation factor of the second range is determined by the additional parallel resistance seen by the inputs when the relay is closed (R101 on IN+, R104 on IN-). The value of VR2 determines when the filter board will switch from Range 1 to Range 2. Assuming a gate threshold of 2V for Q1, VR2 should be adjusted to about 1500 Ohms. This attenuation will cause the relay to trip (therefore switching the filter board gain) before the input op amp starts to overload.

Table 1 is used to choose an appropriate attenuation factor for the second gain range. The required attenuation factor is supply voltage dependant. The additional attenuation makes sure that the op amps on the filter board do not clip with large input signals. Vpp is the magnitude of positive supply in a traditional split supply, single ended amplifier configuration (i.e. TA010XA designs). See Table 1 for R101/R104 resistor value selection.

Amplifier Loaded Supply	Voltage Resistor Value (Ω)
Vpp <u><</u> 40∖	/ 49.9K*
40 < Vpp <u><</u> 50\	/ 24.9K
50 < Vpp <u><</u> 60\	/ 20.0K
60 < Vpp <u><</u> 70\	/ 15.0K
70 < Vpp <u><</u> 80\	/ 12.1K
80 < Vpp <u><</u> 90\	/ 10.0K

Table 1: R101/R104 Resistor Value Selection

*The filter board comes stuffed with 49.9K Ω for R101/R104.

When your analyzer's standard THD+N test is performed, the results will meet or exceed Tripath's published specs and will be valid for comparison with non-Class-T amplifiers. Typical THD+N performance for a Tripath TA1101B amplifier is shown below in Figure 4.

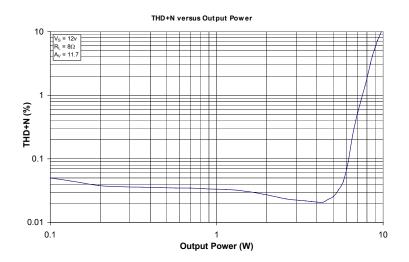
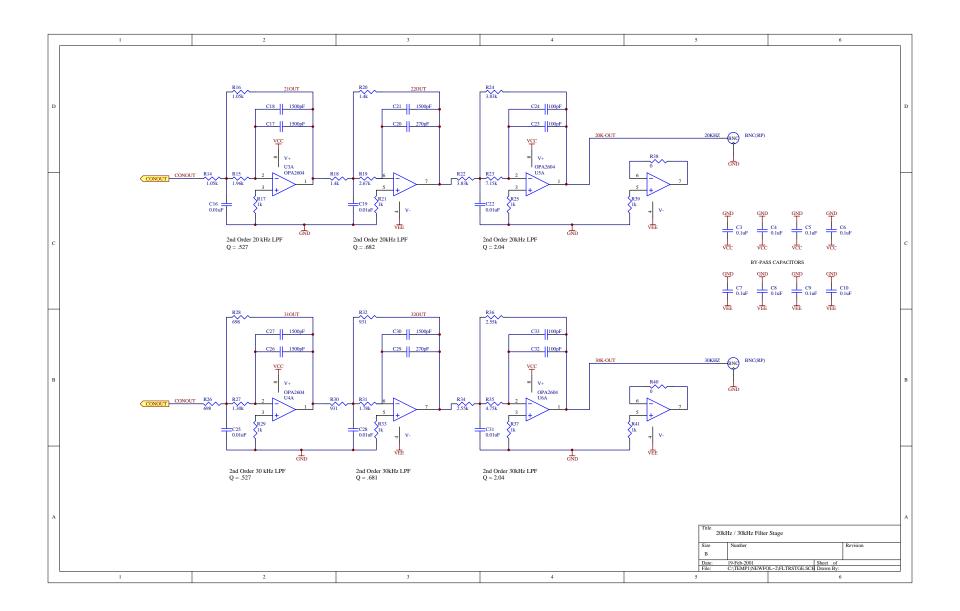
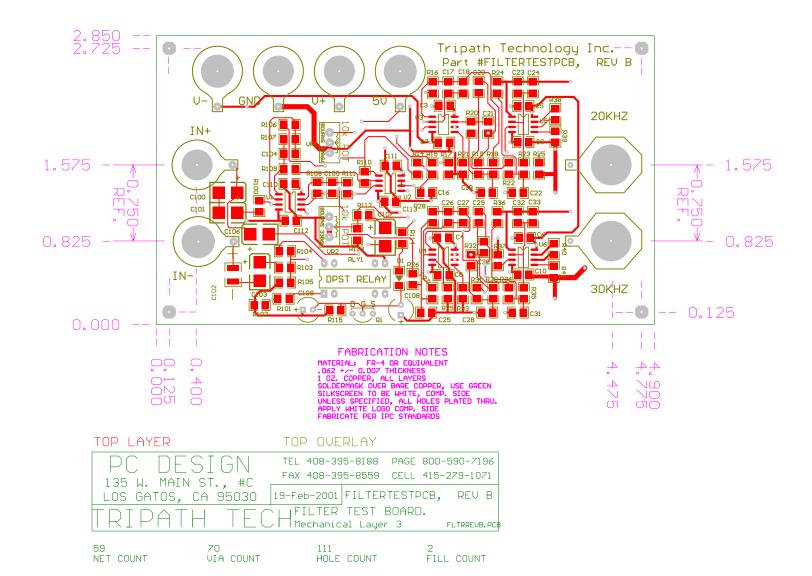


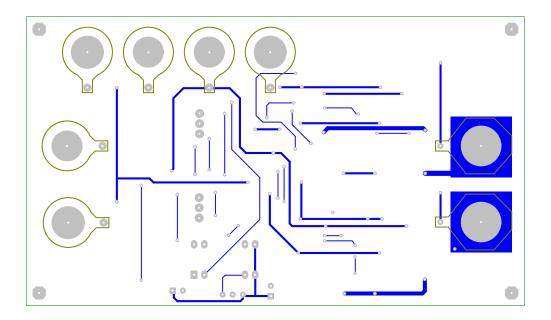
Figure 4: Typical THD+N versus Output Power Performance for TA1101B

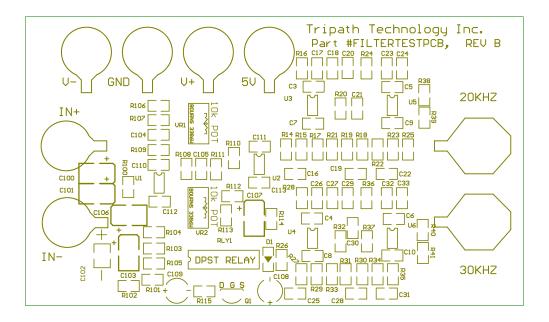

Contact Information

TRIPATH TECHNOLOGY, INC

```
2560 Orchard Parkway, San Jose, CA 95131
408.750.3000 - P
408.750.3001 - F
```


For more Sales Information, please visit us @ <u>www.tripath.com/cont s.htm</u> For more Technical Information, please visit us @ <u>www.tripath.com/data.htm</u>




Bill of Material for Amplifier Filter Board RevB

		Designator		
6	0 01115	R114 R38 R40 C16 C19 C22 C25 C28	1206	5% NDO
0	0.0141	C31	1200	50, 110
12	0.luF	C10 C110 C111 C112	1206	5%, NPO
	0.1701	C113 C3 C4 C5 C6 C7	2200	
		C8 C9		
2	1.05k		1206 1206	1%, METAL FILM
1	1.05k 1.30k	R27	1206	1%, METAL FILM
2	1.4k	R18 R20	1206	1%, METAL FILM
1	1.78k	R31	1206	1%, METAL FILM
1	1.78k 1.96k	R15	1206 1206	1%, METAL FILM
1	100k	R115	1206	
б		C104 C105 C23 C24		
	-	020 022		
1	100uF, 25V	C108	RADPO.10AX34	20%, ELECTROLYTIC
4	10k	R106 R109 R111 R112	1206	5%, NPO
2	10k POT	R106 R109 R111 R112 VR1 VR2	VR7	BOURNS
6	10uF, 25V	C100 C101 C102 C103	SM D Size	20%, TANTALUM
		C106 C107		
б	1500pF	C17 C18 C21 C26 C27	1206	5%, NPO
		C30		
8	1k	R17 R21 R25 R29 R33	1206	1%, METAL FILM
_		R37 R39 R41		
1	1N4148 luF, 25V 2.55k	Dl	1206	5%, NPO
1	luF, 25V	C109	RADPO.10AX34 1206 1206	20%, ELECTROLYTIC
2	2.55k	R34 R36	1206	1%, METAL FILM
1	2.67k		1200	1%, METAL FILM
2	270pF	C20 C29 Q1	1206 TO92	5%, NPO
1	2N7000	QI DOO DOA		FAIRCHILD
2	3.83K	Q1 R22 R24 R35	1206	1%, METAL FILM
1	4./5K	R35 R107 R108 R110	1206	1%, METAL FILM
3	4.99K	RIU/ RIU8 RIIU	1206	5%, NPO
б	49.9K	R100 R101 R102 R103	1200	5%, NPO
2	698	R104 R105 R26 R28	1206	1%, METAL FILM
2 1	090 7 1 Ele	R20 R20	1206	1%, METAL FILM 1%, METAL FILM
2	7.15K 021	R23 R30 R32 5V GND IN+ IN- V+ V-	1206	1%, METAL FILM 1%, METAL FILM
2 6	951 DANANA	KJU KJZ		10, MEIAL FILM *
2	BNC (PD)	2 א באזע איזיד מער אראט 2 א באזיד איזיד מער א	CBNC001	*
1	NS	20KHZ 30KHZ R113	1206	5%, NPO
1 6	0072604	U1 U2 U3 U4 U5 U6	20-8	STOR REC
1	RELAY-DPST		SU-8 RLYDPST	
-	VETAT DEDI			T T T T T T N

	BTM LAYER		BTM OVERLAY
PC DE 135 W. MAI			PAGE 800-590-7196 CELL 415-279-1071
LOS GATOS,	CA 95030	19-Feb-2001 FILTER	
TRIPAT	TH TE(- HILIER IESI - Mechanical Laye	BOARD. er 3 Fltrrevb.pcb
59 Net count	70 VIA COUNT	111 Hole count	2 FILL COUNT

		TOP OVERLAY	
	ESIGN in st., #c	TEL 408-395-8188 FAX 408-395-8559	PAGE 800-590-7196 CELL 415-279-1071
	, CA 95030	19-Feb-2001 FILTER	
TRIPA	TH TEC	HFILTER TEST E Mechanical Layer	30ARD. 3 FLTRREVB.PCE
59 NET COUNT	70 VIA COUNT	111 Hole count	2 FILL COUNT