

ALFA SEMICONDUCTORS

AS324N

Parameter		Conditions	AS	AS324N		
			Min	Тур	Max	Units
Short Circuit to	Ground	V ⁺ =15 V _{DC} , T _A =25°C		40	60	mA _{DC}
Input Offset Vol	tage				±9	mV _{DC}
Input Offset Voltage Drift		R _s =0 Om		±7		µV/⁰C
Input Bias Curre	ent	I _{IN(+)} - I _{IN(-)} , V _{CM} =0 V			±150	nA _{DC}
Input Offset Current Drift		R _s =0 Om		±10		pA _{DC} /ºC
Input Bias Current		I _{IN(+)} or I _{IN(-)}		40	500	nA _{DC}
Input Common-I Voltage Range	Vode	V*=+30 V _{DC}	0		V+ -2	V _{DC}
Large Signal Voltage Gain		V ⁺ =+15 V _{DC} (V ₀ Swing=1 V _{DC} to 11 V _{DC}) R _L >=2 kOm	15			V/mV
Otput Voltage	V _{OH}	V+=+30 V _{DC} , R _L =2 kOm	26			N
Swing		R _L >=10 kOm	27	28		V _{DC}
	V _{ol}	V⁺=5 V _{DC} , R _L >=10 kOm		5	20	mV _{DC}
Output Current	Source	$\begin{array}{c} V_{0} = 2 \ V_{DC} \\ V_{1N}^{+} = +1 \ V_{DC}, \\ V_{1N}^{-} = 0 \ V_{DC}, \ V^{+} = 15 \ V_{DC} \end{array}$	10	20		mA _{DC}
	Sink	V _{IN} ⁺ =+1 V _{DC} , V _{IN} ⁻ =0 V _{DC} , V ⁺ =15 V _{DC}	5	8		DC

equivalent).

www.DataSheet4U.com

Low Power Quad Operational Amplifier

General Description

The AS324N series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power suplly systems. For example, the AS324N series can be directly operated off of the standard +5 V_{pc} power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15 V_{pc} power supply.

Unique Characteristics

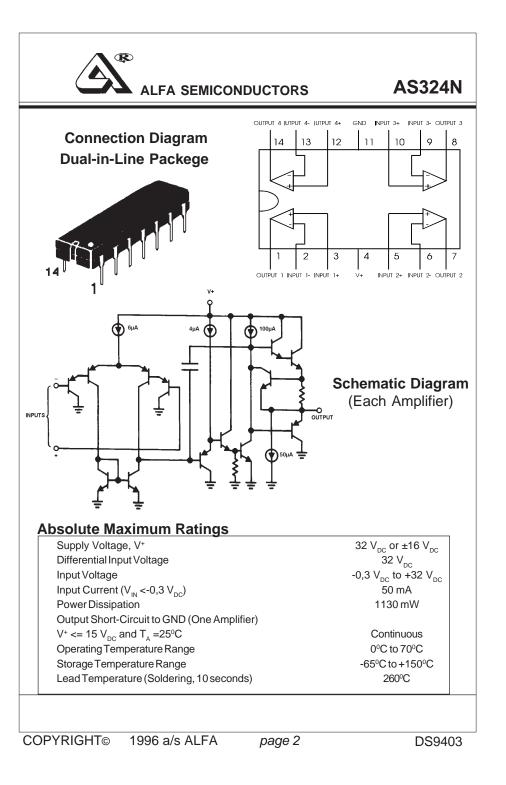
• In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

• The unity gain cross frequency is temperature compensated.

• The input bias current is also temperature compensated.

Advantages

· Eliminated need for dual supplies.


- Four internally compensated op amps in a single package. Allows directly sensing near GND and V_{out} also goes to GND.

· Compatible with all forms of logic.

· Power drain suitable for battery operation.

Features

 Internally frequency compensated f 	for unity gain					
Large DC voltage gain	100 dB					
Wide bandwidth (unity gain)	1 MHz					
(temperature compensated)						
Wide power supply range:						
Single supply	$3 V_{DC}$ to $32 V_{DC}$					
or dual supplies	$\pm 1,5 \text{ V}_{\text{DC}}$ to $\pm 16 \text{ V}_{\text{DC}}$					
• Very low supply current drain (700	$3 V_{DC}$ to $32 V_{DC}$ $\pm 1,5 V_{DC}$ to $\pm 16 V_{DC}$ μ A) - essentially independent of supply					
voltage.						
 Low input biasing current 	45 nA _{pc}					
(temperature compensated)	DC					
Low input offset voltage	2 mV _{DC}					
and offset current	5 nA					
 and offset current Input common-mode voltage range includes ground. 						
 Differential input voltage equal to the second secon						
 Large output voltage swing 	0 V_{DC} to V ⁺ - 1,5 V_{DC}					

ALFA SEMICONDUCTORS AS324N								
Electrical C		teristics $V^+ = +5,0 V_{DC}$, ur Conditions	AS324N			<u>t</u>		
i diamoto.		Oundations	Min	Тур	Max	Units		
Input Offset Volta	age	T _A =25°C		±2	±7	mV _{DC}		
Input Bias Current		$I_{_{\rm IN(+)}}$ or $I_{_{\rm IN(-)}},$ $V_{_{\rm CM}}{=}0$ V, $T_{_{\rm A}}{=}25^{\rm o}{\rm C}$		45	250	nA _{DC}		
Input Offset Current		$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0 V, T_A = 25^{\circ}C$		±5	±50	nA _{DC}		
Input Common-Mode Voltage Range		V ⁺ =30 V _{DC} , T _A =25°C	0		V+-1.5	V _{DC}		
Supply Current		Over Full Temperature Range R_L = On All Op Amps V ⁺ =30 V V ⁺ =5 V		1.5 0.7	3 1.2	mA _{DC}		
Large Signal Voltage Gain		$V^{+}=15 V_{DC}, R_{L}>=2 \text{ kOm}$ $(V_{0}=1 V_{DC} \text{ to } 11 V_{DC}), T_{A}=25^{\circ}\text{C}$	25	100		V/mV		
Common-Mode Rejection Ratio		DC, V _{CM} =0 V to V ⁺ -1.5 V _{DC} T _A =25 ^o C	65	85		dB		
Power Supply Rejection Ratio		DC, V ⁺ =5 V _{DC} to 30 V _{DC} T _A =25°C	65	100		dB		
Amplifier-to-Amplifier Coupling		f=1kHz to 20 kHz, T _A =25°C (Input Referred)		-120				
Output Current	Source	$V_{IN}^{+} = 1 V_{DC}, V_{IN}^{-} = 0 V_{DC}, V^{+} = 15 V_{DC}, V_{0} = 2 V_{DC}, T_{A} = 25^{\circ}C$	20	40				
	Sink	$V_{IN}^{-}=1 V_{DC}, V_{IN}^{+}=0 V_{DC}, V_{1}=15 V_{DC}, V_{0}=2 V_{DC}, T_{A}=25^{\circ}C$	10	20		mA _{DC}		
		$V_{IN}^{+}=1 V_{DC}, V_{IN}^{-}=0 V_{DC}, T_{A}=25^{\circ}C$ V ⁺ =15 V _{DC} , V ₀ =200 mV _{DC}	, 12	50		μΑ _{DC}		