

High Output Current High Speed Dual Operational Amplifier

Data Sheet

Features April 2003

- · High Output Drive
 - 18.8 Vpp differential output voltage, RL = 50Ω
 - 9.4 Vpp single-ended output voltage, RL = 25Ω
- High Output Current
 - ± 200mA @ Vo = 9.4 Vpp, Vs = 12V
- Low Distortion
 - 83dB SFDR (Spurious Free Dynamic Range)

 0 100KHz, Vo = 2Vpp, RL = 25Ω
- High Speed
 - 158MHz 3dB bandwidth (G=2)
 - 195V / μs slew rate
- Low Noise
 - 3.8nV / √Hz: input noise voltage
 - 2.7pA / √Hz: input noise current
- Low supply current: 7mA/amp
 - · Single-supply operation: 5V to 12V
- · High ESD (Electro-Static Discharge) immunity
 - · 4kV for Supply and Output pins
- · Low differential gain and phase
 - · 0.01% and -0.1deg

Applications

- · ADSL PCI modem cards
- xDSL external modem
- Line Driver

Ordering Information

ZL40162/DCA (tubes) 8 lead SOIC ZL40162/DCB (tape and reel) 8 lead SOIC

-40°C to +85°C

Description

The ZL40162 is a low cost voltage feedback opamp capable of driving signals to within 1V of the power supply rails. It features low noise and low distortion accompanied by a high output current which makes it ideally suited for the application as an xDSL line driver. The dual opamp can be connected as a differential line driver delivering signals up to 18.8Vpp swing into a 25Ω load, fully supporting the peak upstream power levels for upstream full-rate ADSL (Asymmetrical Digital Subscriber Line).

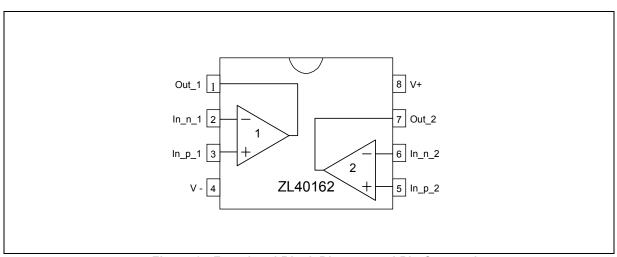


Figure 1 - Functional Block Diagram and Pin Connection

Application Notes

The ZL40162 is a high speed, high output current, dual operational amplifier with a high slew rate and low distortion. The device uses conventional voltage feedback for ease of use and more flexibility. These characteristics make the ZL40162 ideal for applications where driving low impedances of 25 to 100Ω such as xDSL and active filters.

The figure below shows a typical ADSL application utilising a 1:2 transformer, the feedback path provides a Gain = +2.

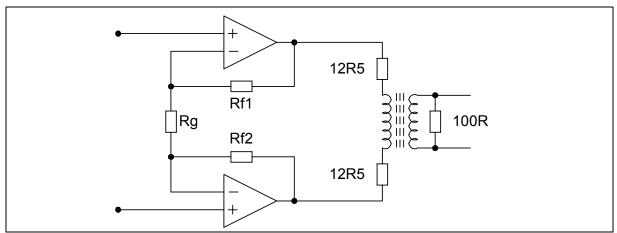


Figure 2 - A Typical ADSL Application

A class AB output stage allows the ZL40162 to deliver high currents to low impedance loads with low distortion while consuming low quiescent current.

Note: the high ESD immunity figure of 4kV may mean that in some designs fewer additional EMC protection components are needed thus reducing total system costs.

The ZL40162 is not limited to ADSL applications and can be used as a general purpose opamp configured with either inverting or non-inverting feedback. The figure below shows non-inverting feedback arrangement that has typically been used to obtain the data sheet specifications.

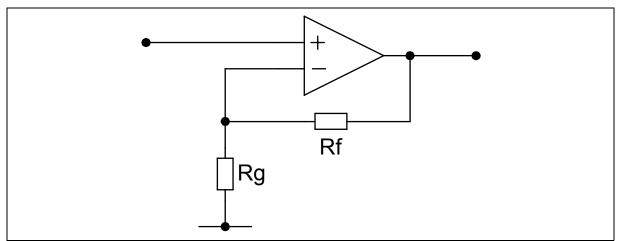


Figure 3 - A Non-Inverting Feedback Amplifier Example

Absolute Maximum Ratings - (See Note 1)

Parameter	Symbol	Min	Max	Units
Vin Differential	V _{IN}		±1.2	V
Output Short Circuit Protection	V _{OS/C}		See Apps Note in this data sheet	
Supply Voltage	V+, V-		±13.2	V
Voltage at Input Pins	$V_{(+IN)}, V_{(-IN)}$	(V-) -0.8	(V+) +0.8	V
Voltage at Output Pins	V _O		±5.5	V
ESD Protection (HBM Human Body Model) (See Note 2)		4	(Note 3)	kV
Storage Temperature		-55	+150	°C
Latch-up test		+/-100mA for 100ms	(Note 4)	
Supply transient test		20% pulse for 100ms	(Note 5)	

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Human body model, $1.5 \mathrm{k}\Omega$ in series with 100pF. Machine model, 200Ω in series with 100pF. 1.25kV between the pairs of +INA, -INA and +INB, -INB pins only. 4kV between supply pins, OUTA or OUTB pins and any input pins. Note 1:

Note 2:

Note 3: input pin.

+/-100mA applied to input and output pins to force the device to go into "latch-up". The device passes this test to JEDEC spec Note 4:

Note 5: Positive and Negative supply transient testing increases the supplies by 20% for 100ms.

Operating Ratings - (See Note 1)

Parameter	Symbol	Min	Max	Units
Supply Voltage	V+, V-	± 2.5	±6.5	V
Junction Temperature Range		-40	150	°C
Junction to Ambient Resistance	Rth(j-a)	150		°C 4 layer FR5 board
Junction to Case Resistance	Rth(j-c)	60		°C 4 layer FR5 board

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Electrical Characteristics - TA = 25°C, G = +2, Vs = \pm 6V, Rf = Rg = 510 Ω , RL = 100 Ω / 2pF; Unless otherwise specified

Symbol	Parameter	Conditions	Min (Note 1)	Typ (Note 2)	Max (Note 3)	Units	Test Type
Dynamic	Performance		I				
	-3dB Bandwidth	Vo = 200mVp-p		158		MHz	С
	-0.1dB Bandwidth	Vo = 200mVp-p		17		MHz	С
	Slew Rate	4V Step O/P, 10-90%		195		V/µs	С
	Rise and Fall Time	and Fall Time 4V Step O/P, 10-90%		16.4		ns	С
	Rise and Fall Time	200mV Step O/P, 10-90%		2.4		ns	С
	Differential Gain	NTSC, RL = 150Ω		0.01		%	С
	Differential Phase	NTSC, RL = 150Ω		-0.1		deg	С
Distortio	n and Noise Respons	se	I				1
	2 nd Harmonic Distortion	Vo = 8.4Vpp, f =100KHz,RL= 25Ω/2pF		-65.4		dBc	С
		Vo = 8.4Vpp, f =1MHz,RL = $100\Omega/2$ pF		-80.8		dBc	С
		Vo = 2Vpp, f =100kHz,RL= 25Ω/2pF		-93.1		dBc	С
		Vo = 2Vpp, f =1MHz,RL =100 Ω /2pF		-85.5		dBc	С
	3 rd Harmonic Distortion	Vo = 8.4Vpp, f =100KHz,RL=25Ω/2pF		-69.9		dBc	С
		Vo = 8.4Vpp, f =1MHz,RL =100Ω/2pF		-74.8		dBc	С
		Vo = 2Vpp, f =100KHz,RL=25Ω/2pF		-82.7		dBc	С
		Vo = 2Vpp, f =1MHz,RL=100 Ω /2pF		-71.8		dBc	С
MTPR	Multi-Tone Power	47.4375 KHz		-76		dBc	С
	Ratio	69 KHz		-74.5		dBc	С
		90.5625 KHz		-72		dBc	С
		112.125 KHz		-70		dBc	С
	Input Noise Voltage	f = 100KHz		3.8		nV/√Hz	С
	Input Noise Current	f = 100KHz		2.7		pA/√Hz	С
Input Ch	aracteristics	<u> </u>	l .	I	I	<u> </u>	<u> </u>
Vos	Input Offset Voltage	Tj = -40°C to 150°C	- 4.2	- 0.3	4.2	mV	Α

Symbol	Parameter	Conditions	Min (Note 1)	Typ (Note 2)	Max (Note 3)	Units	Test Type
lb	Input Bias Current	Tj = -40°C to 150°C		-10	-20	μΑ	Α
los	Input Offset Current	Tj = -40°C to 150°C	-2	-0.2	2	μΑ	Α
CMVR	Common Mode Voltage Range	Tj = -40°C to 150°C	- 4.9		4.9	V	Α
CMRR	Common Mode Rejection Ratio	Tj = -40°C to 150°C	70	79		dB	Α
Transfer	Characteristics		•				'
Avol	Voltage Gain	RL = 1k, Tj = -40°C to 150°C	4.7	10		V/mV	А
		RL = 25Ω , Tj = -40° C to 150° C	1.6	5.5			Α
	Output Swing	RL = 25Ω , Tj = -40° C to 150° C	- 4.5	± 4.7	4.5	V	А
	Output Swing	RL = 1k, Tj = -40°C to 150°C	- 5	± 5.1	5	V	Α
Isc	Output Current (Note 3)	•		1000		mA	В
Power S	upply		•				II.
Is	Supply Current / Amp	Tj = -40°C to 150°C		7	9	mA	Α
PSRR	Power Supply Rejection Ratio	Tj = -40°C to 150°C	73	81		dB	А

Note 1: The maximum power dissipation is a function of Tj(max), θJA and TA. The maximum allowable power dissipation at any ambient temperature is PD = (Tj(max) - TA)/ θJA. All numbers apply for packages soldered directly onto a PC board.

Note 2: Typical values represent the most likely parametric norm.

Note 3:

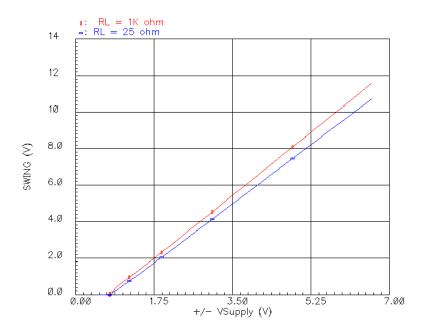
Test Types:
a. 100% tested at 25°C. Over temperature limits are set by characterisation or simulation.
b. Limits set by characterisation or simulation.
c. Typical value only for information.

 \pm 2.5V Electrical Characteristics - TA = 25°C, G = +2, Vs = \pm 2.5V, Rf = Rg = 510 Ω , RL = 100 Ω / 2pF; Unless otherwise specified.

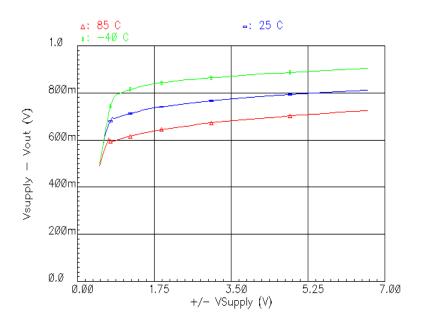
Symbol	Parameter	Conditions	Min (Note 1)	Typ (Note 2)	Max (Note 3)	Units	Test Type
Dynamic	Performance	,			-		
	-3dB Bandwidth			152.5		MHz	С
	-0.1dB Bandwidth			19		MHz	С
	Slew Rate	1V Step O/P, 10-90%		171		V/μs	С
	Rise and Fall Time	1V Step O/P, 10-90%		4.67		ns	С
	Rise and Fall Time	200mV Step O/P, 10-90%		2.15		ns	С
Distortio	n and Noise Respons	e					•
	2 nd Harmonic Distortion	Vo = $2Vpp,f = 100KHz$, RL = 25Ω		-92.5		dBc	С
		Vo = 2Vpp, f = 1MHz, RL = 100Ω		-85.4		dBc	С
	3 rd Harmonic Distortion	Vo = $2Vpp$, f = $100KHz$, RL = 25Ω		-84.4		dBc	С
		Vo = 2Vpp, f = 1MHz, RL = 100Ω		-72.7		dBc	С
Input Cha	aracteristics	,			-		1
Vos	Input Offset Voltage	Tj = -40°C to 150°C	- 4.2	- 0.3	4.2	mV	В
lb	Input Bias Current	Tj = -40°C to 150°C		- 10	-20	μΑ	В
CMVR	Common Mode Voltage Range		-1.55		1.55	V	В
CMRR	Common Mode Rejection Ratio	Tj = -40°C to 150°C	70	80		dB	В
Transfer	Characteristics						•
Avol	Voltage Gain	RL = 1k, Tj = -40°C to 150°C	5.5	10.7		V/mV	В
		RL = 25Ω, Tj = -40°C to 150°C	1.6	6			В
Output C	haracteristics						
	Output Swing	RL = 25Ω , Tj = -40° C to 150° C	-1.4	±1.48	1.4	V	В
		RL = 1k, Tj = -40°C to 150°C	-1.6	±1.65	1.6		В

Symbol	Parameter	Conditions N (No		Typ (Note 2)	Max (Note 3)	Units	Test Type
Power Supply							
Is	Supply Current/Amp	Tj = -40°C to 150°C		6.75	8.5	mA	Α
PSRR	Power Supply Tj = -40°C to 150°C Rejection Ratio		73	83		dB	В

The maximum power dissipation is a function of Tj(max), θJA and TA. The maximum allowable power dissipation at any ambient temperature is PD = $(Tj(max) - TA)/\theta JA$. All numbers apply for packages soldered directly onto a PC board.

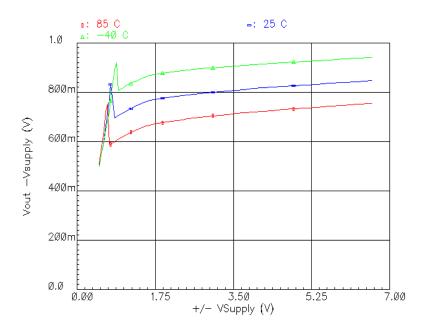

Note 2: Typical values represent the most likely parametric norm.

Note 3: Test Types:
a. 100% tested at 25°C. Over temperature limits are set by characterisation or simulation.
b. Limits set by characterisation or simulation.

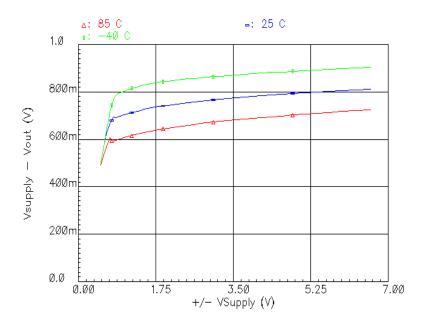

c. Typical value only for information.

Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Output Swing

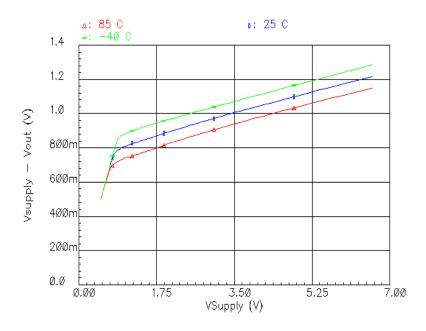


Positive Output Swing into $1k\Omega$

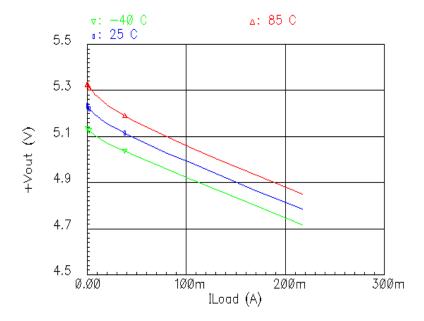


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Negative Output Swing into $1k\Omega$

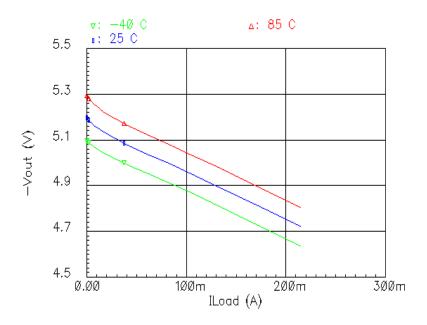


Positive Output Swing into $\mathbf{25}\Omega$

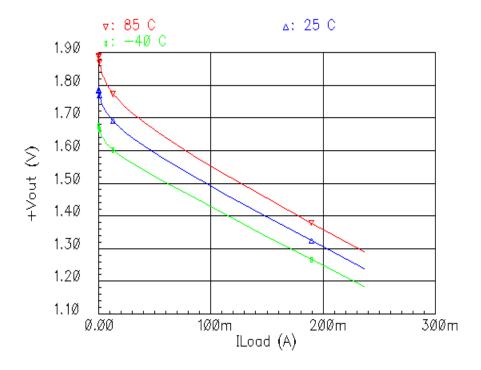


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Negative Output Swing into 25 Ω

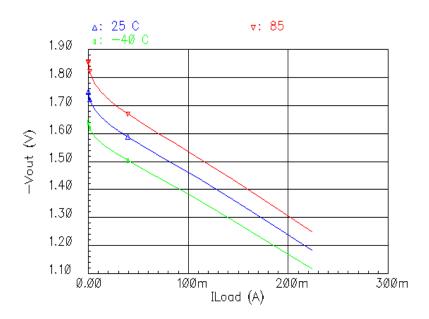


+Vout VS Iload

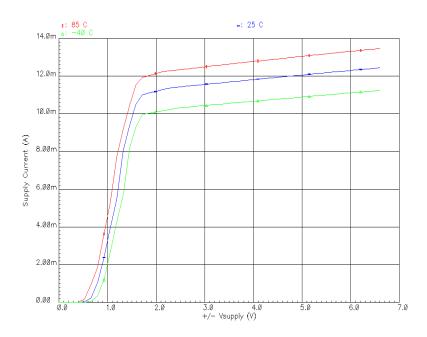


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

-Vout VS ILoad

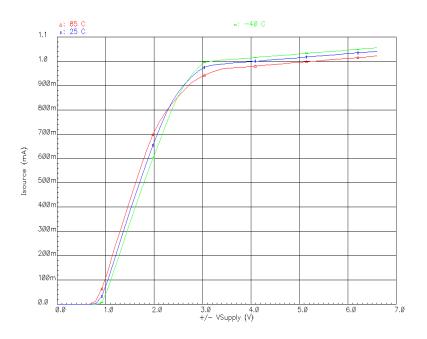


+Vout VS ILoad, Vs = ±2.5V

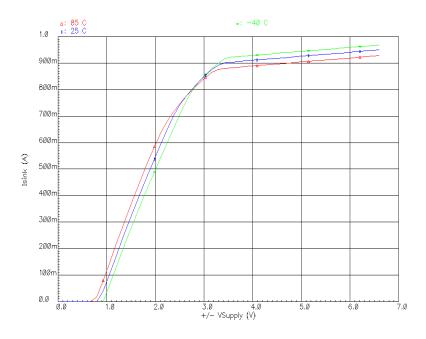


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

-Vout VS ILoad, Vs = ±2.5V

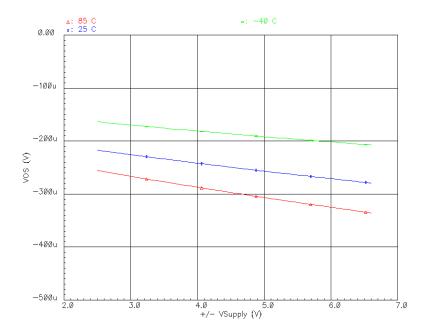


Supply Current VS. Supply Voltage

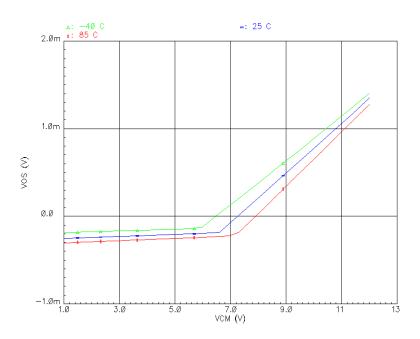


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Sourcing Current VS. Supply Voltage



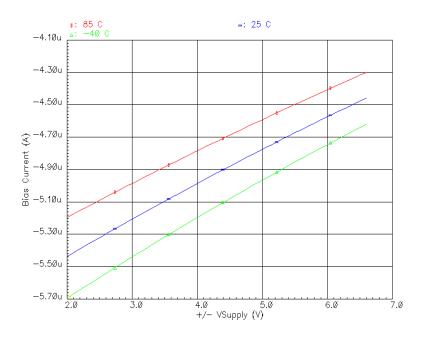
Sinking Current VS. Supply Voltage



Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

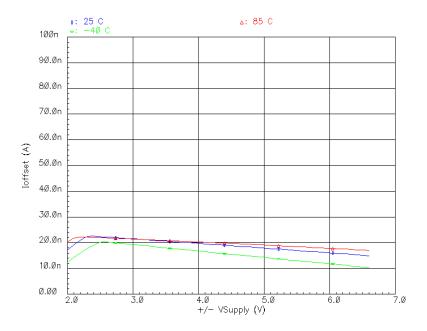
Vos VS. Vs

Vos VS. Vcm

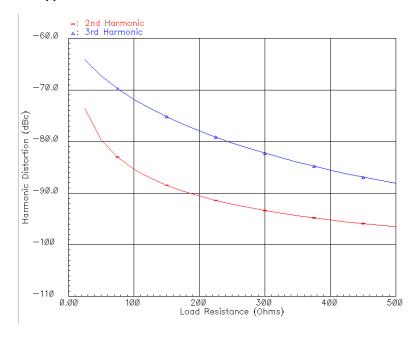


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Vos VS. Vcm, Vs = ±2.5V

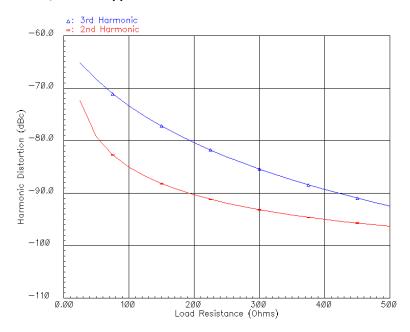


Bias Current VS. Vsupply

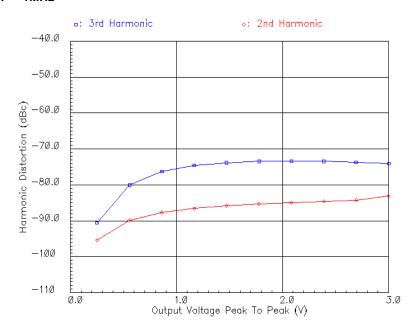


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Offset Current VS. Vsupply

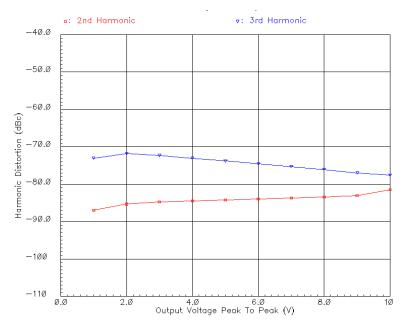


Harmonic Distortion VS. Load F = 1MHZ Vout = 2Vpp

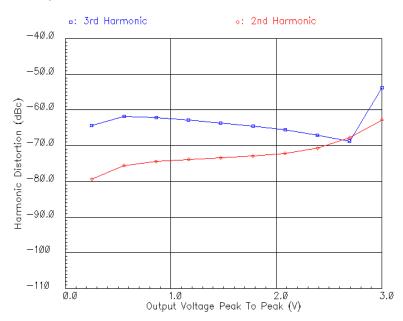


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Load Vs = ±2.5V, F = 1MHz, Vout = 2Vpp

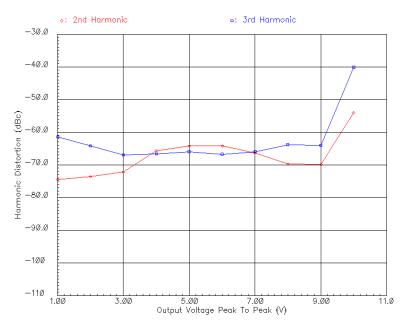


Harmonic Distortion VS. Output Voltage Vs = ±2.5V, F = 1MHz

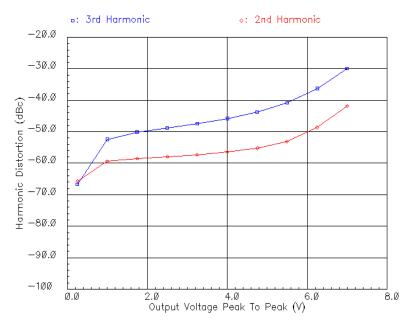


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Output Voltage F = 1MHz

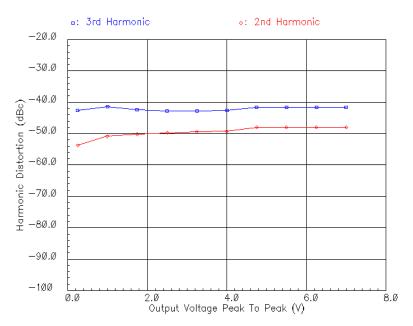


Harmonic Distortion VS. Output Voltage Vs = ± 2.5 V, F = 1MHz, RL = 25Ω

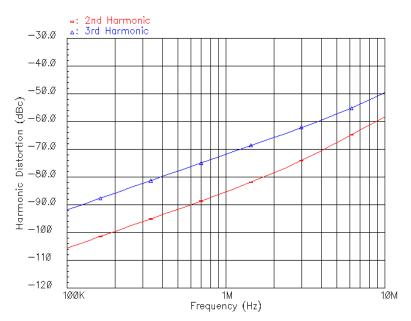


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Output Voltage F = 1MHz, RL = 25 Ω

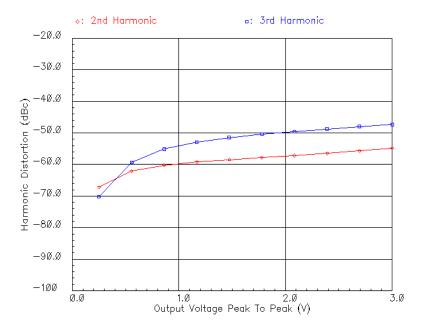


Harmonic Distortion VS. Output Voltage F = 10MHz

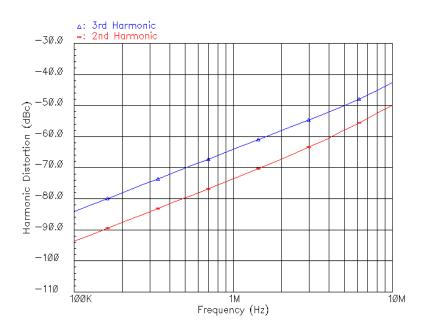


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Output Voltage F = 10MHz, RL = 25Ω

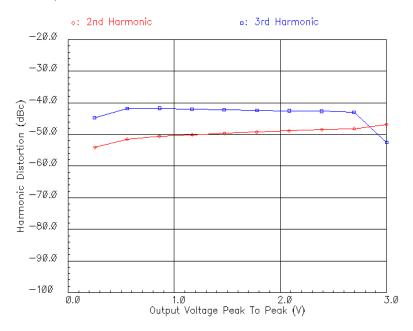


Harmonic Distortion VS. Frequency Vout = 2Vpp



Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

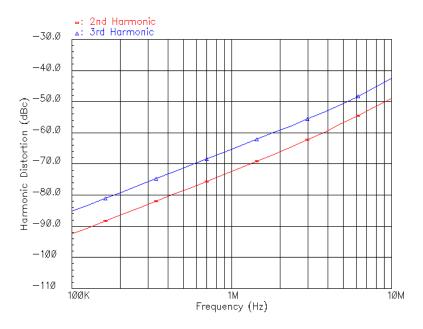
Harmonic Distortion VS. Output Voltage Vs =±2.5V, F = 10MHz



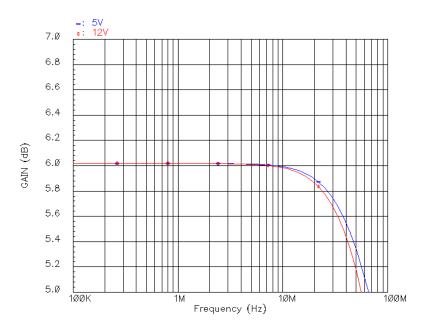
Harmonic Distortion VS. Frequency Vout = 2Vpp, RL = 25Ω

Typical Performance Characteristics At TA = 25°C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Output Voltage Vs =±2.5V, F = 10MHz, RL = 25 Ω

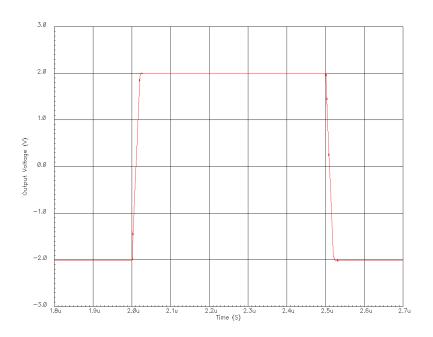


Harmonic Distortion VS. Frequency Vout = 2Vpp, Vs =±2.5V

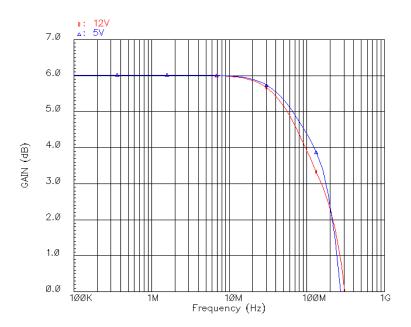


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Harmonic Distortion VS. Frequency Vout = 2Vpp, Vs = ± 2.5 V, RL = 25Ω

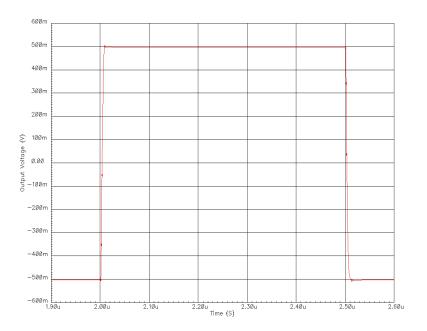


Frequency Response

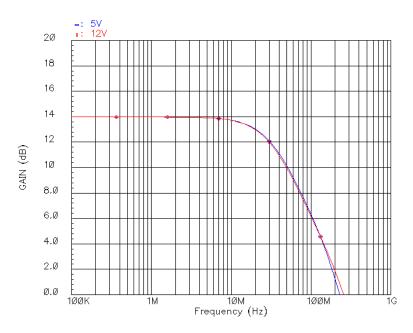


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Pulse Response

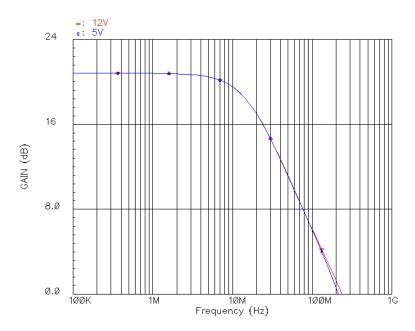


Frequency Response

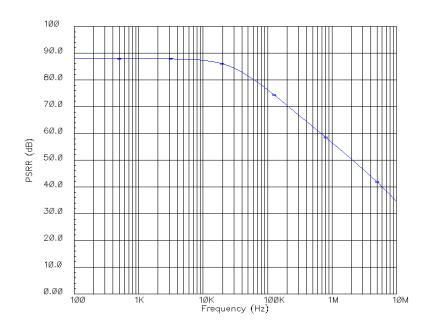


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Pulse Response, Vs = ±2.5V

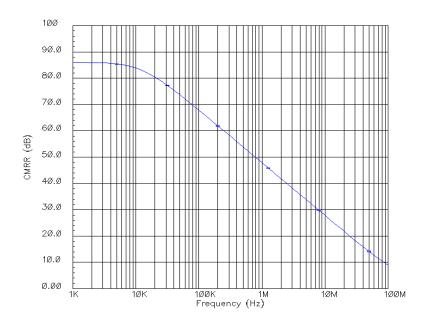


Frequency Response Gain = +5

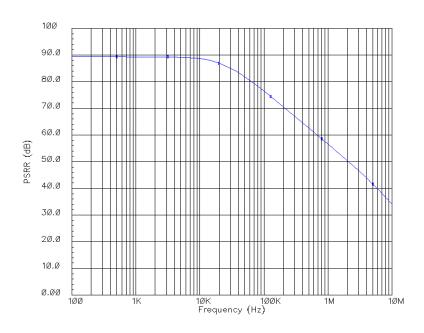


Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Frequency Response Gain = +10



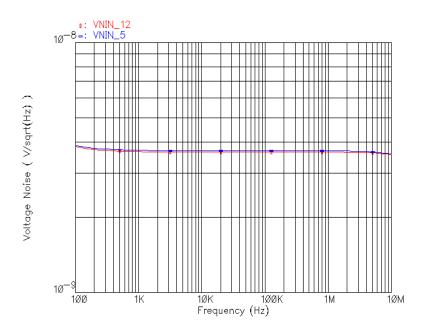
PSRR VS. Frequency



Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

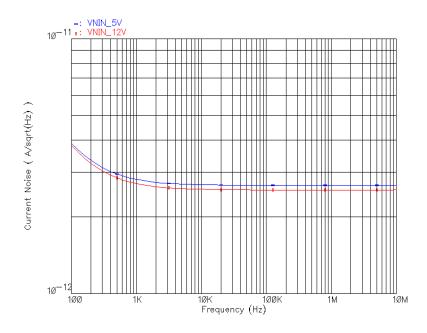
CMRR VS. Frequency

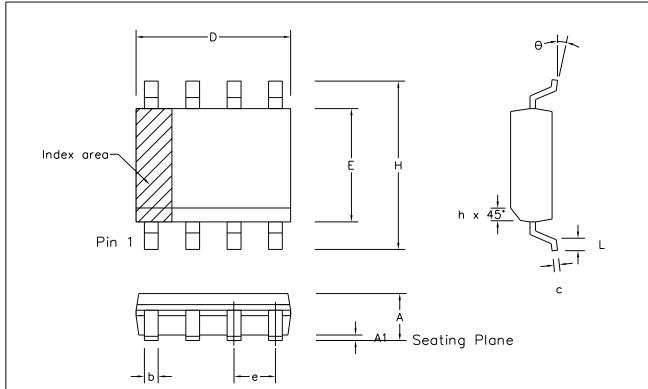
PSRR VS. Frequency Vs = ±2.5V



Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

CMRR VS. Frequency Vs = ±2.5V




Noise Voltage VS. Frequency

Typical Performance Characteristics At TA = 25° C, RF = RG = 510, gain = +2, RL = 100, Vs = 6V. Unless otherwise specified.

Current Noise VS. Frequency

	Min	Max	Min	Max		
	mm	mm	inch	inch		
Α	1.35	1.75	0.053	0.069		
A1	0.10	0.25	0.004	0.010		
D	4.80	5.00	0.189	0.197		
Н	5.80	6.20	0.228	0.244		
E	3.80	4.00	0.150	0.157		
L	0.40	1.27	0.016	0.050		
е	1.27	BSC	0.050 BSC			
b	0.33	0.51	0.013	0.020		
С	0.19	0.25	0.008	0.010		
0	O°	8 °	0°	8°		
h	0.25	0.50	0.010	0.020		
	Pin Features					
N	8 8					
Conforms to JEDEC MS-012AA Iss. C						

Notes:

- 1. The chamfer on the body is optional. If not present, a visual index feature, e.g. a dot, must be located within the cross—hatched area.
- 2. Controlling dimensions are in inches.
- 3. Dimension D do not include mould flash, protusion or gate burrs. These shall not exceed 0.006" per side.
- 4. Dimension E1 do not include inter-lead flash or protusion. These shall not exceed 0.010" per side.
- 5. Dimension b does not include dambar protusion / intrusion. Allowable dambar protusion shall be 0.004" total in excess of b dimension.

© Zarlini	k Semiconduc	ctor 2002 All ri	ghts reserved.					Package Code
ISSUE	1	2	3	4	5		Previous package codes	Package Outline for
ACN	6745	201936	202595	203705	212424	ZARLINK SEMICONDUCTOR	MP / S	8 lead SOIC (0.150" Body width)
DATE	5Apr95	27Feb97	12Jun97	9Dec97	22Mar02		,	,
APPRD.								GPD00010

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE