UNISONIC TECHNOLOGIES CO., LTD

H1277

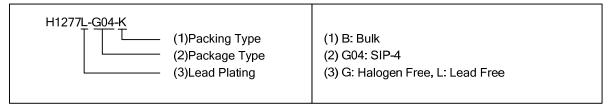
LINEAR INTEGRATED CIRCUIT

HIGH SENSITIVITY HALL **EFFECT SENSOR IC WITH FG OUTPUT**

DESCRIPTION

The UTC H1277 is a semiconducting integrated Hall Effect Sensor IC.

It is just like all the hall sensitive Hall Effect Sensors designed to work in the situations which the accurate track is extremely small and the changes in magnetic flux density-changes are generally too small to be operated.

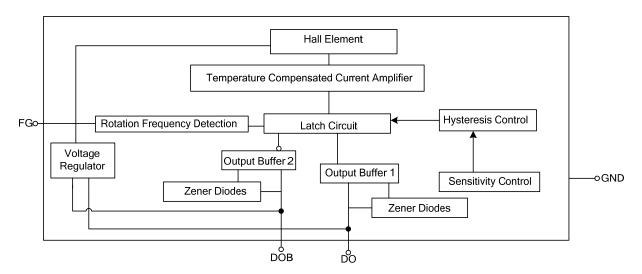

Besides those features shared in all Hall Effect Sensors, H1277 can apply to various kinds of applications, such as contact-less switches, motion detectors, gear tooth sensors, proximity detectors, and electric communication of DC brushless motors, etc.

FEATURES

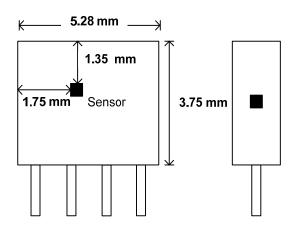
- * Hall Sensor On-Chip
- * Output Zener Diodes to Clamp the Peak Output Voltage
- * Frequency Generation Output
- * High Output Sinking Capability (nearly to 400mA)
- * High Sensitivity Hall Effect Sensor IC: ±65G

■ ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
H1277L-G04-K	H1277G-G04-K	SIP-4	Bulk	


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	FG	Open collector pin: for rotation frequency detection
2	DO	Coil output or power input
3	DOB	Coil output or Power input
4	GND	IC ground


SIP-4

www.unisonic.com.tw 1 of 5 QW-R118-011.B

■ BLOCK DIAGRAM

■ SENSOR LOCATIONS

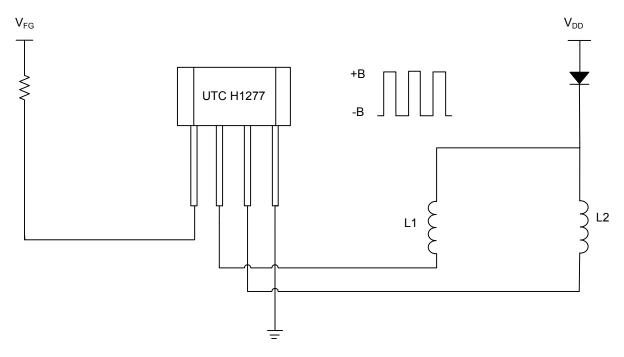
ABSOLUTE MAXIMUM RATINGS (T_a=25°C,unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNITS
Supply Voltage (DO/DOB Voltage)	V _{CC}	25	V
FG Pin Off Voltage	V_{OFF}	25	V
FG Sink Current	I _{FG}	10	mA
Output Current	I _{OUT}	500	mA
Power Dissipation	P _D	500	mW
Junction Temperature	T_J	-20 ~ +150	Ĉ
Storage Temperature	T _{STG}	-65 ~ + 150	°C

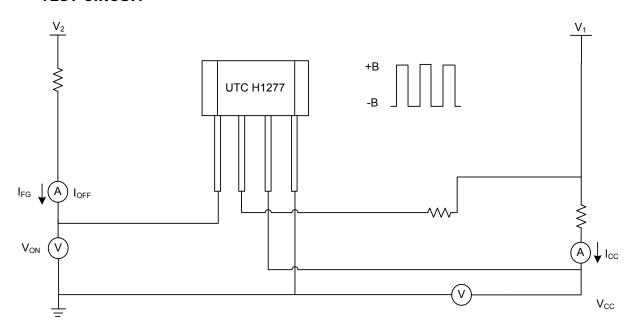
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **RECOMMENDED OPERATING CONDITIONS** (T_a=25°C,unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNITS
Supply voltage (DO/DOB Voltage)	V _{CC}	3.7~20	V
Maximum FG Pin Off Voltage	V_{OFF}	20	V
Maximum Output Sink Current	I _{OUT}	400	mA
Maximum FG Sink Current	I _{FG}	5	mA
Junction Temperature	T_J	-20~ +125	°C
Operating Temperature	T _{OPR}	-20 ~ +85	°C

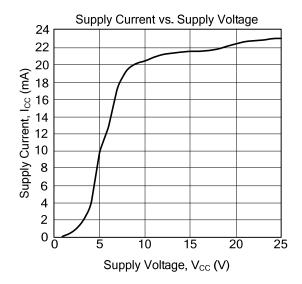

■ **ELECTRICAL CHARACTERISTICS** (T_a = 25°C,V_{CC} =12V, unless otherwise specified)

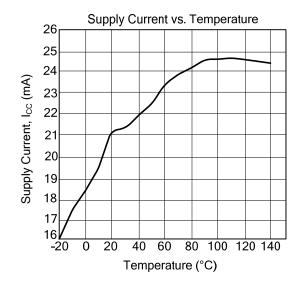
PARAMETER	SYMBOL	TESE CONDITIONS	MIN	TYP	MAX	UNITS
Output Saturation Voltage	$V_{O(SAT)}$	I _{OUT} = 400mA		700	900	mV
Supply Current	Icc			11	25	mA
FG OFF Leakage Current	l _{OFF}				1	μΑ
FG ON Saturation Voltage	V_{ON}	I _{FG} = 5mA		0.2	0.4	V
Clamp Output Voltage	V_{CLAMP}			33		V
Output Rise Time	t_R			0.4		μS
Output Fall Time	t_{F}	$R_L = 200\Omega$, $C_L = 10pF$		0.1		μS
Propagation Delay Time	t _D			2		μS

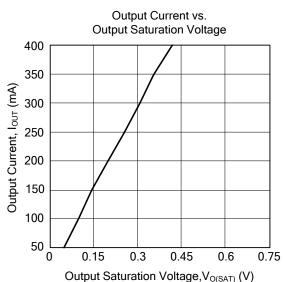

■ MAGNETIC CHARACTERISTICS (T_a = 25°C,V_{CC} =12V unless otherwise specified)

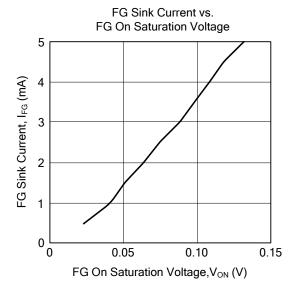
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Magnetic Operate Points	Вор		10		65	Gauss
Magnetic Release Points	Brp		-65		-10	Gauss

■ APPLICATION CIRCUIT




■ TEST CIRCUIT




 $\label{eq:local_continuous} \text{Measure V}_{\text{CC}}, I_{\text{CC}} \text{ when DO is off.} \quad \text{Measure V}_{\text{ON}}, I_{\text{FG}} \text{ when FG is on.} \quad \text{Measure I}_{\text{OFF}} \text{ when FG is off.}$

TYPICAL APPLICATION CIRCUITS (Ta = 25°C, V_{CC} =12V unless otherwise noted)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.