FAIRCHILD

FM809／810
 3－Pin μ C Supervisor Circuits

General Description

The FM809／810 are supervisor circuits that monitor power supply or other system voltages and issue reset pulses（FM809＝ $\overline{\text { RESET，}}$ FM810＝RESET）when a fault condition exists．Several threshold voltages are offered to accommodate system voltages of $5.0 \mathrm{~V}, 3.3 \mathrm{~V}, 3.0 \mathrm{~V}$ and 2.7 V with different tolerances．

The low supply current（typically $2 \mu \mathrm{~A}$ ）recommends the devices for portable designs or wherever power saving is primary．

The minimum RESET delay is 140 ms ，but this may be changed to a value between $32-256 \mathrm{~ms}$ ．Contact the factory for more informa－ tion．

Features

$\square \mathrm{V}_{\mathrm{TH}}$ voltages of $4.63 \mathrm{~V}, 4.38 \mathrm{~V}, 4.00 \mathrm{~V}, 3.08 \mathrm{~V}, 2.93 \mathrm{~V}$ and 2.63 V （contact factory for lower values of V_{TH} ）

■ RESET（FM809）or RESET（FM810）output
－140ms power－on RESET delay（minimum）
■ $\overline{\text { RESET }}$ operation guaranteed to 1.0 V
■ Supply current only $2 \mu \mathrm{~A}$
－No external components
－$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Operating Range
－SOT23－3 package
Applications
－Microcontrollers and Microprocessors
－Appliances
－Power－Supply Monitoring
－Portable Equipment
－Automotive Systems

Typical Operating Circuit

Connection Diagram

FM809／810
SOT23－3 Package

Absolute Maximum Ratings
Voltage on any terminal relative to GND
$V_{c c}$
RESET, RESET
Input Current
Output Current: RESET, RESET
-0.3 V to +6.0 V
-0.3 V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
20 mA
20 mA

Rate of Rise of V_{Cc}
100V/us
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SOT23-3 (derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$
320 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

These are stress ratings only, and functional operation is not implied for these levels or beyond. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
$\mathrm{V}_{\mathrm{CC}}=$ full range, as noted under conditions. See Note 1.

Parameter	Symbol	Conditions		Min	Typ (Note 3)	Max	Units
Operating Voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.0		5.5	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		1.1		5.5	
Supply Current	I_{Cc}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}<5.5 \mathrm{~V} \\ & \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M} \\ & \hline \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}<3.6 \mathrm{~V} \\ & \mathrm{FM} 809 \mathrm{R} / \mathrm{S} / \mathrm{T} \end{aligned}$			5	10	$\mu \mathrm{A}$
					2	6	
Reset Threshold	$\mathrm{V}_{\text {TH }}$	FM8xxL	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	4.40	4.63	4.86	V
		FM8xxM	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	4.18	4.38	4.52	
		FM8xxJ	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	3.90	4.00	4.18	
		FM8xxT	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	2.97	3.08	3.19	
		FM8xxS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	2.79	2.93	3.00	
		FM8xxR	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	2.49	2.63	2.70	
Reset Threshold Tempco					30		ppm $/{ }^{\circ} \mathrm{C}$
V_{CC} to Reset Delay (Note 2)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}$	to ($\mathrm{V}_{\text {TH }}-100 \mathrm{mV}$)		10		$\mu \mathrm{s}$
Reset Active Timout Period		$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$	to $+85^{\circ} \mathrm{C}$	140	256	560	ms
FM809 Output Low (RESET)	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\mathrm{~min}), \mathrm{I}_{\mathrm{SINK}}=1.2 \mathrm{~mA}, \\ & \mathrm{FM} 809 \mathrm{R} / \mathrm{S} / \mathrm{T} \end{aligned}$				0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TT}}(\min), \mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA}, \\ & \mathrm{FM} 809 \mathrm{~J} / \mathrm{L} / \mathrm{M} \end{aligned}$				0.4	
		$\mathrm{V}_{\text {CC }}=<1.0 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=50 \mu \mathrm{~A}$				0.3	
FM809 Output High (RESET)	V_{OH}	$\frac{\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A}}{\mathrm{~V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\text {SOURCE }}=800 \mu \mathrm{~A}}$		0.8 V cc			V
				$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			
FM810 Output Low (RESET)	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\max), \mathrm{I}_{\mathrm{SINK}}=1.2 \mathrm{~mA}, \\ & \mathrm{FM} 810 \mathrm{R} / \mathrm{S} / \mathrm{T} \end{aligned}$				0.3	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}}(\mathrm{max}), \mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA}, \\ & \mathrm{FM} 810 \mathrm{~J} / \mathrm{L} / \mathrm{M} \end{aligned}$				0.4	
FM810 Output High (RESET)	V_{OH}	$1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{C}}$	$<\mathrm{V}_{\text {TH }}(\mathrm{min}), \mathrm{I}_{\text {SOURCE }}=150 \mu \mathrm{~A}$	$0.8 \mathrm{~V}_{\text {cc }}$			V

Note 1: Testing in production is $25^{\circ} \mathrm{C}$ only. Limits over temperature are guaranteed by design
Note 2: $\overline{R E S E T}$ output is for FM809. RESET output is for FM810
Note 3: Typical values are at $25^{\circ} \mathrm{C}$

Pin Descriptions

Pin Number	Name	Function
1	GND	GROUND
2	$\overline{\text { RESET }^{*}}$	$\overline{\text { RESET }}$ while $V_{C C}$ is below $V_{T H}$, and for at least 140 ms after V_{CC} rises above $\mathrm{V}_{\text {TH }}$.
3	$\mathrm{~V}_{\mathrm{CC}}$	

* with overbar, FM809 ($\overline{\operatorname{RESET}})$; without, FM810 (RESET).

Circuit Timing (Ex: FM809)

When operating properly with 5 V in (for example), $\mathrm{V}_{\text {Out }}$ will also be about 5 V . When $\mathrm{V}_{\text {IN }}$ starts to fall, $\mathrm{V}_{\text {OUt }}$ will follow it down as shown. When $\mathrm{V}_{\text {IN }}$ drops below $\mathrm{V}_{T H}, \mathrm{~V}_{\text {OUT }}$ drops to ground ("issues a RESET") and stays there unless $\mathrm{V}_{\mathbb{I N}}$ also falls below its minimum operating voltage, approx. 1V. At this point, the supervisor loses control, and its output may rise, only to again follow V_{IN} down to the ground.

When $\mathrm{V}_{\text {IN }}$ begins to rise, $\mathrm{V}_{\text {OUT }}$ follows it until 1.0 V or so is reached, whereupon the device regains control, $\mathrm{V}_{\text {OUT }}$ is pulled to ground, etc. When $\mathrm{V}_{\text {IN }}$ rises above $\mathrm{V}_{\mathrm{TH}}, \mathrm{V}_{\text {OUT }}$ comes out of RESET 140 ms later.

If it is required that a lower value than GND +1.0 V is needed on RESET signal during $\mathrm{V}_{\mathrm{CC}} \leq 1 \mathrm{~V}$, a 100 K resistor may be used on the device output (to GND for the FM809, to V_{CC} for the FM 810).

Typical Operating Characteristics

Supply Current Vs. Temperature

Power up Reset Timeout Vs. Temperature

Ordering Information (FM809)

Part Number	Top Marking	RESET Threshold (V)	RESET Pulse Width (ms)	Output Type	Package Type
FM809LS3	09L	4.63	256	Push-Pull, active LOW	3-Pin, SOT23
FM809MS3	09M	4.38	256	Push-Pull, active LOW	3-Pin, SOT23
FM809JS3	09J	4.00	256	Push-Pull, active LOW	3-Pin, SOT23
FM809TS3	09T	3.08	256	Push-Pull, active LOW	3-Pin, SOT23
FM809SS3	09S	2.93	256	Push-Pull, active LOW	3-Pin, SOT23
FM809RS3	09R	2.63	256	Push-Pull, active LOW	3-Pin, SOT23
FM809LES3 (Note 4)	09LE	4.63	32	Push-Pull, active LOW	3-Pin, SOT23
FM809MES3 (Note 4)	09ME	4.38	32	Push-Pull, active LOW	3-Pin, SOT23
FM809JES3 (Note 4)	09JE	4.00	32	Push-Pull, active LOW	3-Pin, SOT23
FM809TES3 (Note 4)	09TE	3.08	32	Push-Pull, active LOW	3-Pin, SOT23
FM809SES3 (Note 4)	09SE	2.93	32	Push-Pull, active LOW	3-Pin, SOT23
FM809RES3 (Note 4)	09RE	2.63	32	Push-Pull, active LOW	3-Pin, SOT23
FM809LFS3 (Note 4)	09LF	4.63	64	Push-Pull, active LOW	3-Pin, SOT23
FM809MFS3 (Note 4)	09MF	4.38	64	Push-Pull, active LOW	3-Pin, SOT23
FM809JFS3 (Note 4)	09JF	4.00	64	Push-Pull, active LOW	3-Pin, SOT23
FM809TFS3 (Note 4)	09TF	3.08	64	Push-Pull, active LOW	3-Pin, SOT23
FM809SFS3 (Note 4)	09SF	2.93	64	Push-Pull, active LOW	3-Pin, SOT23
FM809RFS3 (Note 4)	09RF	2.63	64	Push-Pull, active LOW	3-Pin, SOT23
FM809LHS3 (Note 4)	09LH	4.63	128	Push-Pull, active LOW	3-Pin, SOT23
FM809MHS3 (Note 4)	09MH	4.38	128	Push-Pull, active LOW	3-Pin, SOT23
FM809JHS3 (Note 4)	09JH	4.00	128	Push-Pull, active LOW	3-Pin, SOT23
FM809THS3 (Note 4)	09TH	3.08	128	Push-Pull, active LOW	3-Pin, SOT23
FM809SHS3 (Note 4)	09SH	2.93	128	Push-Pull, active LOW	3-Pin, SOT23
FM809RHS3 (Note 4)	09RH	2.63	128	Push-Pull, active LOW	3-Pin, SOT23

Note 4: These devices are available upon special request only. Please contact Fairchild sales for availability and minimum ordering requirements.

Ordering Information (FM810)

$\begin{array}{c}\text { Part } \\ \text { Number }\end{array}$	$\begin{array}{c}\text { Top } \\ \text { Marking }\end{array}$	$\begin{array}{c}\text { RESET } \\ \text { Threshold (V) }\end{array}$	$\begin{array}{c}\text { RESET Pulse } \\ \text { Width (ms) }\end{array}$	$\begin{array}{c}\text { Output } \\ \text { Type }\end{array}$	Package		
Type						$]$	Th10LS3
:---							

Note 5: These devices are available upon special request only. Please contact Fairchild sales for availability and minimum ordering requirements.

Physical Dimensions inches (millimeters) unless otherwise noted

SOT-23 Package Dimensions FS Pkg Code AU

Life Support Policy

Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Fairchild Semiconductor Corporation. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
Fairchild Semiconductor
Americas
Customer Response Center
Tel. 1-888-522-5372

Fairchild SemiconductorEurope		
	Fax:	+44 (0) 1793-856858
Deutsch	Tel:	+49 (0) 8141-6102-0
English	Tel:	+44 (0) 1793-85685
Français	Tel:	+33 (0) 1-6930-369

Fairchild Semiconductor Hong Kong
/F, Room 808, Empire Centre
68 Mody Road, Tsimshatsui East
Tel; +852-2722-8338
Fax: +852-2722-8383

Fairchild Semiconductor Japan Ltd. 4F, Natsume Bldg
2-18-6, Yushima, Bunkyo-ku
2-18-6, Yushima, Bunky
Tokyo, 113-0034 Japan
Tel: 81-3-3818-8840
Fax: 81-3-3818-8841

